
Canine glaucoma is a heterogeneous group of neurode-
generative diseases that lead to progressive retinal ganglion 
cell death, optic nerve degeneration, and visual field deficits. 
Intraocular pressure (IOP) is a consistent risk factor for the 
development of canine glaucoma [1]. Glaucoma is described 
as primary if it occurs in the absence of an antecedent ocular 
disease process, such as intraocular inflammation, neoplasia, 
or lens instability [2]. Primary glaucoma is thought to be 
caused by unidentifiable and inherent abnormalities in the 
aqueous humor outflow apparatus of the eye and in adult 
dogs is further subdivided into primary open angle glaucoma 
(POAG) and primary closed angle glaucoma (PCAG) based 
on the appearance of the iridocorneal angle (ICA). In POAG, 
the IOP is usually pathologically elevated, even in the pres-
ence of an open ICA and normal pectinate ligament anatomy 
in the early disease stages [3]. PCAG, however, is associated 
with pectinate ligament abnormality (PLA), a form of gonio-
dysgenesis, in several dog breeds [4-10]. PLA describes the 
broad sheets of tissue that span the ICA and is associated with 

increasing age [11-14]. Although PLA appears to be required, 
but not sufficient, for the development of PCAG, only a small 
fraction of dogs with PLA develop PCAG [15,16].

The increased prevalence of primary glaucoma in certain 
dog breeds implies a genetic etiology. The Basset Hound (BH) 
is a dog breed known to be affected by POAG and PCAG 
[4,17]. In common with three other canine breeds, POAG in 
the BH is an autosomal recessive trait due to a mutation in 
ADAMTS17 (Gene ID 170691, OMIM 607511) [17-20]. PCAG, 
however, is thought to be complex and caused by multiple 
genetic and environmental factors [21-23]. Two previous 
studies of the genetics of PCAG have been reported in the 
American BH. A genome-wide association study (GWAS) of 
37 PCAG cases and 41 controls revealed associations at two 
novel loci that contain the candidate genes COL1A2 (Gene ID 
1278, OMIM 120160) and RAB22A (GENE ID 57403, OMIM 
612966), but no candidate variants were reported [22]. In a 
subsequent paper, the same group reported a non-synony-
mous variant in NEB (Gene ID 4703, OMIM 161650) segre-
gates with PCAG in the BH (BROADD2 chr19:55,885,214 
A>G) [21]. COL1A2 and NEB are promising candidate genes 
based on their functions. COL1A2 encodes the pro-α2 chain 
of collagen type 1 which is an important component of the 
trabecular meshwork, and previous studies have implicated 
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the role of collagen genes in the pathogenesis of human 
primary glaucoma [24-28]. NEB encodes the muscle contrac-
tility regulating protein, nebulin, which is expressed in the 
ciliary body musculature, and the belief that muscle-related 
mechanisms are involved in the aqueous humor outflow path-
ways makes NEB a feasible candidate [21,29,30]. RAB22A is 
known to be an oncogene, and thus, this gene’s potential role 
in primary glaucoma is more difficult to explain [31].

In this study, we investigated the genetic basis of PLA 
and PCAG in the European BH. First, we tested for a possible 
association between the reported NEB variant and PLA and 
PCAG. Second, we used a GWAS to identify loci associated 
with PLA or PCAG and then used an additional cohort of 
American BHs with PCAG to further evaluate statistically 
significant associations. We used RNA sequencing (RNA-
Seq) to investigate differential gene expression and identify 
candidate genes in the GWAS-derived loci.

METHODS

Genotyping of the NEB variant: The NEB variant (BROADD2 
chr19:55,885,214 A>G) reported by Ahram et al. [21] was 
genotyped in a cohort of 158 BHs (10 PCAG cases, 52 PLA 
cases, and 96 controls) and 83 non-BH dogs, comprising 
31 different breeds, with Sanger sequencing using primers 
detailed in Table 1. The non-BH dogs formed part of a multi-
breed screening panel that was created before the inception of 
this study. These dogs had not undergone previous ophthal-
mological examination.

Genome-wide association study: All DNA samples from 
privately owned pet dogs were collected following fully 
informed and written owner consent and with approval from 
the Animal Health Trust’s Research and Ethical Committee 
(approval number 36–2016). This study was performed in 
accordance with the ARVO Statement for Use of Animals 
in Research. DNA samples from American PCAG dogs 
were provided by one of the coauthors (MK) and included 
members of a PCAG colony and client-owned dogs all origi-
nating within the USA. Dogs were designated as controls or 
PLA cases based on the results of gonioscopy performed by 
the primary author (JO), a board-certified veterinary ophthal-
mologist, and as previously described [12-14,32]. Dogs were 

designated as PCAG cases following examination by JO and 
other board-certified veterinary ophthalmologists. The inclu-
sion criteria for the controls, PLA cases, and PCAG cases 
were as follows:

1. Controls: Dogs with normal appearing ICAs aged five 
years and older.

2. PLA cases: Dogs with PLA affecting at least 50% of 
the ICA of each eye. The controls and the PLA cases had IOP 
within normal limits and normal optic nerve head anatomy as 
assessed with direct and indirect ophthalmoscopy.

3. PCAG cases: Dogs with one eye with IOP >50 mmHg 
(arbitrary cutoff) without any possible cause of secondary 
glaucoma and the finding of severe PLA (>90% of the ICA 
affected) in the contralateral eye. No diagnostic techniques 
were performed on the affected eye to confirm closure of the 
ICA or to assess the pathology of the optic nerve head.

DNA for the GWAS was extracted from buccal mucosal 
swabs as previously described [17]. Only dogs clear of the 
published BH POAG mutation were used [17]. DNA samples 
were submitted at a concentration of 20 ng/μl and a volume 
of 25 μl to an external laboratory (Neogen; Lansing, MI) 
for genotyping on the CanineHD BeadChip (Illumina; San 
Diego, CA) which contains 172,115 single nucleotide poly-
morphisms (SNPs) [33]. The GWAS data were analyzed using 
the freely available software package PLINK [34]. Data were 
filtered for quality control parameters, including the sample 
call rate, SNP call rate, and minor allele frequency (MAF). 
SNPs were excluded from analysis if they had a MAF <0.05 
or had a call rate of <97%. Individuals were excluded if >10% 
SNP genotypes were missing. GWASs were conducted using 
a standard unadjusted allelic chi-square test for association (1 
degree of freedom (df)). Inflation of observed statistics due 
to relatedness or the population substructure was estimated 
with genomic control (λ). Data were subsequently corrected 
for population stratification using a mixed model in the freely 
available software GEMMA [35]. Five case and control 
GWASs were performed as detailed in Table 2. The p values 
for each SNP derived from the GWAS using GEMMA were 
used to create a Manhattan plot for each analysis. A p value 
of 0.05 after correction for multiple testing using the Bonfer-
roni correction (0.05/number of tests) was the threshold 

Table 1. Primer details used for Sanger sequencing of the NEB variant.

Genomic coordinate 
of NEB variant 

(CanFam2)

Forward primer sequence 
Reverse primer sequence

Amplicon 
size (bp)

Annealing 
temp 
(°C)

chr19:55,885,214 ACCAGTAAGGTGAGTGCTTTCC 
AGGCTATGATCTCAGAACTGATGC

103 57

http://www.molvis.org/molvis/v25/93
http://pngu.mgh.harvard.edu/~purcell/plink/anal.shtml
http://www.xzlab.org/software/GEMMAmanual
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for statistical association in all studies (p<5.28 × 10−7) and 
prompted further investigation of the associated loci. Asso-
ciations between the GWAS SNPs and disease in individual 
dog data sets were assessed using logistic regression using 
an additive per allele model to compute an odds ratio and 
confidence interval for the association of one or more SNPs 
with disease using STATA 10.0 (College Station, TX).

Definition of associated loci: Associated loci were defined 
based on pairwise linkage disequilibrium (LD) estimates 
(conservative r2 ≥0.5) of the SNPs using the Tagger program 
embedded in Haploview [36,37]. A list of SNPs in LD with 
the most strongly associated GWAS SNP for each locus was 
generated which could denote a region tagged by the GWAS 
association signal. As for the GWAS, SNPs were excluded 
from analysis if they had a MAF <0.05 or a call rate of <97%.

Gene expression using RNA-Seq: Eyes were removed from 
five BHs with PCAG on welfare grounds and from four 
non-BH dogs with normal eyes that had been euthanized via 
intravenous overdose of pentobarbitone for reasons unre-
lated to this study. Following enucleation, each globe was 
transected along the sagittal plane into two equal halves. 
Each half globe was immersed in 15 ml RNAlater solution 
(Ambion; Foster City, CA) before being stored at −80 °C 
until later use as previously described [38,39]. RNA was 
extracted from selected tissue samples using the Qiagen 
RNAeasy Midi Kit (Qiagen; Hilden, Germany) according 
to the manufacturer’s instructions. Following thawing of 
each half globe, a section of the ICA was dissected under 
an operating microscope with microsurgical instrumentation 
aiming for approximately 200–250 mg tissue. The posterior 
boundary of the dissected tissue was the posterior pars plana, 
and the anterior boundary was the corneoscleral limbus. No 
lens tissue was included in the dissection, but the sclera 
was included. Adherent conjunctiva and episcleral tissues 
were removed. Total RNA (20 ng–1 µg per sample, at a 

concentration of ≥20 ng/μl with RNA integrity number (RIN) 
≥8.0 and optical density (OD)260/280 ≥1.8) was submitted to 
Otogenetics Corporation (Atlanta, GA) for library preparation 
and sequencing: 1–2 μg of cDNA was generated using the 
Clontech Smart cDNA kit (Clontech Laboratories; Mountain 
View, CA) from 100 ng of total RNA. cDNA was fragmented 
using Covaris (Covaris; Woburn, MA) and profiled using 
an Agilent Bioanalyzer 2100 (Agilent; Santa Clara, CA). 
Libraries were prepared using NEBNext reagents (Catalog 
No. 634,925. New England Biolabs; Ipswich, MA): mRNAs 
were purified using Poly(A) selection from the total RNA 
sample and then fragmented. cDNA was then synthesized 
using random priming, followed by end repair, phosphory-
lation, A-tailing, adaptor ligation, and finally, PCR ampli-
fication. The quality, quantity, and size distribution of the 
Illumina libraries were determined using an Agilent Bioana-
lyzer 2100. The libraries were then loaded on an Illumina 
HiSeq2500 for clustering and sequencing according to the 
standard operation. Paired-end 90–100 nucleotide reads were 
generated, and data quality was assessed using FASTQC 
(Babraham Institute; Cambridge, UK). After optimum 
quality control (QC) results were achieved, the samples were 
analyzed. Sequence reads (minimum of 50 M per sample) 
were mapped to the CanFam3.1 reference genome, and the 
read count values of gene expression (fragments per kilobase 
million, FPKM) were calculated. The differential expression 
of the FPKM (the read counts) between the PCAG cases and 
controls was calculated as the base 2 log of the fold change of 
controls/PCAG cases (log2 (the FPKM of the PCAG cases/the 
FPKM of the controls)). The test statistic was used to compute 
the statistical significance of the observed change in the 
FPKM. The p value represents the uncorrected p value of the 
test statistic, and the Q value represents the false discovery 
rate–adjusted p value of the test statistic. For genes shown 
to be differentially expressed, their functions and associated 

Table 2. Summary of number of dogs, results of quality control filtering steps and 
correction of population stratification for the five GWAS analyses.

Analysis Pheno-
type of 
cases

Phenotype 
of controls

No. 
cases

No. 
controls

SNPs with 
MAF <0.05

SNPs with 
<0.97 call 
rate

SNPs 
remaining 
for analysis

λ before 
correc-
tion

λ after 
correc-
tion

P value

1 PCAG Controls 24 37 71,687 11,749 96,259 1.96 1.04 1.7×10−4

2 PCAG + 
PLA Controls 81 37 71,633 10,166 97,282 1.34 1.00 7.7×10−5

3 PLA Controls 57 37 73,253 11,935 94,781 1.28 1.01 1.0×10−4

4 PCAG PLA 24 57 72,150 9,858 96,868 2.23 1.01 3.8×10-7*

5 PCAG Controls + 
PLA 24 94 71,633 10,166 97,282 2.25 0.96 1.4×10-7*

No.=number, λ=lambda (genomic inflation factor), * denotes significant association (Bonferonni)

http://www.molvis.org/molvis/v25/93
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phenotypes (for potential candidacy for canine PCAG) were 
assessed using VarElect GeneCards®.

RESULTS

NEB variant genotyping: One hundred fifty-seven BHs (ten 
PCAG cases, 52 PLA cases, and 95 controls) were homozy-
gous for the reported NEB variant (G/G), and only one control 
was heterozygous (A/G). In the 83 non-BH dogs, 59 were 
homozygous for the variant (G/G), 15 were heterozygous 
(A/G), and only nine were homozygous for the reference allele 
(A/A). Thus, as well as not being associated with PLA or 
PCAG, it appeared that the SNP at this location is a common 
polymorphism, and the reported variant may actually be more 
common in European dogs than the reference allele.

Genome-wide association studies: The results of the five 
GWASs, including case and control designation, filtering 
steps, the genomic inflation factor, and the p value of the top 
SNP from each analysis can be found in Table 2. Statistically 
significant SNP associations were found in GWAS Analyses 
4 and 5. In Analysis 4 (Cases: PCAG cases; Controls: PLA 
cases), a SNP on canine chromosome 24 (BICF2G630505097; 
CanFam3.1 chr24:17,381,226; p = 3.8 × 10−7) reached the 
threshold of genome-wide statistical association (Figure 
1). In Analysis 5 (Cases: PCAG cases; Controls: PLA cases 
and control dogs), an additional SNP in the same region 
increased the strength of the statistical association further 
(BICF2P544799; CanFam3.1 chr24:18,739,902; p = 1.4 × 10−7; 
Figure 2).

GWAS conditioning on the most strongly associated SNP 
was performed to assess whether any additional loci were 
associated with PCAG. To achieve this, SNP BICF2P544799 
was introduced as a covariate in the mixed model in Analysis 
5. This revealed an additional SNP at a distinct chromosomal 
location on canine chromosome 37 to reach the threshold 
of genome-wide statistical association (BICF2P928441; 
CanFam3.1 chr37: 24,747,131; p = 1.9 × 10−7; Figure 3). Condi-
tional analysis using both associated SNPs as covariates in 
the model revealed no further association signals.

The interrelationships between the three strongest 
associated SNPs and PCAG risk were further assessed in 
the individual SNP data sets using logistic regression. This 
was done for the original GWAS set and with the addition of 
PCAG cases from the USA. All three SNPs were strongly 
associated with PCAG, and the strength of association 
increased following the addition of the American dogs with 
PCAG to the analyses (Table 3). A combined analysis of the 
two SNPs and the risk of PCAG in all 153 dogs (59 cases and 
94 controls defined as Table 3) using an additive (per allele) 
model resulted in an odds ratio of 19.30 (95% confidence 
interval 7.62–48.85; p = 1.4 × 10−24).

Definition of associated loci: A critical region spanning the 
top associated SNPs was defined based on pairwise LD of 
these top three SNPs with other SNPs on the respective chro-
mosome in the GWAS data set. Although the top two chromo-
some 24 SNPs BICF2G630505097 and BICF2P544799 were 
correlated at an r2 of 0.79 in this study set, they were both 

Figure 1. Manhattan plot for GWAS 
Analysis 4 (Cases: PCAG cases; 
Controls: PLA cases) in the Euro-
pean BH. The horizontal red line 
denotes the threshold for genome-
wide statistical association.

http://www.molvis.org/molvis/v25/93
http://varelect.genecards.org
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used as tag SNPs to ensure coverage. From these analyses, 
the following chromosomal loci were defined for subsequent 
investigation: CanFam3.1 chr24:17,381,226–18,739,902 and 
chr37:24,747,131–24,958,250.

Identification of candidate genes from RNA-Seq: Whole 
transcriptome data derived from ICA tissues were used to 
compare differential gene expression between BH PCAG 
cases (n=5) and non-BH controls (n=4) in the extended loci 

determined from GWAS and LD analysis (Table 4). In the 
chromosome 24 locus, differential gene expression was 
present for five genes or loci: SIGLEC1 (Gene ID 6614, 
OMIM 600751), C24H20orf194, SLC4A11 (Gene ID 83959, 
OMIM 610206), PROSAPIP1 (Gene ID 9762, OMIM 610484), 
and OXT (Gene ID 5020, OMIM 167050). In the chromosome 
37 locus, differential expression was present for three genes: 
CXCR2 (Gene ID 3579, OMIM 146928), CXCR1 (Gene ID 

Figure 2. Manhattan plot for GWAS 
Analysis 5 (Cases: PCAG cases; 
Controls: PLA cases and control 
dogs) in the European BH. The 
horizontal red line denotes the 
threshold for genome-wide statis-
tical association.

Figure 3. Manhattan plot for GWAS 
analysis 5 (Cases: PCAG cases; 
Controls: PLA cases and control 
dogs) in the European BH using 
BICF2P544799 as a covariate. The 
horizontal red line denotes the 
threshold for genome-wide statis-
tical association.

http://www.molvis.org/molvis/v25/93
https://www.ncbi.nlm.nih.gov/omim/?term=600751
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3577, OMIM 146929) and ARPC2 (Gene ID 10109, OMIM 
604224). A survey of the functions and associated phenotypes 
of these genes revealed no evidence of reported association 
with glaucoma. All genes, however, appear to be involved in 
inflammation or immunity (Table 5).

DISCUSSION

Canine PCAG is considered complex, likely involving 
multiple genetic and environmental factors [40]. GWASs have 
been used extensively in the human field over the last two 
decades to improve the understanding of the genetic basis of 
many complex traits by revealing associated susceptibility 
loci and have provided invaluable insights into the allelic 
architecture of many multifactorial traits [41]. In humans, 
GWASs of thousands of individuals are usually required to 
find significant associations with complex diseases [42,43]. 
More recently, findings from human GWASs of complex 
disease have supported the original hypothesis that their 
genetic architecture is mainly comprised of common vari-
ants with modest or intermediate effect, as well as a smaller 
subset of high-penetrant (familial) low-frequency variants 
of high effect [44]. In the dog, however, many fewer canine 
samples are required to detect a statistically significant 
association compared to human studies, owing to the more 
limited genomic architecture and haplotype structure of 
domestic dog breeds [22,23,45-47]. In the present GWAS, a 
locus on canine chromosome 24 was found to be associated 
with PCAG relative to PLA in Analysis 4 using a total of 
only 81 dogs (24 PCAG cases and 57 PLA cases), and the 
level of statistical association was further increased when the 
controls were combined with the PLA cases in Analysis 5 (a 
total of 118 dogs). An additional locus was found on canine 
chromosome 37 following conditional analysis. Owing to our 
employment of correction for population stratification and the 
stringent threshold for a statistically significant association, 
it is unlikely that these are false positive associations [48]; 

in addition, the strength of the associations was augmented 
by the addition of the American BH PCAG cases. This 
was particularly marked for BICF2G630505097 which was 
also the most strongly associated SNP in GWAS Analysis 
4 (Cases: PCAG cases; Controls: PLA cases). This SNP 
is located in an intergenic region (chr24:17,381,226) with 
RNF24 (Gene ID 11237, OMIM 612489; chr24:17,423,245–
17,454,478) and PANK2 (Gene ID 80025, OMIM 606157; 
chr24:17,463,603–17,489,677) the nearest upstream genes. 
These genes may prove to be candidate genes for PCAG as a 
previous study of a glaucoma-related trait in humans, optic 
nerve head morphology, revealed a statistically significant 
linkage signal at the RNF24/PANK2 locus [49].

The present GWAS results did not corroborate those of 
previous studies in the BH. A GWAS of PCAG in American 
BHs reported two regions were associated with PCAG 
[22]. These susceptibility loci were situated on canine 
chromosomes 14 and 24 (chr14:19,911,001–20,161,358 and 
chr24:43,091,222–43,595,979) and contained the collagen 
gene COL1A2 and oncogene RAB22A, respectively. The 
inability to reproduce these findings in the present GWAS 
might be related to population differences in the frequency 
of the risk loci between European BHs and American BHs. 
Another study in American BHs by the same investigators 
used linkage analysis followed by exome-sequencing analysis 
to identify an SNP in NEB to segregate with PCAG [21]. The 
present study, however, did not find any association between 
this variant and PCAG, and the multibreed genotyping 
suggested that this variant is a common polymorphism. 
As the resequencing study that identified this NEB variant 
captured only the exome, it is possible that the variant is 
tagging a true functional variant underlying the linkage 
study results [21]. However, although a recessive mode of 
inheritance was assumed, the logarithm (base 10) of odds 
(LOD) score was considerably lower than those achieved for 
other recessive diseases that have been mapped in a similar 

Table 3. Association of GWAS top SNPs with PCAG in the BH (Analysis 5 (see Table 2)

Top SNP from 
GWAS

USA PCAG 
cases 

included?

No. 
PCAG 
cases

No. PLA 
cases and 
controls

OR
Lower 
95% 
CI

Upper 
95% 
CI

P-value

chr24:17381226 
BICF2G630505097

No 24 94 13.73 5.06 37.26 4.2×10−11

Yes 59 94 18.84 7.97 44.51 1.6×10−21

chr24:18739902 
BICF2P544799

No 24 94 28.35 8.50 94.58 1.6×10−11

Yes 59 94 15.81 6.03 41.45 1.4×10−12

chr37: 24,747,131 
BICF2P928441

No 24 94 18.03 4.44 73.28 1.1×10−6

Yes 59 94 14.76 4.19 51.96 3.6×10−8

No.=number, OR=odds ratio, CI=confidence interval

http://www.molvis.org/molvis/v25/93
https://www.ncbi.nlm.nih.gov/omim/?term=1146929
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way [21,50-52]. Therefore, it is possible that this result was 
a chance finding; the magnitude of associations identified 
in the present GWAS, which used stringent correction for 
multiple testing and a set of American BHs that validated 
the results, does not support PCAG in the BH to be a reces-
sive disease from the sample set we analyzed; PCAG is more 
likely to be of complex etiology.

It was interesting that a statistically significant associa-
tion of SNPs with PCAG was found in Analysis 4 (Cases: 
PCAG cases; Controls: PLA cases) and not in Analysis 2 
(Cases: PCAG and PLA cases; Controls: control dogs). PLA 
is considered a consistent risk factor for, and therefore, likely 
to be on the causal pathway to, canine PCAG [5,9,15,53]. 
Thus, we considered it probable that there are shared genetic 
factors between PCAG and PLA cases, and a statistically 
significant association with disease (PCAG or PLA or both) 

would more likely be discovered when PCAG is analyzed 
combined with PLA cases against controls owing to the 
greater number of cases, and thus, power, of such analysis. 
Instead, these studies revealed two loci that are statistically 
significantly more common in PCAG cases than in PLA cases 
and controls. This is not a completely unexpected finding, 
however, as although PLA is a risk factor for PCAG, only 
a minority of dogs with PLA develop PCAG. This study 
supports the theory that PLA is required for but is not suffi-
cient for PCAG. Thus, it is likely that the two chromosomal 
loci identified are involved in the trigger of the progression 
from PLA to PCAG. This finding will influence our ongoing 
investigations of the allelic architecture of PCAG in the BH. 
Future investigations to identify causal variants for PCAG in 
these loci will likely utilize a next-generation whole genome 
sequencing (WGS) approach using multiple PCAG and PLA 

Table 5. Details of differentially expressed genes, their functions and associ-
ated disorders and phenotypes (assessed using VarElect GeneCards®)

Gene Gene full name Function Associated disorders/
phenotypes

SIGLEC1 Sialoadhesin Endocytic receptor medi-
ating clathrin dependent 
endocytosis

Glomerulonephritis 
Sclerosis 
X-linked intellectual disability

C20orf194 Chromosome 20 open reading frame 194 May act as an effector for 
ARL3

HIV-1 
Hepatitis

SLC4A11 Solute Carrier Family 4 Member 11

Transporter which plays an 
important role in sodium-
mediated fluid transport in 
different organs.

Corneal dystrophy 
HIV-1 
Hepatitis

PROSAPIP1 Proline Rich Synapse Associated Protein 
Interacting Protein 1

May be involved in 
promoting the maturation of 
dendritic spines

Hepatitis

OXT Oxytocin
Contraction of smooth 
muscle of uterus and 
mammary gland

Persistent genital arousal 
Endometritis 
Inhibited male orgasm 
Epignathus 
Chorioamnionitis 
Parturition 
Lactation

CXCR1 Chemokine (CXC) Receptor 1 Neutrophil activation, 
neutrophil count

HIV-1 
Pyelonephritis & urinary tract 
infections 
Idiopathic anterior uveitis

CXCR2 Chemokine (CXC) Receptor 2 Neutrophil activation, 
neutrophil count

Congenital neutropaenia 
Neutrophil migration 
Pyelonephritis 
Septicaemia 
Granulocytic anaplasmosis

ARPC2 Actin Related Protein 2/3 Complex Subunit 2
Actin filament assembly. 
Platelet, reticuloycte and 
neutrophil count

Platelet, reticuloycte and neutro-
phil count

http://www.molvis.org/molvis/v25/93
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cases and subsequent genotyping of segregating variants 
in extended case-control sets. For complex disease, such as 
canine PCAG, a relatively large sample set is likely to be 
needed. Furthermore, the efficiency of a WGS approach will 
likely be improved by selecting dogs based on a homozygous 
genotype for the most strongly associated GWAS SNPs.

The main challenge of GWASs in investigating complex 
disease is to pinpoint possible causal variants underlying 
association signals as the majority of GWAS hits are in non-
coding or intergenic regions because complex disease is often 
caused by disturbance to biologic networks, not by isolated 
genes or proteins [54]. Regulatory SNPs can inf luence 
gene expression through several mechanisms that include 
the three-dimensional organization of the genome, RNA 
splicing, transcription factor binding, DNA methylation, and 
long non-coding RNAs [55,56]. In an attempt to overcome 
these limitations, we used RNA-Seq. We first used the most 
strongly associated SNPs from the present GWASs to define 
chromosomal loci based on their ability to be tagged by 
other nearby SNPs. We then used RNA-Seq to compare gene 
expression between affected and unaffected dogs within these 
loci. Eight genes were found to be differentially expressed, 
and none of these genes are obvious candidates for canine 
PCAG. Instead, most of the genes identified have functions 
related to inflammation and immunity. This finding was not 
completely unexpected as the results of several other studies 
have implicated the role of inflammation and immunity in 
the pathogenesis of canine and human glaucoma [57-62]. 
Thus, the present results appear to corroborate these find-
ings. However, intraocular inflammation may have occurred 
secondary to the onset of PCAG in the cases we used for 
RNA-Seq. Inflammation is a common histological finding 
in eyes affected by primary and secondary glaucoma, and 
there is no published evidence of inflammation being present 
in eyes considered at risk of PCAG (i.e., those with severe 
PLA) [63–65].

There are several study limitations that should be 
discussed. This GWAS included many fewer individuals 
compared to studies of complex disease in humans. In the 
dog, much more modest sample numbers are generally used 
mainly as a result of limitations in sample availability, robust 
phenotypic characterization, and funding. The limitations in 
sample availability in the present study also, unfortunately, 
meant it was not possible to repeat the GWAS with an addi-
tional replication set of samples. There were also limitations 
in the RNA-Seq investigations. The lack of ocular tissue from 
BHs with normal eyes meant that tissues from other breeds 
had to be used that represent sub-optimal control samples. 
Furthermore, the sequencing of RNA from multiple cell types 

that make up the ICA and neighboring structures could have 
led to a misleading pattern of differential gene expression 
than is actually occurring in the specific region of the ICA 
that is directly implicated in the pathogenesis of PCAG.

In conclusion, we successfully used GWASs to identify 
two novel loci associated with canine PCAG. Comparison 
of the gene expression profiles implicated genes involved 
in inflammation and immunity as involved in pathogenesis. 
WGS, involving multiple dogs, is likely required to elucidate 
candidate causal variants for canine PCAG that underlie the 
present GWAS findings.
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