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Abstract: Efficient detection and observation of dynamic RNA changes remain a tremendous chal-
lenge. However, the continuous development of fluorescence applications in recent years enhances
the efficacy of RNA imaging. Here we summarize some of these developments from different aspects.
For example, single-molecule fluorescence in situ hybridization (smFISH) can detect low abundance
RNA at the subcellular level. A relatively new aptamer, Mango, is widely applied to label and track
RNA activities in living cells. Molecular beacons (MBs) are valid for quantifying both endogenous
and exogenous mRNA and microRNA (miRNA). Covalent binding enzyme labeling fluorescent
group with RNA of interest (ROI) partially overcomes the RNA length limitation associated with
oligonucleotide synthesis. Forced intercalation (FIT) probes are resistant to nuclease degradation
upon binding to target RNA and are used to visualize mRNA and messenger ribonucleoprotein
(mRNP) activities. We also summarize the importance of some fluorescence spectroscopic techniques
in exploring the function and movement of RNA. Single-molecule fluorescence resonance energy
transfer (smFRET) has been employed to investigate the dynamic changes of biomolecules by cova-
lently linking biotin to RNA, and a focus on dye selection increases FRET efficiency. Furthermore,
the applications of fluorescence assays in drug discovery and drug delivery have been discussed.
Fluorescence imaging can also combine with RNA nanotechnology to target tumors. The invention
of novel antibacterial drugs targeting non-coding RNAs (ncRNAs) is also possible with steady-state
fluorescence-monitored ligand-binding assay and the T-box riboswitch fluorescence anisotropy assay.
More recently, COVID-19 tests using fluorescent clustered regularly interspaced short palindromic
repeat (CRISPR) technology have been demonstrated to be efficient and clinically useful. In summary,
fluorescence assays have significant applications in both fundamental and clinical research and will
facilitate the process of RNA-targeted new drug discovery, therefore deserving further development
and updating.

Keywords: RNA; chemical biology; fluorescent assays

1. Introduction

Discovered in the 1930s, RNA is an essential nucleic acid molecule that participates in
genetic information storage, gene expression, and regulation in living cells [1]. Since then,
enormous progress has been made in studying its biological roles in cells, especially over
the past four decades, in which scientists have discovered various RNA species and their
diverse catalytic functions. Although DNA and RNA are both responsible for regulating
gene expression, they have numerous differences. RNA is more vulnerable to degradation
than DNA due to the highly reactive hydroxyl group on C2 of the ribose sugar and the
existence of ubiquitous ribonucleases (RNases) in cells. RNA also undergoes many dynamic
structural changes, and its biological activity can be transient, which make RNA research
relatively more challenging. A variety of analytical techniques including fluorescence,
bioluminescence, and absorbance-based assays have been developed and demonstrated to
be helpful in discovering the functions of mRNA, tRNA, and rRNA in protein synthesis [2],
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microRNA (miRNA), small interfering RNA (siRNA), and long non-coding RNA (lncRNA)
in gene expression and regulation [3], as well as small nuclear RNAs (snRNAs) in RNA
splicing and post-transcriptional modifications [4]. Fluorescence and absorbance-based
detection have also been instrumental in assessing the concentration and purity of RNA.
It is worth noting that although the absorbance technique measures samples in a simple
and timely manner, fluorescence displays more significant advantages, including higher
sensitivity and higher accuracy. In addition, RNA imaging probes have been widely studied
by researchers using both fluorescence and bioluminescence [5]. Bioluminescence is also
utilized for RNA detection. It results from a chemical reaction inside an organism, while
fluorescence deals with the absorption and emission of lights [6]. Fluorescence offers two
main advantages over bioluminescence. First, increased brightness brings out a clearer
image of dynamic RNA changes. Second, cofactors and substrates are not required for
RNA imaging [7]. These benefits explain why the role of fluorescence in RNA research has
received increased attention in recent years. This review will briefly discuss some of these
fluorescence techniques and experimental assays, such as fluorescence in situ hybridization,
RNA aptamers, molecular beacons, enzymatic labeling, forced intercalation probes, and
spectroscopy in studying the conformational changes, metabolic pathways, transportation,
and protein interactions of different RNA species. We also discuss their applications in
drug development and clinical use.

2. Current Fluorescence-Based Experimental Assays and Methods
2.1. Application of FISH

Fluorescence in situ hybridization (FISH) was first introduced around 1980 [8]. As the
name implies, this method relies on fluorescently labeled DNA or RNA probes which can
hybridize with high specificity to some complementary target sequences. These probes are
labeled either through radiolabeling, some attached fluorescent protein, or other methods.
Because of this, FISH allows for the detection, localization, and even quantification of
nucleic acid targets [9]. At the time of its introduction, it was vastly superior to other
technologies and pushed the field into a new age of study. Its widespread use has allowed
it to mature and become useful for various applications. Along with some current break-
throughs, the technique has been largely improved. For example, various modifications
to the probes have allowed for more accessible and more efficient detection of RNA and
DNA. Despite these improvements, there are still many challenges in its use in living cells.
Nevertheless, the future of FISH could significantly impact the field of medicine by offering
live-cell imaging for sick patients.

Currently, it is a vital diagnostic tool for various diseases, particularly tumor growth
or cancer. Some cancers can be traced to genetic aberrations or mutations in cellular DNA,
which FISH could potentially detect. For example, HER2 is an oncogene associated with
breast cancer, coding for a tyrosine kinase that promotes cell proliferation. The amplification
of this gene characterizes between 25–30% of breast cancers. Using a probe that targets
this oncogene with FISH, physicians can obtain more effective treatments that specifically
target the HER2 gene or protein [10].

Initially, FISH required a DNA probe and a target sequence of interest. Since its
development, the number of detectable target sequences has increased due to the probes’
combinatorial labeling [11]. The first probes were large as methods of purification and
synthesis required greater-sized probes to work. The problem with these large probes
was that they were prone to high background fluorescence, which would significantly
alter some results. Eventually, probes became much smaller and more efficient. This
advanced technology removed the background interference and allowed for more precise
results [12]. Also, specific probes such as modified RNA strands were invented, which
are used to detect and localize specific RNA targets. These probes are single-stranded
RNA used to detect corresponding nucleic acid sequences by hybridization. These probes
may be labelled by epitopes, radioisotopes, or fluorophores to highlight target sequences.
Combinations of these new technologies have greatly expanded the application of FISH.
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Combining fluorescence in situ hybridization and high-resolution microscopy has enabled
the detection of subcellular localization of RNA. For example, circular RNA (circRNA) is a
single-stranded RNA that forms a covalently closed loop; the 3′ and 5′ ends connect to form
the circular structure. Using microscopy and FISH to detect circRNA can be challenging
since only its junction can be described. circRNAs are expressed at various levels, so
to effectively detect these molecules, background fluorescence levels need to be low to
obtain precise imaging. To detect these circular strands, high-precision localization using
one fluorescently labeled probe spanning the circRNA junction allows for their detection
in mammalian cells with high signal-to-noise ratios [13]. In addition, FISH can be used
to evaluate mRNA during its complete life cycle, from transcription in the nucleus to
maturation and decay in cytoplasm.

Cell heterogeneity cannot be ignored since every cell shows different and indepen-
dent activities compared to the average performance in a population of cells. Therefore,
exploring the detection, quantification, and localization of RNA of a single cell at the
subcellular level is necessary. FISH has a low sensitivity and it is almost impossible to use
it to monitor a low RNA abundance. A new technique, single-molecule FISH (smFISH)
(Figure 1), was invented and has several advantages over normal FISH: (1) FISH typically
works to produce qualitative results, while smFISH can quantify the RNA during dynamic
gene expression, (2) smFish was designed so that multiple 18–22mer short-stranded DNA
probes target the same RNA, significantly increasing the signal–noise ratio by enhancing
the fluorescent intensity, thereby lowering the possibility of a biological false positive (BFP),
(3) multiple probes binding to the target RNA makes the degradation of a small amount
of RNA negligible; this decreases biological false negatives (BFN), (4) smFISH is simple
and time efficient; it only requires one-step hybridization, and a single measurement can
be realized in 24 h. This technique has been widely employed and has progressed since
its birth. For example, single mRNA in Drosophila melanogaster could be detected while
maintaining the tissue morphology [14]. The optimized smFISH technique was adopted for
cryosectioning of zebrafish embryos for cell segmentation and transcription detection [15].
Joshua et al. succeeded in obtaining super-resolution imaging of single mRNA molecule
performance in the neural system by combining smFISH with 3D Structured Illumination
Microscopy (3D-SIM) [16], and smFish was also used to determine the function of antisense
lncRNA transcripts called COOLAIR in silencing Arabidopsis FLOWERING LOCUS C (FLC),
revealing the mutually exclusive relationship between sense and antisense transcripts at the
single-cell level [17]. Overall, smFISH works not only for mRNA and lncRNA localization,
but also for RNA migration and RNA–protein interaction. It works not just for mammals,
yeasts, and viruses, but also for plants.
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Figure 1. Hybridization scheme of single molecule FISH (smFISH).

Other than smFISH, another significant FISH application worth mentioning is exciton-
controlled hybridization-sensitive fluorescent oligonucleotide (ECHO) probes [18] (Figure 2).
The labeled RNA samples fluoresce when illuminated by light with specific wavelengths.
However, it might not reflect the actual concentration or abundance of RNA due to the high
amount of background fluorescent dyes that do not participate in labeling the RNA strand.
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Researchers must carry out a labor-intensive wash process to remove these excess dyes. One
idea to remedy this was to design an on–off switch system, so that when the dye recognizes
its target biomolecule, e.g., RNA, the fluorescence is turned on, otherwise, it is turned off.
This way, background fluorescence is minimized, as is the need for repetitive washing steps.
ECHO probes are thiazole orange-modified fluorescence probes. They show more vigorous
fluorescence intensity upon binding to the target RNA, whereas the fluorescence emission
in an unbounded state is almost negligible. In this case, the hybridization sensitivity is
higher, and background influence was avoided to the greatest extent.
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Conventional FISH has difficulty detecting RNA interaction and behaviors in living
cells. The ECHO-FISH technology has been adapted to overcome this obstacle. In liv-
ing cells, the fluorescence intensity of the hybridization complex and the concentration
of mRNA have a positive linear correlation because the background is hampered. The
photochemical property is tunable and reversible; researchers can incorporate a T-70mer
(T70) DNA to pull down the ECHO probe and bind with poly RNA to photo-quench the
complex, as displayed by the weak fluorescence intensity. Oomoto et al. used this novel
RNA detection technology, ECHO-liveFISH, in 2015 to conduct RNA imaging in living cells
by labeling the 28S rRNA and U3 small nucleolar (snoRNA) in mouse brain cells [19]. The
ECHO probes used were several 13–50nt oligonucleotide probes with thymine/cytosine
residues modified with thiazole orange (TO) dye homodimer. The experiment also proved
that the homodimer TO improves the thermal stability of the probe/RNA duplex with
increased Tm.

2.2. RNA Aptamer-Based Fluorescent Assays

Aptamers are a new class of synthetic DNA or RNA oligonucleotides that can bind to
target molecules with high affinity and specificity. These targets range from nucleic acids,
proteins, and organic compounds to cells or even tissues. They are similar in function to
antibodies and are thus nicknamed “chemical antibodies” or “nucleic acid antibodies”.
However, unlike antibodies and other peptides, they are significantly less likely to produce
immune responses. More importantly, they can be chemically modified to change their
affinity, specificity, and half-life properties. Even their functions can either be changed
or enhanced. This allows one to tailor an aptamer to any specific clinical or investigative
need. These are the major advantages that make RNA–aptamers a promising field for
investigation in therapeutics and RNA research [20]. Aptamers work by intramolecularly
hybridizing into a defined three-dimensional structure that can bind to a target. Many
different aptamers have been developed to target RNA. To visualize the location of their
targets, aptamers bind fluorophores [21]. Potential aptamers are isolated through an in vitro
selection process called systematic evolution of ligands by exponential enrichment (SELEX).
The basic idea is that a large pool of oligonucleotides is exposed to a fluorophore, and the
small subset of oligos that associate with the fluorophore is then isolated and purified [22].

Notably, several aptamers may bind to and activate fluorophores that mimic the
fluorophore found in green fluorescent protein (GFP) [23]. Three of these aptamers are
named Spinach, Broccoli, and Pepper. Note that the advantage of light-up aptamers over
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the traditional GFP technique is that aptamers have a higher signal-to-noise ratio, as in the
absence of the aptamer, there is low background fluorescence [24]. Furthermore, aptamers
are more specific to RNA To obtain fluorescence, aptamers usually require magnesium to
activate; the amount needed depends on the exact aptamer. For example, the Broccoli RNA
aptamer requires relatively little magnesium to obtain fluorescence. Figure 3 exhibits how
aptamers are lit up.
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Figure 3. (A) Scheme of the aptamer–RNA complex lit up by a fluorophore. Typically, Broccoli
binds to DFHBI–1T (GFP fluorophore mimic) and Mango uses TO1–biotin to activate fluorescence.
(B) Structure of DFHBI–1T. (C) Structure of GFP fluorophore (for comparison). Since the flourophore
is part of the larger GFP protein complex, R1, R2, and R3 correspond to serine 65, a methyl group,
and glycine67 residues from the protein respectively. (D) Structure of TO1–biotin. R represents the
biotin-polyethyleneglycol (PEG)-linker [25,26].

As one of the most promising aptamers, Mango, a 39mer parallel-stranded G-quadruplex
nucleotide, displays several advantages in tracing RNA movement compared to several
other methods. Mango’s advantages include but are not limited to high affinity to a fluo-
rescent dye, purification of fluorescently tagged RNA molecules [26], and high specificity
and sensitivity for RNA detection [27]. In recent years, it has gradually evolved into a
mature background-free detecting technology in living cells. Nested Mango nucleic acid
sequence-based amplification (NABSA), as an alternative to RT-PCR, helps detect single-
molecule pathogenic RNA [27]. Scientists from Simon Fraser University managed to use
this technique to find more detailed information on how SARS-CoV-2 enters and interacts
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with cells. Also, recently designed second-generation Mango II assay successfully enhanced
the imaging contrast of coding and non-coding mCherry RNA at single-molecule resolution
without altering their localization. The next-generation Mango aptamer has high affinity,
great thermostability, brightness, and improved signal-to-noise ratio compared to other
routine aptamers. Therefore, it could be used to measure low abundance RNA, or even
a single RNA molecule in the cellular environment. Also, the Mango II assay works well
with super-resolution microscopy due to the extended imaging periods, and it works both
on fixed and living cells [28].

2.3. Molecular Beacon-Based Fluorescence Assays

Aside from FISH, researchers managed to design molecular probes called molecular
beacons (MBs) that only fluoresce upon binding to target RNA. This way, the signal-to-noise
ratio is significantly higher. Molecular beacons are 30–50nt single-stranded oligonucleotide
sequences that consist of four components: stem, loop, quencher, and reporter (fluorophore).
In its initial state, MBs showed a hairpin stem–loop shape, and the fluorophore was
inactivated because the quencher and reporter are too close to each other in an unbounded
state. Upon association with the target RNA, the hairpin stem–loop is untied, forming a
stable hybrid duplex with the RNA, and the extended spatial conformation activates the
fluorophore upon excitation [29]. The technique has another advantage: high specificity
in addition to a high signal-to-noise ratio during hybridization and high sensitivity. The
hairpin structure can distinguish even one base-pair mismatch while complementary to
the target nucleic acid sequences [30]. However, it is challenging and time-consuming to
design every MB probe as the stem structure should be neither too strong nor too weak.
They hardly hybridize to target sequences if the hairpin structure is too stable. On the other
hand, the MBs might spontaneously unfold and activate the fluorophore before binding to
the target RNA if the stem base-pair affinity is too weak.

MBs are suitable for measuring RNA trafficking and localization, and their role in
the regulation of gene expression [31]. Researchers mainly use this technique to image
the endogenous mRNA and miRNA in living cells. However, some barriers need to
be overcome. One of these barriers is the efficient delivery of MBs into cells. Because
MBs are made of negatively charged RNA/DNA oligonucleotides, the cell membrane
is generally impermeable to them, as with many nucleic-acid-based platforms discussed
here. Therefore, some MB carriers, such as cationic liposomes, polymers, cell-penetrating
peptides (CPPs), and nanoparticles, are designed to accompany the MBs and help them
cross the cell membrane [5]. Another challenge is that MBs are prone to giving false positive
or inaccurate signals upon entering the cell. Some potential reasons include uneven delivery,
sequestration into the nucleus, non-specific binding, and degradation by nucleases.

To overcome these challenges and realize the best accuracy level, Yang et al. invented
a new RNA imaging platform named ratiometric bimolecular beacons (RBMBs) [32], which
is a hybridization of stem–loop oligonucleotides with a reporter dye on its 5′ end and a
linear single-strand nucleotide with a reference dye and quencher on its 5′ and 3′ ends.
The reporter dye and quencher are near each other to inactivate the reporter; the quencher
and reference dye are far away, so the reference is not influenced. Hybridization separates
the reporter and quencher upon binding to the complementary target sequences and flu-
orescence is observed. The reference dye stays unquenched, and the 3′-UU of the MBs
overhang facilitates its nuclear export (Figure 4). The innovative point is incorporating
reference dye since heterogeneous delivery of MBs might cause the intervention of back-
ground fluorescence. The fluorescence would not only be due to the expression of target
RNA but also to the uneven delivery. The incorporation of reference dye minimizes the
influence of cell-to-cell variability during MB delivery. Additionally, the incorporation of
siRNA elements to the RBMB structure was found to localize the probe in the cytoplasm
effectively. The idea is based on recent findings that siRNAs are efficiently transported out
of the nucleus by a nuclear transmembrane protein called exportin [33]. The Yang lab also
developed a 2′-O-methylated (2′-OMe) RNA with phosphorothioate (PS) inter-nucleotide
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linkage instead of a phosphodiester (PO) bond [32]. The modifications increase the biosta-
bility of the RBMB and add resistance to degradation by nucleases. After several attempts,
they found that the 2′-OMe with full PS bond on loop and full PO bond on stem generates
the least background fluorescence. Finally, in combination with the RBMBs and smFISH,
quantification of RNA transcription at a single molecule level is realizable. Overall, these
methods significantly improve the performance of MBs in the intracellular context.

Besides exploring the endogenous RNA, it is also possible to quantify the exogenous
miRNA with MBs. A signal-on system that targets and traces dynamic change of miR-124a
in neurons was developed recently. The miR-124a beacon showed more intense fluorescence
after induction of exogeneous miRNA. It also shows a stronger fluorescence signal after the
differentiation of P19 cells, indicating the technique works on measuring both exogenous
and endogenous miRNA [34].
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to detect mRNA levels in tumor cells [35]. This design resists enzyme digestion and deliv-
ers the MBs into the cell without carriers. MB coats on molybdenum disulfide (MoS2) 
nanosheets have been proven to be a versatile probe to detect miRNA after signal ampli-
fication by hybridization chain reaction (HCR) technology [36]. Gold nanoparticle (GNP)–
nano-MBs can achieve multiple RNA imaging at the same time since multiple MBs tagged 
with different fluorophore dyes can be loaded onto the GNPs simultaneously [37]. An-
other application might be amplification prior to the MB’s hybridization to the comple-
mentary target RNAs. In a lot of cases, the abundance of mRNA and miRNA is low, and 
the sensitivity and accuracy are not strong enough to detect and quantify them. Other 
than the PCR, rolling circle amplification (RCA), signal mediated amplification of RNA 
technology (SMART), and loop-mediated amplification (LAMP) could also be integrated 
into MB platforms to provide new possibilities to the applications of traditional MBs. 

Figure 4. Schematic illustration of ratiometric bimolecular beacons (RBMB). It is initially in a weak
fluorescence state because the quencher and reporter are close to each other; once the molecular
beacon pairs with its complementary RNA, the reporter and quencher are separated, thus activating
strong fluorescence.

The future direction of research with MBs is expected to be a combination of MBs
with several known technologies. For example, several nano technologies and MBs can
be utilized together. A DNA tetrahedron nanostructure has been designed for MB de-
livery to detect mRNA levels in tumor cells [35]. This design resists enzyme digestion
and delivers the MBs into the cell without carriers. MB coats on molybdenum disulfide
(MoS2) nanosheets have been proven to be a versatile probe to detect miRNA after signal
amplification by hybridization chain reaction (HCR) technology [36]. Gold nanoparticle
(GNP)–nano-MBs can achieve multiple RNA imaging at the same time since multiple MBs
tagged with different fluorophore dyes can be loaded onto the GNPs simultaneously [37].
Another application might be amplification prior to the MB’s hybridization to the com-
plementary target RNAs. In a lot of cases, the abundance of mRNA and miRNA is low,
and the sensitivity and accuracy are not strong enough to detect and quantify them. Other
than the PCR, rolling circle amplification (RCA), signal mediated amplification of RNA
technology (SMART), and loop-mediated amplification (LAMP) could also be integrated
into MB platforms to provide new possibilities to the applications of traditional MBs.
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2.4. Enzymatic Labeling-Based Fluorescence Assays

Distinct from other conventional methods, which utilize a noncovalent labeling RNA,
chemo-enzymatic labeling strategies use covalent bonding to connect the reporter molecule
(fluorophore) with the RNA of interest (ROI). The covalent attachment provides a stronger
connection between the probe and ROI. Thus, higher affinity is achieved, making more
rigorous purification possible (e.g., washing). High specificity is another advantage of enzy-
matic labeling over other noncovalent imaging techniques. It is well-known that enzymes
target specific RNA structures or sequences, allowing for site-specific labeling of RNA. The
chemo-enzymatic method helps incorporate non-natural fluorescent residues into RNA
through solid-phase synthesis. RNA reacts with the reporter fluorophore molecule in the
secondary chemical step–click reaction after being transfected into the cell. However, syn-
thesis yield becomes much lower if the synthesized RNAs are longer than 50 nt. Enzymatic
ligation would be beneficial to overcome the issue of length restriction [38]. Utilizing the
chemo-enzymatic method enables improvement of comprehensive kinetics of the reaction,
enhancement of the stability of the irreversible fluorescent-tagged RNA, increase in the
quantum yield of fluorescence to strengthen the brightness of the RNA to observe the
dynamic changes of low abundance RNA, and lastly, optimization of biorthogonal click
reactions. Biorthogonal reaction refers to incorporating fluorophore into the transcripts
without interfering with biological processes and natural functions. To date, there are a
few widely applied click reactions to RNA including: copper(I)-catalyzed azide–alkyne
cycloaddition (CuAAC), strain-promoted azide–alkyne cycloaddition (SPAAC), and in-
verse electron-demand Diels–Alder cycloaddition (IEDDA). The principles of each reaction
are shown in Figure 5. Even though CuAAC is the most versatile, it is generally used in
fixed and permeable cells in vitro and is not suitable for intracellular environments for
three reasons: (1) the toxicity of copper(I) cation might have deleterious effects on RNA
function, (2) copper(I) is not stable and is easily oxidized, (3) the Cu(I) oxidation state might
accelerate radical-induced RNA degradation.
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Both SPAAC and IEDDA strategies are copper-free and show high biocompatibility
in vivo. Researchers can use these reactions to add fluorophore reporter molecules onto
the target RNA under mild physiological conditions. They are considered promising
tools for imaging RNA in living cells. However, the SPAAC reaction is not perfect for all
purposes. The cyclooctyne may react with intracellular thiols in vivo as a side reaction,
limiting the efficiency of enzymatically transferred modification. The IEDDA reaction also
may not work in all types of alkene modifications; it was proved that IEDDA does not
react with allyl-modified 5′-cap RNAs. Nevertheless, SPAAC and IEDDA are the most
reliable biorthogonal click reactions for imaging cellular RNA because of their outstanding
biocompatibility and chemoselectivity to living cells.

Researchers have made incredible breakthroughs in enzymatically labeling RNA.
Li et al. managed to use N-(4-aminobutyl)-2-azidoacetamide (AGN) as a substrate and
tRNAIle2-agmatidine synthetase (TiaS) as an enzyme to react with BCN-FITC [39]. AGN
modified tRNAile2 showed fluorescent labeling as evidenced by acid-urea PAGE, whereas
tRNAile2 without AGN showed nothing on PAGE, which means TiaS facilitates the con-
jugation of AGN and tRNAile2. This indicates that TiaS enables site-specific fluorescent
labeling on RNA through click chemistry [39]. Another example of site-specific labeling is
the incorporation of a modified nitrogenous substrate PreQ1 into RNA. A 17-nucleoside
hairpin RNA ECY-A1 served as the substrate. Given the existence of the enzyme E. coli
tRNA guanine transglycosylase (TGT), the natural substrate PreQ1 would be substituted to
PreQ1 derivative, and the fluorophore dye can be attached to the exocyclic amine of the
PreQ1 through a glycol linker. Researchers compared the fluorescent intensity of PreQ1-TO
(thiazole orange) before and after incorporation to ECY-A1, and they found that the cova-
lent incorporation leads to a 40-fold increase of fluorescent intensity. They also inserted
ECY-A1 into the 3′-UTR of an mRNA transcript coding for mCherry, resulting in a strong
fluorescence with the PreQ1-Cy7 and TGT enzyme, while nothing shows up in the absence
of TGT [40]. More recently, the same research group optimized the preQ1-TO probe by
decreasing the background signal while maintaining high fluorescent intensity; this makes
it possible to image mRNA in a fixed cell. Nevertheless, it is still impossible to use TGT in
the living cell due to the low cellular concentration and a small range of suitable Km [41].

Other than site-specific labeling, RNA sequence-specific labeling is also possible. The
invention of self-alkylating ribozymes uses the small molecule recognition properties of
RNA. Unlike linking to a big functional group, small fluorophores are not likely to perturb
the biological activities of RNA. In a recent study, an RNA library was built and reacted
with selected fluorescein iodoacetamide (FIA); an anti-fluorescein antibody pulled down
the sequence, and different ribozyme clone sequences were selected and verified by PAGE
followed by fluorescent imaging. The result demonstrates that labeling is specific to the
ribozyme sequences, and that the strong background signal from non-specific binding is
an obstacle that is difficult to overcome [42]. Holstein et al. showed that the S-adenosyl-
L-methionine (AdoMet) enzyme-mediated 4-vinylbenzyl residue can be transferred into
5′-cap of RNA through IEDDA or photo click reactions, and a significant fluorescent
increase can be observed after the 4-vinylbenzyl modification has reacted [43].

2.5. Forced Intercalation (FIT) Based Fluorescent Probes

Like in ECHO-FISH, forced intercalation (FIT) probes also uses the thiazole orange
(TO) family as dyes to dramatically enhance fluorescence upon binding to the target site.
It was applied to the investigation of mRNA activities which include, but are not lim-
ited to, transcription, splicing, and cytoplasmic localization. A FIT probe is an ssDNA or
a single-stranded peptide nucleic acid (ssPNA) containing monomethine cyanine dyes.
Unlike FRET or other aptamers, the FIT probe does not require reducing the initial back-
ground or separating the signal from the unbounded state [5]. This property essentially
makes it a quencher-free probe. The ssDNA/PNA FIT probe emits slight fluorescence in
its free state. The cyanine dye intercalates into the sequence upon hybridization with a
complementary target mRNA. It serves as a nucleobase surrogate; a significant fluores-
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cence enhancement is observed, allowing easy readout [44]. An ideal FIT probe improves
performance in two aspects: brightness and responsiveness [44]. Regarding brightness, the
fluorescence enhancement should increase 10- to 100-fold and exclude the intervention
from the background. As for high responsiveness, it becomes easy to discriminate the
bound and unbound state using the ratios of If/I0, where If is the signal upon hybridization,
and I0 is the initial fluorescence. The FIT probe should also have a high level of nuclease
resistance to avoid degradation upon incorporation with target RNA. As a base surrogate,
the dye should show 10- or more-fold fluorescence when hybridized to matched mRNA
than the structural disturbance caused by mismatched duplexes (Figure 6). Therefore,
the FIT probe is also an effective tool for discriminating the effects of point mutations on
DNA/RNA hybridization.
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A high extinction coefficient and a high quantum field are needed to improve the
performance of brightness. However, self-quenching of TO dye limits the brightness. To
facilitate the bathochromic shift, an effort by Hövelmann’s group was made to combine
the TO with highly emissive oxazolopyridine analogue JO. The intramolecular dye–dye
interaction TO–JO eliminates the excited state when not bound to the target mRNA. Once
hybridized, the methine bridge limits the torsion of twisting in a high viscosity environ-
ment, the energy transfer between the two dyes is mediated, and the lifetime of fluorescence
is enhanced due to the restricted conformational change. They verified this assumption by
analyzing the probe with oskar mRNA in Drosophila oocytes, combining a DNA-FIT probe
with wash-free FISH to track oskar mRNA transport in Drosophila oocytes using microinjec-
tion [45]. They discovered the TO–JO complex’s brightness is much higher than the TO or
JO-only probe at different wavelengths (Figure 7) [46]. This strategy succeeded in localizing
oskar mRNA and other poly-A tail-containing mRNA molecules in oocytes from Drosophila
melanogaster, making the simultaneous localization of multiple mRNAs possible [47]. Two
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years later, the same research group designed and synthesized an artificial FIT dye named
quinoline blue (QB), which is the first chromophore to emit red-light wavelengths because
high responsiveness is harder to realize in vivo compared to in vitro due to the autofluores-
cence. QB is excellent for ruling out background autofluorescence when imaging a living
cell. Lastly, they combined QB with other FIT probes, including TO and BO. Hövelmann’s
group extended these techniques to visualizing messenger ribonucleoproteins (mRNPs),
complexes of mRNA and RNA binding proteins (RBPs) in the living cell. They linked a
TO dye as a nucleobase surrogate and used a locked nucleic acid (LNA) adjacent to the
dye to afford a brighter fluorescence by making the A-type conformation more rigid, thus
increasing the quantum yield of TO emission [46].
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Figure 7. (A) TO labeled forced intercalation (FIT) probe. (B) JO labeled FIT probe. (C) TO–JO
complex labeled FIT probe.

Later, Kolevzon. et al. designed a PNA-FIT probe that also functions in the red-light
range. They synthesized a surrogate base group named BisQ with a monomethine bond
similar to TO. The purpose of this design is to discover and complement mutated mRNA,
a biomarker in cancer cells. Therefore, the fluorescence enhancement is recorded if BisQ
forms complexes with mutated mRNA. Otherwise, there is no significant difference in
fluorescence when the probe forms a duplex with unmutated mRNA. They incorporate the
PNA-FIT probe into KRAS, a model gene, to track RNA in cancer cell lines. Moreover, it
proves that this probe is effective and has potential to diagnose cancer in vivo. Haralampiev
et al. used an IAV-QB-FIT probe to complement the 5′ end of a highly conserved domain of
small viral RNA (svRNA) and viral RNA (vRNA) of the influenza A virus (IAV) genome [48].
It specifically targets the IAV genome in various species (human, avian, and porcine), and a
fluorescent enhancement signal is not detected with influenza B virus. Furthermore, the
host cell can also be characterized in different infection states from color signal changes
when combining the IAV-QB-FIT probe with an NP-targeting antibody [49]. Overall, the
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FIT probe is an excellent tool to detect RNA-related diseases and beneficial in exploring
single nucleotide polymorphisms (SNPs). FIT also works with aptamers; evidence indicates
that aptamers modified with a QB dye upon binding to the target DNA/RNA sequences
trigger nontraditional metal-mediated base pair (bp) detection. For example, Hg2+ mediates
the bridging of thymine and forms T–Hg2+–T. The fluorescence is turned on only if the
Hg2+ is titrated No signal is detected if other metal ions are added in, indicating that this
FIT-aptamer is Hg2+ sensitive and specific [50].

The main obstacle in using FIT probes to image mRNA in a living cell is cellular deliv-
ery. Traditional methods of cellular delivery include microinjection, microporation, and the
usage of chemical/biological agents that interact with membranes, such as cell-penetrating
peptide (CPP) [51], pore-forming proteins [52], and lipofection [53]. A perturbation probe
is also delivered with the assistance of CPPs. However, contrasting toa perturbation probe,
an imaging probe must provide precise spatial information, and no localization bias is
tolerated. No obvious guideline is made for imaging probe delivery; therefore, some
assumptions based on the charges’ influence on the membrane must be made. To overcome
this issue, Chamiolo et al. designed an uncharged PNA and negatively charged DNA FIT
probe to determine which backbone is better suited for mRNA imaging based on passive
diffusion [45]. The results demonstrate that streptolysin-O (SLO), excluding CPPs mediated
delivery, can avoid fluorescent spots due to aggregation, and the DNA FIT probe is brighter
and more responsive than the PNA-FIT probe [45]. Therefore, the SLO-mediated DNA FIT
probe is the best way to image multi-color mRNA accurately.

2.6. Fluorescent Techniques for Detection of dsRNA

While the previously discussed methods work reliably for ssRNA, RNA forms a variety
of secondary and tertiary structures with double-stranded regions. Although dsRNA
detection is relatively understudied, a few previous studies attempted to do so by testing
proteins, which could bind to it by selecting for specific secondary or tertiary structural
motifs, or oligonucleotides, which could bind to it in a complimentary or antisense fashion.
However, formation of the aforementioned structural motifs either slowed down the
binding kinetics or produced weak binding interactions in proteins. These same structures
are also unable to be recognized by antisense compounds. This meant that detection was
limited to the unstructured or partially structured sections of the dsRNA [54]. Another
possible method of dsRNA detection relies on the use of oligonucleotides to form RNA
triple helixes or triplexes, which arise through tertiary interactions in the major or minor
grooves of Watson–Crick base pair stems. This method offers the advantage of detecting
specific sequences in dsRNA rather than just structures, but studies in this area have
thus far been hindered by weak binding in physiological conditions [54,55]. However,
innovations by the labs of Krishna and Sato have allowed for the detection of dsRNA using
triplex formation.

This innovation mainly consists of the use of a peptide nucleic acid (PNA). PNAs are
similar to oligonucleotides, except the phosphodiester backbone is replaced by a peptide
polymer. The advantage of using this compound is that the backbone is neutral, which
allows them to have enhanced binding to natural nucleic acids and not interrupt the
existing structural motifs. They are also resistant to degradation by both proteases and
nucleases [54]. In a similar manner to FIT probes, the Sato lab used an ssPNA modified
with thiazole orange (TO) as a base surrogate which would exhibit increased fluorescence
upon binding to and intercalation in dsRNA sequences during triplex formation. These
triplex-forming PNAs (TFPs) were fittingly called tFIT. They found that their tFIT probes
were extremely selective for dsRNA over ssRNA and dsDNA. Furthermore, TO would not
fluoresce as strongly if the ssPNA being used did not match the target sequence exactly
even by a single base pair, which attests to its extremely high selectivity and therefore, its
high-resolution detection abilities. Figure 8 shows a schematic of this binding [55].
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Some years later, the Krishna lab took advantage of these properties to detect the viral
RNA of the influenza A virus. The dsRNA molecule is an important component of many
viruses, either being the viral genome itself or produced in the host cell during infection.
In the case of the influenza A, the genome forms a highly conserved dsRNA panhandle
structure, which looked to be a promising candidate for targeted detection by a tFIT assay.
Instead of TO, they used a modified uracil (U) base which could be detected by fluorescent
titration. They found that the fluorescence of their probe increased by four times upon
formation of a triplex with the target sequence [54].

3. RNA Targeted Fluorescence Spectroscopy
3.1. Fluorescence Resonance Energy Transfer (FRET)

The process of FRET involves the non-radiative energy transfer between two chro-
mophores: a donor and an acceptor. These chromophores can be two different photostable
dyes, in which one serves as a reporter and the other one as a quencher. Once a photon
excites a donor, the donor changes from the ground state to the excited singlet state and
transfers some excitation energy to a nearby acceptor upon returning to the ground state.
The acceptor is then excited, resulting in fluorescence [56]. During the illumination, the
donor’s spectrum must have a smaller wavelength than the acceptor’s absorbance because
the initial excited states decay to the state of lower energy quickly due to non-radiative pro-
cesses such as vibrational relaxation and internal conversion. Consequently, an increased
emission intensity is observed on the acceptor’s side [57]. Both wavelengths must have an
energy overlap for a successful resonance energy transfer. The more the spectrum overlaps,
the higher its FRET efficiency is.

Conventional applications of FRET include, but are not limited to, investigations into
RNA–protein interaction, RNA aptamer, and RNA polymerase (RNAP) [33,58,59]. Three
crucial components need to be considered to successfully execute the FRET technique to
investigate RNA biological activities: the relative distances and the direction between two
fluorophores and the concentration of the system. The proper distance should be within
1–10 nm. Side electrical/energy transfer, such as solid coupling between excitons or the
tunneling of electrons [60], may occur if the distance is less than 1 nm. If the distance
is more than 10 nm, the quantum yield becomes low, energy transfer would be nearly
undetectable, and FRET efficiency would be highly impacted (Figure 9). Note that these two
fluorophores transfer energy via long-range dipole–dipole interactions. The orientations of
these interactive dyes are also of great importance. Investigators may design and attach the
dye to a target RNA strand rigidly and adjust the orientation angle κ2 to a higher value
to improve the FRET efficiency. The κ2 value is usually between 0 to 4, with 0 meaning
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that both dyes are perpendicular, 1 meaning that they are parallel, and 4 meaning that the
dipoles are collinear. FRET efficiency is also donor–acceptor concentration dependent. In
an in vitro experiment, a change in donor or acceptor concentration would quantitatively
change the FRET efficiency, and a change in ions would influence its performance as
well. Fluorescence fluctuation upon binding state can be mediated by an appropriate
concentration of Mg2+ and Na+. Therefore, investigators should not use the simplified
equation, E = R6/(R6 + r6), in which E is the efficiency and R is the Förster distance, when
efficiency is 50%, and r is the distances between two fluorophores, to calculate the efficiency
of FRET energy transfer since it only accounts for the impact of distances.
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In the past decade, the broadest application of FRET in RNA has been the single-
molecule FRET study. Researchers tried to observe the dynamic changes of biomolecules
during cell processes. They used surface immobilization by covalently linking biotin to
RNA. However, the interaction between biotin and RNA may influence RNA’s natural
folding, leading to unexpected conformational changes and inaccurate FRET readings.
Encapsulating the molecule with a nanoscaled liposome vesicle solved this issue without
altering RNA’s functionality. RNA labeled with Cy3/Cy5 dyes and trajectories of their
emissions were traced to prove this [61]. In 2017, FRET was utilized to quench the most
widely used RNA aptamer, Spinach, through RNA–DNA hybridization. The basic mecha-
nism is to bring the quencher close to it to explore the RNA–protein interaction [60]. FRET
is also used to investigate DNA–RNA polymerase complexes during various states to see
how DNA bends, extends, and wraps in closed and opened complexes by measuring the
distances between Cy3/Cy5 [62]. Thus, FRET is a valuable tool for dynamically explor-
ing the structures of E. coli RNAP. Zhao’s group uses fluorescence to label long-strand
riboswitches responsible for regulating the btuB gene. Two innovative points of their
research are that the fluorescence technique overcomes the issue of labeling RNA strands
longer than 200nt, and the selectively binding site is a pair of adjacent adenines. Future
research might target cytosine because it includes an exocyclic amino group. The sm-
FRET technique helps visualize and characterize the dynamic conformational equilibrium
in the bound state of the riboswitch and its cofactor, adenosylcobalamin [63]. Overall,
FRET measurement is beneficial in quantitatively interpreting dynamic changes of RNA
conformations and structures.

The most time-consuming step of FRET is the dye selection. Dyes must be photostable,
have a high extinction coefficient, and be able to provide high sensitivity. This is why
cyanine dyes such as Cy3 and Cy5 are often employed. Researchers have created artificially
synthesized dyes to improve the quantum yield and enhance the overall efficiency of FRET.
Another difficulty is selecting the specific labeling binding site. Attaching chromophores
to inappropriate places may produce high noise signals [64]. FRET is also limited when
predicting RNA motion. Lastly, the main parameter it observes is the change of distances
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between two dyes. It may not be able to monitor the exact movement of the donor and
acceptor at any time [64].

3.2. Protein-Induced Fluorescence Enhancement (PIFE)

As the term ‘protein-induced fluorescence enhancement’ implies, the fluorophore is
not immediately activated upon linking itself onto the RNA. Once it binds to its correlated
protein, strong fluorescence is emitted, and a fluorescence intensity histogram is depicted
based on thousands of RNA molecule traces during its interaction with proteins (Figure 10).
PIFE is an excellent complementary tool to FRET to describe protein–RNA interaction. It
records protein movement and activity upon binding to the RNA. Similar to FRET, PIFE
can be observed and monitored by total internal reflection fluorescence (TIRF) microscopy.
However, it does not simultaneously require two dyes nor the labeling of proteins. Instead,
only one dye is needed to label an RNA strand [65]. One benefit of PIFE is that it saves time
spent designing and finding the binding site of the dye. It stops any dye from naturally
influencing the protein’s binding affinity and dissociation. Typically, the dye is always on
the terminal side of the RNA (5′ or 3′) to record and calculate the velocity of motor protein
movement along with the RNA strand. The selection of dyes is also akin to FRET with
quantum yield, fluorescent intensity, lifetime, dynamic anisotropy, and photostability all
taken into account. Cis-trans photoisomerization is a prerequisite of PIFE. The trans state is
in the fluorescence excited state, while the cis state is in the nonfluorescent ground state.
To extend the lifetime and enhance the intensity, measures should be taken to stabilize the
fluorophore into the trans-state.

Taken all together, carbocyanine dye is the most widely used structure at present
(e.g., Cy3, Cy5, DY54, etc.) [66]. The carbon–carbon double bonds interconnect two purine
rings, and half of the molecule rotates against the other part. It is easy to carry out the
cis–trans photoisomerization, and the PIFE effect can be exhibited [67]. The fluorescence
intensity is in positive correlation to the surface viscosity. Therefore, if the protein increases
the viscosity of RNA, the lifetime and effects of PIFE would be strengthened. Sorokina
proved this theory by binding the T7 RNA polymerase to the DNA [68]. In comparison
to FRET, PIFE is also distance-dependent and better exhibited in 0–3 nm in vicinity to the
fluorophore and protein [66,67]. Researchers used an antivirus protein, RIG-H (truncation
mutant of RIG-I) and collected its translocation data on dsRNA. The data indicated that
the fluorescence signal intensity weakens from 20–40 bp. However, FRET shows the most
sensitivity at 3–10 nm. This offers evidence that FRET and PIFE are good supplements to
each other in measuring RNA–protein complexes dynamics for short distances. PIFE is
also a good alternative to ITC when calculating the dissociation constant and the Hill coeffi-
cient. To fulfill the distance range, PIFE needs a shorter oligonucleotide strand (12mer) than
ITC, which usually needs a 21mer strand. The interaction of single-strand RNA binding
proteins (SSB), ssRNA, and the Kd can be determined by titrating different concentrations
of ssRNA [69]. In addition, PIFE experiments prove that RNA polymerase can be recycled
once it finishes transcription and releases the RNA [70]. PIFE should vanish after the
polymerase leaves the DNA template after transcription, but instead, the signal occurrence
is observed again, and RNAP diffuses in the post-transcription step. The stepwise decay
and enhancement signal indicates the direction it diffuses, and the re-initiation of tran-
scription [44]. Lastly, Zhao et al. (2017) offers a new concept, RNA-induced fluorescence
enhancement (RIFE), in which the complicated secondary or tertiary structures of RNA
motifs might influence the fluorophore’s cis–trans isomerization due to different biomolec-
ular local environments upon binding to the protein [63]. In summary, PIFE can be widely
applied to investigate the interaction of RNA with different enzymes, like polymerase,
helicase, or ribozyme and riboswitches, to achieve RNA recognition in the future.
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Figure 10. Schematic illustration of PIFE. Strong fluorescence would be observed only if the RNA
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3.3. Fluorescence Probe in qPCR and RT-PCR

Polymerase chain reaction (PCR) is an outstanding technique widely used in molecular
biology to amplify and analyze the DNA and RNA sequences in detail. Compared to other
amplification methods, it is cost-effective and can be carried out promptly. However,
the ability of PCR is limited when it comes to quantifying the concentration of RNA
participating in cell processing, trafficking, and regulation and tracing dynamic changes in
every activity to determine the functional complexity of RNA. Because of this, real-time
quantitative PCR (qPCR) was invented in the 1990s to overcome these limitations. Although
both Northern blotting and qPCR help evaluate gene expression analysis, qPCR has several
advantages compared to Northern blotting, as it is more time efficient, has more precision
(sub microgram level), and is less tedious than Northern blotting [71]. To quantify the total
RNA, we need to set an arbitrary fluorescence threshold and the total number of cycles
required to exceed it, also known as quantitative cycle (Cq). The more DNA presented
before carrying out qPCR, the less Cq we need to surpass the threshold. We may then
use a standard serial solution with different known nucleic acid concentrations to draw
a calibration curve in the form of Cq over-concentration (Y vs. X). We can quantify the
unknown RNA concentration by measuring the Cq once we incorporate the data into the
curve. During the dynamic change, we can use a fluorescence oligonucleotide hydrolysis
probe to monitor the increase of the PCR product. Hydrolysis probes are widely used in
several medical conditions, such as genotyping, pharmacogenomics, or diagnostics. In
detail, the fluorophore is on the 5′-end, and the quencher is on the 3′-end, with fluorescence
extinguished due to the oligonucleotide being intact. During the annealing step, it binds to
the amplified region, and during the extension of qPCR reaction, the 5′ reporter is cleaved
and activated, emitting fluorescence (Figure 11). This method is useful for quantifying and
visualizing mRNA and provides possibilities for designing new biochips or biosensors.
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3.4. Fluorescence-Based Assays in Determining RNA-Protein Binding Sites

The study of RNA–protein interaction is prevalent in the present RNA biology. We
can also use it in the clinical environment. For instance, if we find the position of a single-
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stranded RNA binding site in cancer-related proteins, we can synthesize an artificial analog
to bind with the natural RNA. The translation could be suppressed, and the diseases might
be controlled. For example, the SARS-CoV-2 viral RNA is known to bind with ACE2 protein.
An updated research about COVID-19 suggests that scientists could synthesize part of the
ACE2 receptor to bind with viral RNA [72]. The α-helix peptide, consisting of 23 amino
acids, specifically binds with viral RNA to prevent it from entering the human cells to limit
the translation and expression and shows higher affinity than ACE2. This research shows
the significance of finding the RNA–protein binding sites, and the affinity indicates the
level of stability of corresponding complexes. There are three ways to image the binding
site: X-ray crystallography, NMR, and fluorescence. The advantage of fluorescence over
X-ray crystallography is that it overcomes the phase issue. NMR does not apply to the
circumstance of big RNA–protein complexes. There are two methods available currently.
First, we can measure the fluorescence anisotropy/polarization of fluorophore-labeled
RNA to characterize the binding event. Secondly, researchers may measure the difference
between the fluorescence change before and after the RNA–protein binding. After we
find the affinity of RNA–protein complexes, the equilibrium dissociation constant (Kd) is
obtained, which indicates the stability of RNA–protein complexes in the solution state.

4. Application in RNA-Based Drug Delivery and Discovery
4.1. Fluorescence Techniques in RNA Therapeutics

Fluorescence assays have made a big impact on medicinal chemistry. For example,
they have aided in studies on RNA drug delivery. Novel RNA drug therapies are appealing
but have low uptake efficiencies into cells. Researchers believed that natural mediums,
instead of the artificial ones, could be an effective tool to carry out RNA drug delivery as
they would eliminate the need to adjust the medium to a pseudo-environment. Specifically,
extracellular vesicles (EVs) are the natural mode of RNA exchange in eukaryotic cells and
have been recognized as good drug delivery vehicles. Jong et al. observed the process of
fluorescently labeled EVs entering HeLa cells and deduced that EV uptake is primarily
due to clathrin-independent endocytosis rather than clathrin-mediated endocytosis [73].
Though EV shows excellent uptake efficiency, it is impossible to implement batch produc-
tion. Scientists discovered that human red blood cell (RBC) EV can be adopted as a strong
candidate to resolve this dilemma. It could be gained because of two main reasons: first,
RBCs are readily available as they are numerous in the body; secondly, RBCs do not have
any nuclear or mitochondrial DNA, thus reducing the risk of horizontal gene transfer. In
an experiment by Usman et al., FAM and DiR fluorescence was observed and recorded to
see if the fluorescently labeled RBC successfully delivered the antisense oligonucleotide
(AEOs) into leukemia and breast cancer cells. The location and intensity of fluorescence
indicate that the RBCEV can deliver the drugs into the cell without cytotoxicity [74]. An-
other study on RNA drug delivery which also used FAM discusses an RNA–triple-helix
hydrogel, which comprises specific miRNA molecules and targets human cancers. FAM
was used to label the miRNA-205 (tumor suppressor) and miRNA-221 (oncomiR inhibitor)
of synthetically designed RNA–triple-helix hydrogel, and the relative fluorescence inten-
sities observed were used to verify the proper formation of the triple helix, as well as
determine the optimal concentration of the miRNA [75]. Fluorescence imaging techniques
also plays a significant role in delivering RNA nanoparticle therapeutics to brain tumors.
Researchers designed a packing RNA (pRNA) of bacteriophage phi29 DNA to self-construct
mature RNA nanoparticles, including therapeutic agents, targeting ligand/aptamer and
fluorophore modules. Monitoring the delivery of the pRNA-3WJ motif with an imaging
technique would be beneficial in developing other multiuse RNA nanoparticles that disrupt
the pathway of pathogenesis [76].

The drug delivery fluorescence technique plays an important role in designing and
discovering new drugs. A screening cascade targeting the T-box riboswitch anti-terminator
element was invented to investigate new anti-bacterial drugs. The T-box riboswitch was
found in gram-positive bacteria. It is located upstream to the mRNA that codes for the
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aminoacyl–tRNA synthetases and regulates transcription by binding or unbinding to
tRNA. The stem–loop I of the T-box leader forms a complex with uncharged tRNA, and
if tRNA does not form a complex with the amino acid residue, an antitermination loop
is created to continue transcription. Otherwise, the amino acid residue would restrict
the downstream motif of the stem–loop I binding to the acceptor end of charged tRNA
and form a terminator loop instead, switching off the pathway of mRNA transcription
(Figure 12) [77]. The initial screening method uses steady-state fluorescence-monitored
ligand-binding assay and the T-box riboswitch fluorescence anisotropy assay to identify
initial hit compounds. Change in fluorescence intensity indicates that the compound has hit
the anti-terminator RNA, and the higher molecular weight of the tRNA–RNA complex has a
more considerable anisotropy value than unbonded counterparts. The secondary screening
further verifies the initial hit compounds; a fluorescence-quenching-monitored thermal
denaturation assay is useful for evaluating the anti-terminator elements’ stabilization [78].
Collectively, antibacterial drug discovery targeting non-coding RNA is more approachable
with this two-step screening protocol.
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Figure 12. Structure of T-box riboswitch. (A) Both the charged and the uncharged tRNA has the CCA
tail at the 3′ end. However, charged tRNA has an aminoacyl group rather than a hydroxyl group in
uncharged tRNA. (B) Abundant of charged tRNA binds downstream of the riboswitch, stopping
it from transcription. Conversely, uncharged tRNA binds with the T-box anti T/S region, and the
conformational change upstream of the riboswitch promotes the formation of anti-terminator and
proceeds with the transcription.
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4.2. Fast Integrated Nuclease Detection in Tandem (FIND-IT)

Along with the advent of severe acute respiratory syndrome coronavirus 2, also known
as SARS-CoV-2, the virus that causes COVID-19, rapid and accurate testing has been vital
in slowing its spread. The current gold standard of testing utilizes quantitative reverse
transcriptase polymerase chain reaction (qRT-PCR). The basic idea of this method is that
viral RNA will be repeatedly copied and duplicated. Fluorescent dyes are added during the
copying process, allowing for the amplification and visual detection of viral RNA. The test
is extremely accurate, being able to detect just one copy of viral RNA per µL. However, the
downside of qRT-PCR is that it requires specialized equipment and, therefore, a centralized
lab facility. The run time for the reaction is also several hours. This is why results typically
take 1–2 days after collected samples are sent to a lab to be completed.

To address these challenges, a clustered regularly interspaced short palindromic repeat
(CRISPR)-based technology called Fast Integrated Nuclease Detection In Tandem (FIND-IT)
was developed by the Doudna group [79]. As Figure 13 suggests, FIND-IT detects viral
SARS-CoV-2 RNA by utilizing two CRISPR enzymes, type III Cas13 and type VI Csm6,
at the same time. As with any CRISPR system, FIND-IT also relies on a guide RNA to
prime and direct the activity of the enzymes. For this test, SARS-CoV-2 RNA serves as the
guide RNA. This means that the guide RNA is complementary to a target sequence, part
of the viral genome. Upon recognition of the target sequence, the activity of the enzyme
is induced. In the case of Cas13, recognition of the target sequence induces it to cut an
activator bound to an oligonucleotide. The activator then binds to Csm6, which induces
it to cleave a dye–quencher pair, releasing a fluorescent molecule which can be visually
detected. Using this method, a viral load of 30 copies/µL is detectable in as little as 20 min
and always under an hour. Furthermore, the assay is able to be stored in a small, portable
detector chip, and the reaction can be run at 37 ◦C, so immediate on-site testing is possible
without extreme heat, specialized equipment, or long run times as in the case of qRT-PCR.
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Figure 13. Schematic of FIND-IT assay. Cas13 binds to target RNA, inducing activator release. The
activator then binds to Csm6, which goes on to release large amounts of flourescent molecules for
detection [79].

The tandem use of enzymes is necessary because each enzyme on its own either
exhibits reduced efficiency or is unable to produce a detectable signal. For example, when
Cas13 is paired to cleave fluorescent dye–quencher pairs, it takes several hours to reach
a detectable signal. As for Csm6, recognition of the target sequence normally triggers
the synthesis of cyclic tetra- or hexa-adenylates to serve as activators, which are rapidly
degraded by the same Csm6. This means that the amount of fluorescent signal Csm6
can generate is limited. Instead, by using both enzymes in sequence, Cas13 is able to
cleave a chemically modified activator which is not degraded by Csm6. As a direct result,
Csm6 can cleave an indefinite number of dye–quencher pairs, leading to a large, detectable
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signal from a relatively small amount of substrate. The significance of this assay is that no
initial amplification of the viral RNA is necessary, allowing relatively low amounts to be
accurately detected. The potential of this technology is immense because, depending on
the guide RNA is used, the assay could be programmed to detect a wide array of RNA
species associated with different diseases [79].

5. Conclusions

Overall, this paper summarizes a few developing assays and tools regarding fluo-
rescent probes in combination with RNA, some principles and explanations concerning
fluorescence spectroscopy, and the potency and capacities of fluorescence assays in the
development of RNA therapeutics in the past few years. However, there are still two signif-
icant barriers that need to be overcome. First and foremost, many fluorescence methods
are aimed at fixed cells and living cells. The results related to dynamic RNA activities are
not as convincing in living organisms. Future efforts could be concentrated on in situ RNA
imaging of living animals. Secondly, fluorescence targeting RNA therapeutics are mainly
focused on liver cells. In combination with RNA research, an advanced fluorescence assay
should be conducted to target cancer or tumor cells in other organs.
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