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Multimodal Wrist Biosensor for 
Wearable Cuff-less Blood Pressure 
Monitoring System
Vega Pradana Rachim    & Wan-Young Chung

We propose a multimodal biosensor for use in continuous blood pressure (BP) monitoring system. 
Our proposed novel configuration measures photo-plethysmography (PPG) and impedance 
plethysmography (IPG) signals simultaneously from the subject wrist. The proposed biosensor 
system enables a fully non-intrusive system that is cuff-less, also utilize a single measurement site for 
maximum wearability and convenience of the patients. The efficacy of the proposed technique was 
evaluated on 10 young healthy subjects. Experimental results indicate that the pulse transit time (PTT)-
based features calculated from an IPG peak and PPG maximum second derivative (f14) had a relatively 
high correlation coefficient (r) to the reference BP, with −0.81 ± 0.08 and −0.78 ± 0.09 for systolic BP 
(SBP) and diastolic BP (DBP), respectively. Moreover, here we proposed two BP estimation models that 
utilize six- and one-point calibration models. The six-point model is based on the PTT, whereas the one-
point model is based on the combined PTT and radial impedance (Z). Thus, in both models, we observed 
an adequate root-mean-square-error estimation performance, with 4.20 ± 1.66 and 2.90 ± 0.90 for 
SBP and DBP, respectively, with the PTT BP model; and 6.86 ± 1.65 and 6.67 ± 1.75 for SBP and DBP, 
respectively, with the PTT-Z BP model. This study suggests the possibility of estimating a subject’s 
BP from only wrist bio-signals. Thus, the six- and one-point PTT-Z calibration models offer adequate 
performance for practical applications.

Hypertension is a condition in which the force of blood flow through the blood vessel consistently fluctuates 
outside the desired normal ranges. According to the World Health Organization, hypertension is estimated to 
cause 7.5 million deaths, that is, 12.8% of total deaths worldwide1. Moreover, elevated blood pressure (BP) is a 
major risk factor for cardiovascular diseases (CVD) and chronic kidney disease (CKD) as well as hemorrhagic 
stroke2. Recent studies in the US and South Korea reveals that young adults subject (18 to 39 years of age) that 
suffered from hypertension are at significantly increased risk of CVD and stroke later in their life3,4. As no obvious 
symptoms of elevated BP can be observed, preventative actions based on healthy lifestyle choices represent the 
only means of controlling BP and thus ensuring healthier and longer lives. Therefore, the development of con-
tinuous home BP and 24-hour ambulatory BP monitoring is emerging and critical to ensuring proper healthcare 
treatment and management.

The conventional technique for non-invasive blood pressure measurement is using a sphygmomanometer 
with an inflatable cuff. However, this is used only for discrete measurements. More importantly, it is obstructive 
and requires that medical experts perform an auscultation technique in which a diaphragm stethoscope is placed 
over the brachial artery to listen to the Korotkoff sound while the pressure is controlled under the cuff. Thus, a 
cuff-less BP technology that offers continuous, highly wearable, and non-intrusive measurement must be devel-
oped. Several cuff-less methods have been successfully developed by researchers mainly based on pulse transit 
time (PTT)5 and pulse wave analysis (PWA). Recently, Yoon et al.6 showed the possibilities of estimating BP val-
ues using a PWA-BP multi-regression model. The most common method utilizes electrocardiogram (ECG) and 
photo-plethysmography (PPG) signals to calculate pulse arrival time (PAT)7,8. However, Martin et al.9 compared 
the conventional PAT-based BP model with their BCG scale-PTT-based BP model and, after multiple BP inter-
ventions experiment, they concluded that the PAT-based model is effective only with systolic BP (SBP) and not 
diastolic BP (DBP) measurements8,10.

In this study, we propose a multimodal wrist biosensor in which both IPG and PPG sensors are attached to 
the back of a wristband strap to enable continuous, yet cuff-less blood pressure (BP) monitoring system. In this 
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stage of research, we limited our target population into the young healthy adults as it is shown that the largest 
increases in hypertension prevalence have occurred in the young adult population11. Thus, the proposed system is 
targeted for the initial BP screening and early detection of elevated BP and hypertension. Our proposed configu-
ration tackles the common complicated setup using the PTT BP estimation method that requires multiple sensor 
placements on the subject’s chest, foot, or finger7–9, by proposing a compact non-intrusive single site wrist meas-
urement. Furthermore, no consensus has been reached on an exact PTT definition. Thus, in this study, we define 
14 PTT-features as f1–f14 and identify the best PTT feature that correlates well with both SBP and DBP and that is 
suitable for the PTT BP estimation model. Moreover, we compare the PTT value from the multimodal biosensor 
with the conventional PAT value from the subject’s chest ECG and finger PPG. We also introduce an additional 
feature defined as radial impedance (Z) for the one-point BP calibration model (also known as the PTT-Z BP 
estimation model). Finally, the results of designed arm-exercise intervention experiments with the PTT BP and 
PTT-Z BP models are compared for all subjects.

Methods
Data collection and system design.  In total, 10 young healthy volunteers (25 ± 4 years; gender: 6 males 
and 4 females; weight: 63 ± 8; height: 165 ± 6 cm) with no histories of hypertension or cardiovascular disease 
were enrolled in our study. Written informed consent was obtained from participants after we had provided them 
with a complete description of the study. This study was approved by the ethics committee of Pukyong National 
University and conducted according to the Declaration of Helsinki ethical principles for medical research on 
human subjects.

In each experiment, the subject followed the same measurement setup and protocol as shown in Fig. 1. Four 
physiological waveforms were measured simultaneously during the experiments. Our proposed multimodal bio-
sensor was worn on the left wrist of each subject. First, we used the IPG sensor to measure the radial impedance 
of the radial artery from the inner part of the subject wrist. Second, we employed the PPG sensor for the arte-
rial blood volume pulsation measurement in the area of interosseous arteries from the outer part of the subject 
wrist (Fig. 1a). Third, an ECG sensor located on the subject chest was used to record the electrical activity of the 
heart of each subject, which acted as the proximal waveform in the PAT calculation. Lastly, we utilized Oscar 2 
(SunTech Medical, USA) for BP reference data acquisition (Fig. 1b). This device is considered the gold stand-
ard in 24-hour ambulatory BP monitoring and is certified by the British Hypertension Society (BHS) and the 
AAMI-SP10 standards.

The details of the proposed multimodal biosensors system are given as follow. The proposed prototype device 
is attached to the back of the wrist strap and directly contacts the subject’s skin. For the PPG sensor, the overall 
design was described in our previous report12. In brief, we use four LEDs to transmit light in different optical 
wavelengths (in both visible and near-infrared optical spectra) ranging between 660–940 nm. However, only the 
PPG signal collected from 940 nm is used for analysis, multi-channel PPG signals can be used for heart rate (HR) 
monitoring during intensive exercise, the motion artifacts reduction algorithm from multi-channel PPG signal 
can be utilized to separate HR signal and the motion artifacts in the time domain. Moreover, the remaining signal 
is intended for another clinical experiment such as peripheral capillary oxygen saturation monitoring13.

The size of the prototype PPG sensor is 15 × 15 mm2 and we utilize a photodiode (PD) from BPW 34 (OSRAM 
Semiconductor Inc.) to detect reflected light from the subject wrist skin. Moreover, the proposed IPG sensor 
consists of four conductive silver-plated polyester electrodes that are flexible, stretchable in both directions, and 

Figure 1.  (a) Multimodal biosensor with an impedance plethysmography (IPG) signal acted as a proximal 
waveform, and a photo plethysmography (PPG) signal acted as a distal waveform. (b) Measurement setup with 
chest electrocardiogram (ECG), wrist PPG, and wrist IPG collected simultaneously, and left-arm blood pressure 
(BP) monitoring with Oscar 2 for BP reference data acquisition. (c) Measurement protocol with three rest 
sessions (R1, R2, R3) and three arm-exercise sessions (E1, E2, E3) to increase BP.
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suitable for long-term healthcare monitoring14. Each electrode is sewed to the strap and acts as a voltage detector 
and current injector. In this study, we used 500 μA from a 100-kHz current source, which is considered safe for 
the human body and sufficiently assists in detecting the impedance variance15. In addition, a three-channel wet 
electrode with an AD8232 (Analog Devices, Inc., USA) single-lead front end was used for ECG signal collection.

Our experiments were performed repeatedly in an indoor laboratory from April to June 2018 under an 
ambient temperature controlled at 25 °C and a relative humidity of 60%. For data collection with each subject, a 
recorded signal was started approximately 5 s before the cuffed BP measurement was taken using Oscar 2 and fin-
ished approximately 1 min after the cuff was released from the reference BP device. This protocol was conducted 
during the three arm-exercise intervention sessions, as shown in Fig. 1b. Our study employed an arm exercise 
to perturb BP because it was proven easier to perform and to increase subject BP value in an effortless manner. 
Every subject was instructed to sit relaxed to obtain the first session data (B1). Male and female subjects then per-
formed arm exercises (E1) with 3-kg and 1-kg dumbbells (or handgrips), respectively. The next R2 to E3 followed 
a similar protocol. Each session was conducted for 20 min and three BP signals were collected every session and 
averaged for the session BP value.

Signal processing and reference point detection.  The original sampling frequency of 500 Hz was 
down-sampled to 250 Hz for convenient processing. Low-frequency baseline noise in IPG and PPG signals were 
removed with the wavelet decomposition and moving average filter. Here, we decomposed the signal using dis-
crete wavelet transform (DWT) with wavelet symlets 4 into 10 levels and set the approximation coefficients at 
the lowest frequency band to zero, as the baseline wander frequently occurred in the lower frequency band16. 
The next step was signal segmentation based on the ECG R wave and PPG systolic peak. Thus, the ensemble 
average of the individual pulse wave within 10 s or approximately 10–15 periodic signals was used to calculate 
the reference points PAT and PTT as illustrated in Fig. 2. Two reference points were detected in the IPG signal, 
which was the IPG peak (the maximum of the IPG (dZ) signal) and IPG B point (the location of zero crossing 
prior to the maximum dIPG/dt (dZ/dt)5,17. Moreover, seven reference points were detected from the PPG, first 
derivative PPG (dPPG/dt), and second derivative PPG (d2PPG/dt2). We determined (i) the “PPG systolic peak” 
from the maximum of the PPG signal, (ii) the “PPG diastolic minimum” from the valley of the PPG signal, (iii) 
the “PPG max1” from the maximum of the dPPG/dt, (iv) the “PPG max2” from the maximum of the d2PPG/dt2, 
(v) the “PPG intersection” from the meeting point between the line through the PPG diastolic minimum point 
and a tangent line from the PPG max1 point, (vi) the “PPG dicrotic notch” from the e-wave of d2PPG/dt2 or the 
small peak after max2, and (vii) the “PPG diastolic peak” from the second smaller valley after the PPG max2

16. 
The overall detected reference points are shown in Fig. 2a. Therefore, we calculated the conventional PAT as the 
time delay between the ECG R wave and a specific point in the PPG signal (in this particular experiment we used 
“PPG max1”), and PTT as the time delay between the IPG and PPG signal waveform. In the case of PTT, the 
multiple time delay noted as f1−f14 was extracted, with the IPG signal acting as the proximal waveform and PPG 
signal acting as a distal waveform, which are explained by Table 1 and Fig. 2b, respectively. In addition, the radial 
impedance Z was obtained as follows:
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This was calculated by adding the basal impedance (Zb) and impedance variation (dZ). Here, VRcal is the voltage 
drop over the calibration resistor Rcal, Vo is the output voltage of the demodulation stage, Vs is a source sine-wave 
voltage, ′Vs  is the measured voltage after the final amplification, and VdZ is the output voltage of the IPG waveform 
from the proposed system16,18.

Figure 2.  (a) Overall detected reference points, and (b) PAT and PTT calculation from three different signals.
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BP estimation model.  We tested the extracted 14 PTT features with the two types of personalized BP esti-
mation models (i.e., six- and one-point calibration models). The six-point fitting model (PTT BP model) was in 
the form of an exponential function specifically as follows:

= . .P A e (2)B PTT

we first computed the correlation coefficient (r) between each PTT value to its corresponding BP (SBP and DBP) 
value. We calibrated each PTT to the reference BP level by using (2), and found the subject-specific exponential 
parameter of A and B. Thus, we computed the root-mean-squared-error (RMSE) between the predicted and refer-
ence BP levels per subject. Furthermore, the one-point calibration model (PTT-Z model) was obtained as follows:
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where ρ is the blood density, ρ is defined as a constant for all subjects. Furthermore, the first calibration data were 
used to obtain SBP0 and DBP0 from the reference device and PTT0 and Z0 from our proposed multimodal biosen-
sor. The data were also thus to calculate the P and K values as mentioned in (3) and (4), respectively, where P is 
denoted as BP (SBP and DBP) and PTT is in the range from f1-PTT to f14-PTT. Therefore, the created model (3) 
are used for the validation experiment to estimate the remaining data collected from our designed arm-exercise 
intervention experiment.

Results
Correlation between extracted PTT features with BP.  Table 1 shows the correlation coefficient r of 
the BP with 14-PTT features, averaged from all 10 subjects. As the table shows, in general, IPG B-point-based 
PTTs have a weaker correlation with both SBP and DBP compared to the IPG peak-point-based PTT. This is 
because the B point was not always clearly identifiable18,19, and initially, the B point was detected from the tho-
racic impedance using the ICG waveform19. However, IPG peak-based PTTs correlated well with the BP value, 
particularly f12-PTT and f14-PTT with −0.64 ± 0.24 and −0.81 ± 0.08 for SBP and −0.60 ± 0.22 and −0.78 ± 0.09 
for DBP. Here, we found out that the f14-PTT shows the best correlation to both SBP and DBP. Interestingly, 
some features such as f8-PTT and f9-PTT have a relatively positive and medium correlation to the DBP and SBP, 
respectively. The positive correlation results also revealed by another study that analyzed similar subject charac-
teristics20,21. Zheng et al.20 studied a cuff-less armband system using 10 young healthy subjects in the age range of 
27 ± 3 years old, and PTT from five of the subjects positively correlated with the BP value during a daytime meas-
urement. Fig. 3 shows the example of the PTT trend in different intervention sessions gathered from Subject #1.

Comparison between extracted features with PAT.  We also measured conventional PAT values in 
which the chest ECG R wave and wrist PPG foot were used as proximal and distal timing references, respectively. 
As Table 1 shows, the conventional PAT highly correlated with the SBP value (−0.83 ± 0.17) but had a relatively 
medium correlation to the DBP value (−0.63 ± 0.14). As previously described, f14-PTT extracted from the pro-
posed system strongly correlated with both SBP and DBP. Thus, a comparison shows that PAT and f14-PTT both 

IPG PPG Features r (SBP) r (DBP)

B-Point
Max1

f1 0.12 ± 0.27 0.29 ± 0.23

Peak f8 −0.48 ± 0.38 0.64 ± 0.24

B-Point
Systolic Peak

f2 0.01 ± 0.22 0.14 ± 0.18

Peak f9 0.52 ± 0.42 −0.62 ± 0.21

B-Point
Dicrotic Notch

f3 0.25 ± 0.39 0.13 ± 0.63

Peak f10 0.51 ± 0.32 0.44 ± 0.22

B-Point
Diastolic Minimum

f4 −0.23 ± 0.33 −0.25 ± 0.45

Peak f11 −0.48 ± 0.30 −0.60 ± 0.30

B-Point
Intersection Tangent

f5 0.38 ± 0.25 0.31 ± 0.40

Peak f12 −0.64 ± 0.24 −0.60 ± 0.22

B-Point
Diastolic Peak

f6 0.06 ± 0.63 0.05 ± 0.50

Peak f13 0.06 ± 0.60 0.64 ± 0.24

B-Point
Max2

f7 0.46 ± 0.23 0.52 ± 0.21

Peak f14 −0.81 ± 0.08 −0.78 ± 0.09

ECG-PAT −0.83 ± 0.17 −0.63 ± 0.14

Table 1.  Different PTT feature correlation coefficient values with SBP and DBP values.
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highly correlate to the SBP, where PAT was slightly better than f14-PTT (by 2.5%). However, our f14-PTT corre-
lated better to the DBP than did the conventional PAT (by 24%).

Performance of BP estimation model with different features.  The overall performance of cuff-less 
BP estimation using different PTT features (f1–f14) extracted from our proposed system are shown in Table 2. 
Here, we computed the RMSE and r between the estimated SBP and DBP to the reference value from Oscar 2. The 
RMSE and r values shown in Table 2 were averaged from all subjects. Moreover, the average values of reference 
SBP and DBP during the measurement of all data samples were 122 ± 16 mmHg and 72 ± 8 mmHg, respectively. 
In addition, the best features of f14-PTT showed an average RMSE and r of 4.20 ± 1.66 and 0.79 ± 0.07 for SBP, 
respectively, and 2.90 ± 0.90 and 0.77 ± 0.10 for DBP, respectively.

Fig. 4 shows the results of an exponential function fitting between f12-PTT (Fig. 4a) and f14-PTT (Fig. 4b) to 
the SBP and DBP in different subjects. The fitting function used for data analysis in Table 2 and Fig. 4 was defined 
as an exponential function in (2). This result was already proven by the previous study that showed an exponential 
function fits better in the plot between BP levels and PTT than other functions such as the log-natural or 1/PTT 
function22. Fig. 4a,b clearly show that for the representative example Subject #6, the r value of f14-PTT was supe-
rior to the f12-PTT in terms of both estimated SBP and DBP values. The f12-PTT reached only 0.42 and 0.20 for 
SBP and DBP, respectively, whereas the f14-PTT reached 0.75 and 0.60 for SBP and DBP, respectively. Example 
subject #5 also followed a similar trend in which f14-PTT was superior to f12-PTT. Therefore, just as the Subject #1 
example yielded representative results when f12-PTT was strongly correlated to the BP value, so f14-PTT produced 
a similar performance.

Figure 3.  Representative example of the average SBP, DBP, f14-PTT, f12-PTT, and f8-PTT for each baseline and 
exercise session from Subject #1.

Features

SBP DBP

RMSE r RMSE r

f1 6.58 ± 2.04 0.30 ± 0.12 4.28 ± 1.13 0.34 ± 0.22

f2 6.69 ± 1.77 0.20 ± 0.12 4.57 ± 1.11 0.21 ± 0.12

f3 6.05 ± 2.12 0.44 ± 0.20 4.38 ± 1.16 0.37 ± 0.09

f4 6.17 ± 2.17 0.31 ± 0.29 3.79 ± 1.23 0.36 ± 0.34

f5 6.53 ± 1.86 0.27 ± 0.15 4.21 ± 1.04 0.40 ± 0.17

f6 5.68 ± 2.46 0.52 ± 0.25 4.15 ± 1.26 0.42 ± 0.23

f7 6.41 ± 2.06 0.36 ± 0.15 4.12 ± 1.33 0.46 ± 0.20

f8 5.33 ± 1.88 0.59 ± 0.22 3.19 ± 0.96 0.64 ± 0.23

f9 5.09 ± 0.56 0.56 ± 0.23 3.38 ± 0.41 0.58 ± 0.24

f10 5.19 ± 1.29 0.51 ± 0.31 3.87 ± 1.30 0.45 ± 0.27

f11 5.12 ± 0.93 0.49 ± 0.34 3.36 ± 0.72 0.52 ± 0.31

f12 4.74 ± 1.29 0.59 ± 0.29 3.07 ± 0.93 0.58 ± 0.29

f13 5.75 ± 2.45 0.51 ± 0.24 4.19 ± 1.29 0.41 ± 0.23

f14 4.20 ± 1.66 0.79 ± 0.07 2.90 ± 0.90 0.77 ± 0.10

Table 2.  Performance of PTT-based BP estimation model with different features.
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Comparison between PTT-based BP and PTT-Z BP models.  The Bland-Altman plots of BP associ-
ated with the PTT BP and PTT-Z BP models from all subjects are shown in Fig. 5a,b, respectively. Both figures 
show that we used only the feature f14-PTT, as it was determined from our previous analysis to be the best feature 
for our system. The figure shows that the RMSE from the PTT-Z BP model was higher than that of the PTT BP 
model with both SBP and DBP values of 6.86 ± 1.65 and 6.67 ± 1.75, respectively. One main difference between 
the PTT-based BP and PTT-Z BP model was the number of calibration points. For calibration, the PTT-based BP 
model used six points from the designed arm-exercise intervention sessions for model fitting, whereas the PTT-Z 
BP model15 used only the first point from the first B1 session. In our attempt to create a fully non-intrusive system 
with our cuff-less BP monitoring system, calibration was one of the biggest problems we encountered5. By only 
using one-point measurement for calibration, our system is optimal for practical implementation in personal-
ized wearable cuff-less BP monitoring systems. However, the six-point PTT BPP model was still superior to the 
one-point PTT-Z model. Thus, using a greater number of calibration points is recommended to achieve more 
accurate results.

Discussion
Here we calculated PTTs from the IPG and PPG signal of the wrist. Both signals have been widely known for 
arterial volume change detection, where PPG signal is based on the changes of reflected light due to the changes of 
arterial volume and dimension while IPG signal is based on the changes in the electrical impedance. The advan-
tages of using multimodal signal is that each the signal will share a different useful further clinical information, 
such IPG signal may further be used for in vivo blood characterization including body fat analysis23, and body 
fluid monitoring24, while PPG signal may further be used for pulse rate variability (PRV) monitoring25, and men-
tal stress monitoring26. With these notable aspects in mind, to achieve our final goal that develops a fully compact 
smartwatch-type clinical analysis system, this study proposes to employ the multimodal biosensor.

We defined 14 PTT-features from f1–f14 to identify the PTT that is most suitable for our proposed multimodal 
biosensor cuff-less BP monitoring system. Here the 14-PTT features were chosen carefully from the literature 
study of the previous works in the similar research area, the previous studies revealed that the definition of PTT 
differs from one researcher to another27–30. The most common distal waveform “foot” location is defined as the 
diastolic minimum time, the maximum 1st derivative, the maximum 2nd derivative and intersection tangent5,27. 
However, several studies have indicated that an alternative location to the “PPG foot” can also be considered, such 
as maximum inclination in the PPG28,29, systolic peak30, and dicrotic notch31. In addition, the diastolic peak ana-
lyzed in this study derives for extensional comparison data. As a result of our comparison of 14 PTT-features to 
the BP value, the f14-PTT strongly correlated to both the SBP and DBP values. As previously defined, f14-PTT uses 
PPG-foot from a maximum 2nd derivative of the PPG signal as a marker from the distal waveform. Our results 
were similar to those of previous studies that indicated that the distal “foot” was superior to the distal “peak” as 
the marker for the BP estimation method5,12.

Figure 4.  Representative estimated SBP and DBP value versus Reference value collected from Oscar 2 in three 
subjects. (a) Estimated model using input from f12-PTT, and (b) Estimated model using input from f14-PTT.
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The IPG signal was used for the PTT calculation and radial impedance measurement. In (1), we showed how 
to convert the collected voltage value of IPG (VdZ) into the radial impedance Z. The Z value is affected by the 
arterial cross-sectional area (A), shown as follows:

ρ
=A L

Z (5)

where L is the length of the measured segment. Thus, the arterial cross-sectional area or arterial diameter itself 
proved to be highly correlated with the change in BP value15,32. In addition, earlier studies mentioned that the 
arterial cross-section has a nonlinear relationship to the arterial BP33,34. Therefore, we reasoned that IPG can be 
used as a proximal waveform and Z can be used to estimate SBP and DBP.

The results of this study show that our system is capable of using only one calibration point, which is suitable 
for practical application. For the one–calibration-point model, we combined the PTT and Z variables. Some 
researchers mentioned that for a one-calibration-point BP model, relying on only a single PTT value is difficult. 
Ding et al.27 combined the PTT and PPG intensity ratio (PIR) for their BP model and found that PIR could be 
used to improve cuff-less BP measurement. In addition, PWA and a modified normalized pulse volume (mNPV) 
were proven to be potential reliable markers for the BP estimation model6,35. In this study, we used Z, as it was 
evident that the power spectrum density (PSD) of Z covers both high and low components of the BP waveform. 
In addition, as previously explained, it is inversely related to BP.

Our study yet has limitations. Firstly, the recruited subjects of the study were rather homogenous to the young 
healthy adult. It is previously mentioned that the largest increases in hypertension prevalence have occurred in 
the young adult population, however further studies that assessed on a larger number of subjects and examining 
whether the PTT features and estimation model differ depending on the population, such as overweight subjects, 
are needed. Secondly, we did not examine the day-to-day changes related to the performance of the model, thus 
a further experiment needs to be conducted to test the maximum validation of the model. The proposed system 

Figure 5.  Performance comparison of the PTT-BP and PTT-Z BP models.
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is ultimately used for daily BP monitoring however this study focuses on investigating the novel non-intrusive 
wrist biosensor configuration for BP estimation. Thirdly, we used a commercialized LED emitter and photodiode 
to detect PPG signal, thus a high-efficiency, flexible and polarization insensitivity can be considered further for 
PPG signal detection36. Lastly, to realize as a 24-hour ambulatory BP monitoring system, the further experi-
ment is required related to the system performance during mean blood pressure (MBP) monitoring and low 
signal-to-noise (SNR) ratio during the subject’s activity.

Conclusion
In this study, we investigated a novel wearable BP monitoring system that utilizes multimodal wrist biosensors 
for a continuous, non-intrusive, and cuff-less BP monitoring system. Based on validated experiments on 10 sub-
jects, we found that the f14-PTT feature that is defined as the time delay between peak IPG to the maximum 2nd 
derivative of the PPG signal (d2PPG/dt2) shows a promising correlation to the BP value. In addition, it was able 
to estimate both SBP and DBP during the designed arm-exercise intervention sessions. We tested the system 
with six- and one-point calibration models that utilized PTT and a combination of PTT and the Z value, respec-
tively. We found that both models performed adequately in practical implementations in a personalized wearable 
cuff-less BP monitoring system, where the six-point PTT BP model performed better than the one-point PTT-Z 
BP model. To the best of our knowledge, this is the first study that proposes wrist multimodal biosensor and 
investigates the wrist bio-signal for BP estimation for maximum wearability and convenience of the patients. 
Our proposed biosensor is a promising approach for a compact smartwatch-type clinical measurement system.

Data Availability
The data that support the findings of this study can be obtained through e-mail from the corresponding author 
upon reasonable request.
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