
RESEARCH ARTICLE Open Access

Residue propensities, discrimination and binding
site prediction of adenine and guanine
phosphates
Ahmad Firoz1, Adeel Malik1*, Karl H Joplin2, Zulfiqar Ahmad3, Vivekanand Jha1,4 and Shandar Ahmad5*

Abstract

Background: Adenine and guanine phosphates are involved in a number of biological processes such as cell
signaling, metabolism and enzymatic cofactor functions. Binding sites in proteins for these ligands are often
detected by looking for a previously known motif by alignment based search. This is likely to miss those where a
similar binding site has not been previously characterized and when the binding sites do not follow the rule
described by predefined motif. Also, it is intriguing how proteins select between adenine and guanine derivative
with high specificity.

Results: Residue preferences for AMP, GMP, ADP, GDP, ATP and GTP have been investigated in details with
additional comparison with cyclic variants cAMP and cGMP. We also attempt to predict residues interacting with
these nucleotides using information derived from local sequence and evolutionary profiles. Results indicate that
subtle differences exist between single residue preferences for specific nucleotides and taking neighbor
environment and evolutionary context into account, successful models of their binding site prediction can be
developed.

Conclusion: In this work, we explore how single amino acid propensities for these nucleotides play a role in the
affinity and specificity of this set of nucleotides. This is expected to be helpful in identifying novel binding sites for
adenine and guanine phosphates, especially when a known binding motif is not detectable.

Background
Adenine triphosphate (ATP) is widely known to be
energy currency of biological molecules as its conversion
to corresponding di- and mono-phosphate leads to
energy release, commonly used in conformational
changes required for many biological interactions [1,2].
Closely related molecules such as guanidine tripho-
sphate (GTP) also have similar metabolic implications
[3,4]. Use of GTP versus ATP is highly specific to
organisms as well as pathways [5]. Since, adenine and
guanine have similar structures (both are purines) and
essentially differ from each other by a nitrogenous ver-
sus oxygen group [5], (See Figure 1), a high degree of
specificity between them is quite surprising and not well
understood. A thorough understanding of this specificity

therefore has wide biological implications, including dis-
covery of metabolic drug targets as well as inhibitor
design. There are other areas of biological research,
where these molecules play a role such as cell-signaling
and cofactor activity [6-11]. Thus, adenine and guanine
phosphates form an important group of molecules,
whose interactions with proteins at single residue as
well as sequence and structural motifs levels have great
significance but the process of this specificity lacks clear
understanding. Discovery of binding sites for each of
these molecules lies at the heart of this problem and it
is essential to identify such binding sites for targeting
inhibitors or understanding their function.
A typical problem of biochemical discrimination

between ATP and ADP appears in the case of ATP
synthesis, where the question is how does the enzyme
bind hydrolyzed version of ATP (i.e. ADP plus ortho-
phosphate HPO5, also called Pi), rather than ATP itself,
into catalytic sites? In active cells, the cytoplasmic
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concentrations of ATP and Pi are approximately in the
2-5 mM range whereas that of ADP is at least 10-50-
fold lower. Equilibrium binding assays have established
that both ADP and ATP bind to catalytic sites of puri-
fied F1 and detergent solubilized F1Fo with relatively
similar binding affinities (here F1 and Fo respectively
refer to the catalytic and proton-translocating subunits

of ATP synthase) [12,13]. Obviously, the enzyme must
have evolved a specific mechanism for selectively bind-
ing ADP into catalytic sites while contemporaneously
discouraging access of ATP during proton driven rota-
tion and ATP synthesis. One hypothesis is that during
ATP synthesis, proton gradient-driven rotation of subu-
nits drives an empty catalytic site to bind Pi tightly, thus

Figure 1 Adenine and Guanine phosphates (nucleotides) found in complex with proteins in Protein Data Bank, with corresponding
HETATM (three-letter) codes.
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stereochemically precluding ATP binding and therefore
selectively favoring ADP binding [14]. Thus, the funda-
mental unknown, “what is the molecular basis of the
ability to bind ADP at catalytic sites of ATP synthase
during ATP synthesis, in the face of a seemingly prohi-
bitive [ATP/ADP] ratio,” was solved by modifying the
assay originally devised by Perez et al [15] in which the
protection afforded by Pi against inhibition of ATPase
activity, induced by covalent reaction of 7-chloro-4-
nitrobenzo-2-oxa-1, 3,-diazol (NBD-Cl) with bY297,
provides the measure of Pi binding. Their original work
used mitochondrial inner membrane preparations; the
successful application of the modified version of assay
to both purified F1 and plasma membrane vesicle pre-
parations from E. coli, resulted in identification of five
Pi binding residues namely bArg-246, aArg-376, bLys-
155, bArg-182, and aSer-347, and three non Pi binding
residues namely, bAsn-243, aPhe-291, and aGly-351
[13,16-22].
ATP-binding sites have been typically identified by

locating motifs in sequence and amongst them P-loop
motif has been by far the most widely studied one
[23-26]. Such motifs can be identified by sequence com-
parison; although the exact spacing between glycine resi-
dues implicated in these motifs is not always constant
which may cause problems in identifying these motifs in
novel proteins. However, the P-loop is not the only
motif associated with ATP-binding so a motif based
approach will not always work. It will obviously fail in
cases where a binding site is not related to conserved
motifs. Moreover the mere discovery of a motif does
not help in understanding residue-wise interactions of
proteins with ATP or its guanine analogues. Contribu-
tion of individual residues to the affinity of interactions
cannot be inferred from such analysis.
A number of computational methods have been devel-

oped to identify ligand-binding sites in proteins at the
residue level, using statistical and machine learning
approaches where protein sequence information is the
primary input for a prediction model [27-30]. In particu-
lar, models have been developed for DNA-binding and

carbohydrate binding sites [27-31]. In regards to nucleo-
tides, Saito et al. [31] used empirical scores for predict-
ing nucleotide binding proteins which could successfully
predict ATP binding sites. Recently, Chauhan et al.,
employed SVM to predict the ATP binding residues in
ATP binding proteins using amino acid sequence and
their evolutionary profiles [32]. In this work, we have
developed support vector machine (SVM) based regres-
sion models for predictive and comparative analysis of
adenine and guanine nucleotide binding sites in pro-
teins. The analysis starts with the amino acid propensi-
ties for adenine and guanine phosphates which are then
used to identify, which residues discriminate these simi-
larly looking ligands. Then, machine learning methods
are used to predict these binding sites directly from
sequence data. Finally, the model trained on binding
sites of adenine nucleotides is used to predict binding
sites on guanine nucleotides and then to use these pre-
diction strategies to discriminate between adenine and
guanine recognition. Results of this study are likely to
be helpful in annotating new proteins, their functional
regions and select mutagenesis targets for a variety of
molecular interactions.

Methods
Data sets
Figure 1 gives the overall structure and list of nucleo-
tides considered in this study. As seen in this Figure,
there are 4 pairs of adenine and guanine phosphates
included here, corresponding to mono, di-, tri- and cyc-
lic mono- phosphate versions of these bases. Numbers
of overall and unique entries in Protein Data Bank
(PDB) are listed in Table 1. In case of structures with
multiple models (NMR-solved structures), only the first
models were used and structures having a resolution
lower than 2.5Å were discarded from the list of overall
PDB entries. Additionally, structures having fewer than
30 residues were also removed from the dataset. Finally,
all unique entries were obtained by removing redun-
dancy at 30% sequence identity cutoff, so that in the
final list no two proteins binding to the same ligand

Table 1 Adenine and Guanine phosphates in Protein Data Bank, considered in this study

Full name HET name PDB entries Unique PDB entries Number of BS Number of NBS

Cyclic adenosine mono-phosphate CMP 37 14 260 3757

Cyclic guanosine mono-phosphate PCG 6 5 72 1041

Adenosine mono-phosphate AMP 210 81 1274 25375

Adenosine di-phosphate ADP 645 175 3144 59341

Adenosine tri-phosphate ATP 369 131 2244 39468

Guanosine 5’-mono-phosphate 5GP 43 20 278 4749

Guanosine 5’-di-phosphate GDP 333 64 912 19887

Guanosine 5’-triphosphate GTP 121 33 606 10125

Here BS represents Binding sites (residues) where as NBS represents Non-binding sites (residues) respectively.
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have more than 30% sequence similarity. Complete lists
are provided in additional file Additional file 1.

Binding site
Residues in the selected proteins are labeled as binding
and non-binding if any atom from that residue comes
within 4.5Å distance with any atom of the nucleotide,
when overall propensity values are considered. Atoms
are grouped into main chain, side chain etc, for more
detailed propensity calculations.

Propensity
Propensity, P(i) for each of the 20 amino acids is calcu-
lated by pooling all the data from the selected proteins
within a category (e.g. all ATP-binding proteins) and
then taking the ratio of relative number of binding resi-
dues of that type ((Nb(i)/N(i))) with the overall relative
number of binding residues ((Nb(all)/N(all))) i.e.

P(i) =

⎛
⎝

Nb(i)/
N(i)

Nb(all)/
N(all)

⎞
⎠

Calculation of error bars
Multiple pseudo-copies of the entire data sets (for
example all ATP-binding proteins) are created by suc-
cessively and randomly picking up proteins one-by-one
after replacement from the entire list (for example all
ATP-binding proteins) until the total number becomes
equal to the original data set. In this way, some proteins
appear more than once whereas others are not selected
at all. For each pseudo-copy of the data, propensity
scores are computed and the standard deviation of these
values is used as the error bar for each of the 20 amino
acids. For the current study 500 copies of data were
made for each category.

Prediction method
All predictions are made using a five residue window
composed of a row from position specific substitution
matrix (PSSM) for each residue, resulting in a 21 × 5 =
105 dimensional input vector for each residue (20
dimensions for the identity of a residue and 21st dimen-
sion for terminal position). Target sequences were
scanned against the Non-redundant (NR) database of
NCBI to compile a set of alignment profiles or position
specific scoring matrices (PSSMs) using Position Specific
Iterative BLAST (PSI BLAST) program [33]. Three
cycles of PSI-BLAST were run for each protein and the
scores were saved as profile matrices (PSSMs).
A sliding window is used to obtain predictions for all

residues in a protein. The 105-dimensional vector inputs
are trained using a Support Vector Regression model with
default parameters as implemented in e1071 package of R

programming environment (http://www.r-project.org).
After trying a few runs with other kernels, we observed
that Radial Basis Function (RBF) kernel performs the best.
Thus all models used RBF kernel with default parameters.
Target vectors consisted of one dimension, whose value
corresponds to its binding state at a position (1 corre-
sponding to binding, 0 otherwise). Entire data is trained
using a Jackknife leave-one-protein-out procedure i.e. one
protein is left out of the training set and SVM is trained
for the remaining data. After the model is ready, the per-
formance is tested on the left-out-protein. Finally reported
values are the average over the proteins left out in each
cycle, one after the other spanning an entire data set. This
ensures that the reported performance represents true
performance on blind data sets. However, when testing
performance of models trained on data set of one ligand
over the data sets of another ligand, performance of an
SVM is also tested on the data on which it was trained
(this includes all the data corresponding to that ligand). In
most cases this score reaches 100% because SVM was able
to over-learn and achieve a perfect separation on training
examples. Apart from the SVM, we also tested the perfor-
mance on neural network models trained using SNNS
package [34]. However, SVM performance was found to
be much better and no neural network results are dis-
cussed in this manuscript.

Performance measure
A trained SVM regression model returns a real value
between 0 and 1 which can be converted to a binary
prediction of binding or non-binding at various cutoffs
for each residue position. Predictions are called positive
(P) if the output is more than a cutoff and negative (N)
otherwise. If the positive and negative predictions cor-
rectly correspond to binding sites or correctly assign
non-binding status to a residue, they are called True
(T), otherwise False (F), thereby assigning to each resi-
due (at a given cutoff) one of the four labels; viz., True
positive (TP), False positive (FP), True negative (TN)
and False negative (FN). The number of residues in
each of the four categories is counted and the following
scores are calculated:

Sensitivity (sn) = TP/(TP + FN);

Specificity (sp) = TN/(TN + FP);

Receiver operator characteristic (ROC) curve is plotted
as a (1-specificity) versus sensitivity for all cutoffs and
the area covered under this plot is known as area under
the curve (AUC of ROC, or simply AUC) of prediction.
For an ideal case, AUC reaches 1 or 100%, (this happens
if for any cutoff, all residues correctly classified into
binding and non-binding classes), whereas for a random
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case, the AUC values are about 0.5 (actual AUC can be
lower than random, as prediction results correspond to
a leave-one-out data, which is always different from the
training data set). Thus, AUC gives an overall view of
prediction performance and can be compared between
various models. If the data is too unbalanced (few posi-
tive cases in a large data of negative cases), one may
need to know the true positive out of a set of predictive
positive cases (rather than true positive out of actually
present positive cases as in the case of sensitivity). This
is measured by precision:

Precision (p) = TP/(TP + FP)

A score called F-measure is often used to estimate
predictive power of a model, which considers both sen-
sitivity (also called recall) and precision. It is defined as,
as the geometric mean of precision and recall i.e.

F = 2p.sn/(p + sn)

AUC and F-measure, along with the precision and
recall at the best F-measure are included in the predic-
tion results.

Results and discussion
Four types of computations are performed in this work;
(1) Residue propensities within adenine phosphates (2)
Residue propensities within guanine phosphates (3)
Comparison between adenine and guanine phosphate
propensities and (4) Prediction performance for adenine
and guanine phosphates and mutual similarity in predic-
tion models. Results from these four analyses are pre-
sented and discussed in the following:

Residue propensities within Adenine phosphates
Figure 2 shows residue propensities in mono-, di- and
tri- nucleotides of adenine both in the overall (Figure 2
(a)) as well as higher resolution contact definitions (Fig-
ure 2(b-e)). A number of observations can be made
from these graphs.

1. Gly is the most abundant residue in all three
cases. Role of Gly in forming ATP-binding P-loop is
well known [35-37] and it is not surprising that this
residue has the highest binding propensity to all
three phosphates of adenine. It would be interesting
to see, if there are any differences between the pro-
pensities of residues for the three phosphates.
2. In general residue propensities in three phos-
phates of adenine are very similar and hence the
same binding sites are likely to recognize all three
types, at least as far as single residue recognition
goes. However, subtle differences do exist. Most pro-
minent among them is the case of His residues,

which have a higher propensity for AMP compared
to ADP and ATP (Figure 2a). This is probably
because His forms stacking interactions with ade-
nine, which are facilitated by smaller phosphate tail
(less hindrance). This hypothesis is supported by the
fact that main chain contact propensities of His are
quite low and hence the major contribution comes
from its side chain. Further phosphate contact pro-
pensities of His side chain are also quite low, which
is consistent with the above argument, as no stack-
ing interaction is possible between His side chain
and phosphate atoms. On the other hand Gly has a
smaller propensity for AMP, probably because of the
absence of a side chain, requiring longer tail in the
nucleotide for interaction and hence forming fewer
contacts with the nucleotide with the smallest phos-
phate tail. Again, in the absence of a side chain in
Gly, all propensity comes from the main chain con-
tacts and the overall preference of ATP contacts
over AMP and ADP is retained (in comparison to
main chain contacts of other residues).

Residue propensities within Guanine phosphates
Figure 3 shows residue propensities in mono-, di- and
tri- nucleotides of guanine both in the overall (Figure 3
(a)) as well as higher resolution contact definitions (Fig-
ure 3(b-e)). Main conclusions from these figures can be
summarized as follows:

1. Residue propensities in guanine nucleotides have a
distribution quite different from adenine phosphates
(discussed in previous section). Most notable feature
is that the difference between mono-, di- and tripho-
sphates is much more prominent in guanine phos-
phates compared to adenine phosphates, as we see
the propensity values for each residue type have dif-
ferent values for different phosphates.
2. At the atomic level His residues have been shown
to have a preference for guanine, which is also con-
firmed by our analysis [38,39]. We also observe that
His propensity for monophosphate is higher than di-
and triphosphates, which is similar to the pattern in
Adenine phosphates and could be due to the same
reasons i.e. convenience of stacking interactions
between imidazole rings of His and Guanine [40].
3. Tyrosine and Tryptophan propensities are the
highest for GMP, and quite low for GDP and GTP,
which together with His propensity values suggests
that interactions between ring structures of Tyr, His
and Trp are primary contacts between these residues
and GMP, which are seriously impaired by the pre-
sence of long phosphate chain and hence do not
occur in the case of GDP and GTP. This is also
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Figure 2 Amino acid propensities for various adenine phosphates (a) any contact between protein and nucleotide (b) protein main-
chain contact with nucleotide base (c) protein main-chain contact with phosphate (d) protein side-chain contact with nucleotide base
(e) protein side-chain contact with phosphate
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Figure 3 Amino acid propensities for various guanine phosphates (a) any contact between protein and nucleotide (b) protein main-
chain contact with nucleotide base (c) protein main-chain contact with phosphate (d) protein side-chain contact with nucleotide base
(e) protein side-chain contact with phosphate
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supported by strong differences between GMP and
others in the case of side-chain-base contacts.

Comparison between Adenine and Guanine phosphate
propensities
Figure 4(a-c) shows the comparison of propensities
between AMP, ADP, and ATP and their corresponding

guanine phosphates. We observe that the correlation
coefficient between these pairs ranges from 0.6 to 0.7
(R2 = 0.37, 0.44 and 0.31 respectively for mono-, di- and
triphosphates), which means that the two nucleotide
pairs have strong similarity between them. However, the
specificity is provided by the subtle differences, which
do exist at single residue level. In particular, monopho-
sphates are best distinguished by just two residues, Tyr-
osine and Tryptophan, which have a high preference for
GMP, not observed in AMP. However, in the case of di-
and triphosphates, hydrophilic residues prefer guanine
and hydrophobic ones prefer adenine, as can be seen by
the presence of more hydrophobic residues below the
regression line in ATP versus GTP and ADP versus
GDP plots (Figure 4(b-c)).

Cyclic phosphates of adenine and guanine
Figure 5(a) shows a comparison of propensities between
cyclic monophosphates of adenine and guanine (cAMP
and cGMP). Correlation coefficients between the pro-
pensities are also shown in Table 2. Despite a relatively
small amount of data for cGMP, propensities values
between the two cyclic ligands are very similar with a
correlation coefficient (R = 0.72) higher than any pair of
ligands in this study. In contrast the cyclic and noncyclic
variants have relatively lower degree of correlation (R =
0.42 for adenine and 0.27 for guanine), as can be seen
from parts (b) and (c) of Figure 5 also. Thus, it is quite
clear that the cAMP and cGMP have close similarity in
their residue-wise interactions, whereas despite having a
similar nucleotide base, their non-cyclic versions are
quite different. This highlights the crucial significance of
the phosphate part of the ligand for interaction with
ligands, as this part of the nucleotide distinguishes
between the chemical natures of cyclic AMPs from non-
cyclic ones.
Within the cAMP and cGMP ligands, Trp residues

continue to have a preference for guanine over adenine
ligands, which is similar to what we observe in non-cyc-
lic AMP and GMP (Figure 4a). However, His and Tyr
residues, which have a higher GMP propensity than
AMP, do not show that preference in cGMP over
cAMP, highlighting a different mechanism of recogni-
tion in the case of these ligands. Interestingly, these two
residues (His and Tyr) have a higher propensity for
GMP than cGMP, which shows the significance of His
and Tyr for interacting with GMP over any other gua-
nine or adenine phosphate.

Comparison with previously reported results
Although, the number of proteins as well as list of ade-
nine and guanine derivatives considered in the present
work is larger than the most significant relevant study,
it would be interesting to draw comparison between the

Figure 4 Single residue propensity differences between similar
adenine and guanine phosphates. (a) mono-phosphate (b)
diphosphates (c) triphosphates
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two works, wherever possible. However, it may be stated
at the outset that the previous study was undertaken
several years ago and did not contain all the proteins
whose structures have become available since then, and
hence included in the current study. Despite this

expansion, many results reported earlier have been
found to be robust enough to be confirmed by the cur-
rent work. For example, aliphatic hydrophobic residues
are either neutral or under-represented in binding sites,
whereas aromatic residues overcome hydrophobicity-

Figure 5 Comparison of propensities between adenine and guanine phosphates with cyclic variants. (a) cAMP versus cGMP (b) cAMP
versus AMP (c) cGMP versus GMP
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driven exclusion, probably due to their stacking prefer-
ences with aromatic rings of adenine and guanine. Pre-
vious study showed that Cys is preferred by guanine and
not by adenine [5], which is confirmed by the current
study. In addition, we show that smaller phosphate
chain (mono-phosphate in contrast to triphosphate)
allows a higher Cys propensity than its longer counter-
parts in adenine phosphates, as revealed by the order of
propensity for Cys being AMP > ADP > ATP whereas
the trend is the opposite for guanine, in which longer
chain derivatives are preferred. Preferences and propen-
sity trends of Arg, Trp & His residues are also consis-
tent in the two studies. Similarly, overall preferences of
charged and polar residues are also confirmed [5]. All
results relating to cyclic variants of these ligands as well
as comparison between mono-, di- and triphosphate are
exclusive for this current study and not reported earlier.

Prediction performance for adenine and guanine
phosphates and mutual similarity in prediction models
A number of patterns are observed in the propensity
data, which play a role in recognition of these ligands
from other molecules as well as from one another.
These propensity values are at a single residue scale and
it is obvious that they are further constrained by struc-
tural and sequence neighbors in the actual binding sites.
In this work, we focus on sequence-based predictions
and therefore try to learn about the role of sequence
neighbors in these interactions. To determine the extent
to which neighbors influence interactions, we try to pre-
dict binding sites from sequence information for each
ligand and monitor prediction performance. Subse-
quently, we try to see how far models trained on bind-
ing sites of one ligand can also predict binding sites of
the other ligand. Ability of such trained models to make
cross-predictions, would be a signal for their similarity
and can be used to estimate the specificity of a pair of
ligands as well as predict with some confidence binding
sites of ligands for which sufficient training data was not
available (e.g. cGMP).
Prediction performances of SVM-based models are

shown in Table 3. Results indicate that all adenine phos-
phate binding sites can be predicted with AUC in the
range of 80~85%. However, the performance for guanine
phosphates is slightly poorer with AUC score being
74~83%. The lower prediction performance in guanine

ligands shows that the binding sites in this class of
ligands are less conserved than adenine phosphates and
have a greater variety of interactions, which is not
entirely determined by sequence environment. This
greater flexibility may be helpful in nature’s selection of
guanine ligands as energy currency in some organisms
over the other, whereas higher organisms go for a more
robust recognition and probably exchange more energy.
The best known example of this is enzyme ATP
synthase, the fundamental means of cell energy produc-
tion in animals, plants and almost all microorganisms.
This enzyme is responsible for ATP synthesis by oxida-
tive or photophosphorylation in membranes of bacteria,
mitochondria, and chloroplasts. A typical 70 kg human
with relatively sedentary lifestyle will generate around
2.0 million kg of ATP from ADP and Pi in a 75-year
lifespan [21,41]. Further lowest performance is observed
for cyclic version PCG, presumably because there is not
enough data to train this model. This performance level
is comparable to earlier reports on some of these sys-
tems, although our data sets and prediction strategy are
different [32]. For example, we removed redundancy at
30% sequence identity compared to 40% used earlier.
We also used a leave-one-out cross-validation instead of
five-fold reported earlier. Both these strategies make the
study more rigorous. More importantly, the number of
ligands considered here is much more exhaustive and
our study takes a comparative and analytic approach
instead of a purely predictive perspective taken earlier.
Nonetheless, the performance levels being very similar
on the ligands which were studies earlier, some aspects
of the current work may be considered a confirmation
of previously published results.
To estimate the similarity between the binding sites of

adenine and guanine phosphates, a confusion matrix
was constructed in which models trained on binding
sites of one ligand were evaluated over the binding sites

Table 2 Comparison of propensity scores between cyclic
and aliphatic adenine/guanine mono-phosphates

Correlation (R) R2

cAMP/cGMP 0.72 0.51

cAMP/AMP 0.42 0.18

cGMP/GMP 0.27 0.07

Table 3 Overall prediction performance, measured by
area under the curve (AUC) of ROC plots for binding sites
of various ligands considered in this study

Ligand Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

F-measure
(%)

AUC
(%)

AMP 86.7 62.3 87.5 39.6 80.1

ADP 91.6 63.4 93.2 60.2 84.7

ATP 90.2 63.4 91.8 52.8 82.7

GMP 78.4 77.7 79.0 45.7 75.8

GDP 87.0 75.0 87.9 59.2 82.4

GTP 84.8 62.5 86.3 40.9 74.5

CAMP 92.3 71.7 94.0 66.7 83.2

PCG 82.1 57.4 83.9 36.6 64.9
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of the other. Table 4, shows an all-against-all compari-
son of ligands in this way. (For additional performance
measures, see additional file Additional file 2). As
expected the diagonal values in this matrix are all 100%,
showing that the self-consistency-based model can over-
learn from itself (Table 3 results are free from this bias,
as they use cross-validation). All off-diagonal elements
are significantly lower than 100%, as the trained and
tested data sets belong to different ligands, yet their
good prediction performance despite this difference is
also quite visible. This result has two implications. First
of all, it implies that all adenine and guanine phosphates
have some common evolutionary rules (contained in the
PSSM data used for predictions here), which separate
binding sites from non-binding regions of protein
sequences. Since, adenine and guanine have very similar
structures [5] and their phosphate tails are also not
drastically different, some common recognition elements
are not totally unexpected after all. This similarity in
models has an advantage when we want to know bind-
ing sites of any of these ligands, but poses a problem
when specificity of one ligand over the other is required.
Whatever information of specificity comes from these
prediction models, translates only modestly into our
ability to distinguish between binding sites of various
ligands considered here. This is true despite the differ-
ence between propensities of single residues, probably
because Trp, Tyr and His, which were shown above to
confer specificity, suggesting they are not always respon-
sible for the specific behavior and their difference in
propensity is not enough in distinguishing between
binding sites at a very high specificity. However,
observed differences in diagonal and off-diagonal values
may be valuable when a comparison is being made at a
high throughput such as genome scale. It can

significantly reduce the candidate residues for mutagen-
esis experiments and functional studies.

Conclusion
Adenine and guanine phosphates recognize binding sites
on proteins at a single residue level as well as complex
sequence neighbor effects. Using evolutionary profiles of
proteins, binding sites corresponding to these ligands
can be predicted with good confidence, yet the predict-
ability of binding sites of one of them in contrast to
other remains a challenging problem. Although,
encouraging results are obtained using current
approach, more work is needed to improve performance
of predicting specificity of various adenine and guanine
phosphates with respect to one another.
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