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The long-term pathological effects of chronic epilepsy on normal brain ageing are unknown. Previous clinical and epidemio-

logical studies show progressive cognitive decline in subsets of patients and an increased prevalence of Alzheimer’s disease in

epilepsy. In a post-mortem series of 138 patients with long-term, mainly drug-resistant epilepsy, we carried out Braak staging

for Alzheimer’s disease neurofibrillary pathology using tau protein immunohistochemistry. The stages were compared with

clinicopathological factors, including seizure history and presence of old traumatic brain injury. Overall, 31% of cases were

Braak Stage 0, 36% Stage I/II, 31% Stage III/IV and 2% Stage V/VI. The mean age at death was 56.5 years and correlated with

Braak stage (P5 0.001). Analysis of Braak stages within age groups showed a significant increase in mid-Braak stages (III/IV),

in middle age (40–65 years) compared with data from an ageing non-epilepsy series (P5 0.01). There was no clear relationship

between seizure type (generalized or complex partial), seizure frequency, age of onset and duration of epilepsy with Braak stage

although higher Braak stages were noted with focal more than with generalized epilepsy syndromes (P5 0.01). In 30% of

patients, there was pathological evidence of traumatic brain injury that was significantly associated with higher Braak stages

(P5 0.001). Cerebrovascular disease present in 40.3% and cortical malformations in 11.3% were not significantly associated

with Braak stage. Astrocytic-tau protein correlated with the presence of both traumatic brain injury (P50.01) and high Braak

stage (P5 0.001). Hippocampal sclerosis, identified in 40% (bilateral in 48%), was not associated with higher Braak stages, but

asymmetrical patterns of tau protein accumulation within the sclerotic hippocampus were noted. In over half of patients with

cognitive decline, the Braak stage was low indicating causes other than Alzheimer’s disease pathology. In summary, there is
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evidence of accelerated brain ageing in severe chronic epilepsy although progression to high Braak stages was infrequent.

Traumatic brain injury, but not seizures, was associated with tau protein accumulation in this series. It is likely that Alzheimer’s

disease pathology is not the sole explanation for cognitive decline associated with epilepsy.

Keywords: Braak stage; epilepsy; head trauma; hippocampal sclerosis

Abbreviations: AT8 = anti-phosphorylated tau antibody; GFAP = glial fibrillary acidic protein

Introduction
Epilepsy is a common disorder that can be complicated by neuro-

behavioural co-morbidities including cognitive impairment

(Hermann et al., 2008a). Around a third of patients have recurring

seizures are not controlled by conventional medical (French, 2007;

Kwan et al., 2010) or even appropriate surgical treatments

(McIntosh et al., 2001; Spencer and Huh, 2008; Thom et al.,

2010b). The long-term effect of chronic epilepsy on the adult

and ageing brain is an important but neglected area (Hermann

and Seidenberg, 2007; Hermann et al., 2008b). There is evidence

that early onset of epilepsy may result in impairment of intellectual

ability and specific cognitive functions, including memory

(Hermann and Seidenberg, 2007; Helmstaedter and Elger, 2009).

Progressive cognitive deterioration over time has also been shown,

particularly in people with temporal lobe epilepsy (Oyegbile et al.,

2004; Hermann et al., 2006, 2008a; Marques et al., 2007).

Epidemiological studies of co-morbidities have demonstrated an

increased prevalence of dementia and Alzheimer’s disease with

chronic epilepsy (Gaitatzis et al., 2004a; Tellez-Zenteno et al.,

2005; Hermann et al., 2008a) and an increased relative risk for

dementia in epilepsy compared with the general population

(Breteler et al., 1995). Furthermore, patients with chronic epilepsy

are more exposed to lifestyle and risk factors that promote cere-

brovascular disease, vascular dementia and Alzheimer’s disease

(Hermann et al., 2008b).

In addition, neuroimaging data show widespread cortical

changes in chronic epilepsy, including grey matter volume reduc-

tion and cortical thinning, particularly studied in association with

temporal lobe epilepsy (Cormack et al., 2005; Lin et al., 2007;

McDonald et al., 2008; Riederer et al., 2008; Bernhardt et al.,

2009; Keller et al., 2009). These abnormalities may progress over

time (Bernhardt, 2009) and an association of these changes with

cognitive impairment has been shown (Baxendale et al., 1998;

Hermann et al., 2006; Keller et al., 2009). Despite these conver-

ging epidemiological, psychometric and neuroimaging data, there

is no neuropathological study exploring brain ageing in chronic

epilepsy, in particular the cellular mechanisms that underpin any

age-accelerated cerebral atrophy.

Existing pathological evidence of neurodegenerative processes in

epilepsy is available from studies of young adult patients who have

undergone surgical treatment. Excessive deposition of amyloid-b
protein was reported in patients with epilepsy aged 36–61 years

compared with controls (Mackenzie and Miller, 1994;

Gouras et al., 1997). Neurofibrillary tangle formation was noted

in a lobectomy specimen resected at the age of 27 years from a

patient with epilepsy and history of head injuries, in the absence

of amyloid-b deposition (Geddes et al., 1999). In epilepsy-

associated pathologies, age-related neurofibrillary tangle formation

has been reported in focal cortical dysplasia (Sen et al., 2007a,

2008) and deregulation of the cdk5 pathway shown in hippocam-

pal sclerosis (Sen et al., 2006, 2007b). These observations could

indicate a vulnerability to abnormal tau phosphorylation in focal

epilepsy.

The aim of this study was to review a post-mortem epilepsy ser-

ies to explore the effects of decades of seizures on brain ageing, in

particular for Alzheimer’s disease neurofibrillary pathology, and to

identify any clinicopathological risk factors.

Materials and methods

Case selection
Post-mortem cases (n = 138) were included from the archives in the

Department of Neuropathology, National Hospital for Neurology and

Neurosurgery, London, collected over the period 1988–2009. We

included all cases where there was a documented history of chronic,

partially-responsive or drug-refractory epilepsy where tissue blocks

were available. Epilepsy was the primary neurological diagnosis in

this cohort and patients where seizures had developed during the

course of a neurodegenerative illness, such as Alzheimer’s disease,

were not included. The majority (103 cases) had been residents at

the National Society for Epilepsy (NSE) at the Chalfont Centre, with

detailed medical records of their epilepsy through their lifetime.

Furthermore, 49 of the 138 cases (35.5%) were classified as sudden

unexplained death in epilepsy with known drug-resistant epilepsy.

As such, this cohort represents patients with severe epilepsy. All

post-mortem tissue had been retained for use in research with next

of kin consent and in keeping with the code of the Human Tissue

Authority (2006). The Joint Research Ethics Committee of the

Institute of Neurology and National Hospital for Neurology and

Neurosurgery approved this study.

Clinical data
The epilepsy history was reviewed in each case and the epilepsy syn-

drome (based on seizure semiology, electroencephalographic, neuroi-

maging and in some, genetic data) was recorded (Commission on

Classification and Terminology of the International League Against

Epilepsy, 1989; Engel, 2006). The duration of epilepsy (age of onset

of habitual seizures to most recent recorded seizure), type and fre-

quency of seizures were noted. Any significant head injuries were

noted (both clinically documented episodes or based on evidence

derived from MRI) and whether head injury pre-dated or followed
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onset of epilepsy. Documented learning disability earlier in life or pro-

gressive cognitive decline over time during adulthood, were recorded.

Evidence for progressive cognitive decline was obtained from repeat

neuropsychological assessments and—where available—cognitive

status examinations, most usually the Mini-Mental State

Examination. All patients identified had spent at least their latter

years in a residential setting and for most there was sufficient docu-

mentation from life planning reviews to derive information about their

care needs and cognitive status. Using this information, the Clinical

Dementia Rating Scale was applied by an experienced neuropsycholo-

gist (P.T.) with ratings made in six domains (memory, orientation,

judgement and problem solving, community affairs, home and hobbies

and personal care) from mild to severe dementia (Morris, 1993). A low

rating was made only if they were limited in performing activities due

to mental decline and not just due to physical frailty.

Braak staging
Formalin-fixed, paraffin-embedded archival tissue blocks of all cases,

including both the right and left mesial temporal lobe and hippocam-

pus, were identified. The hippocampal blocks were selected from the

level of the lateral geniculate nucleus or red nucleus. Following assess-

ment of the temporal lobe block in each case, sections from prefrontal

cortex, temporal neocortex (superior and middle temporal gyrus) bi-

laterally and occipital (calcarine/striate) cortex unilaterally were also

included in cases noted to reach Braak stage III in the mesial temporal

lobe section. Immunohistochemistry for phosphorylated tau protein

using monoclonal antibody AT8 was carried out on 8 mm formalin

sections (1:1200, Innogenetics, Autogen Bioclear). Positive (cases

with Alzheimer’s disease) and negative controls were used in each

staining run.

Following analysis of the AT8 staining, Gallyas silver staining from

temporal and occipital sections was carried out on selected cases from

each Braak stage to confirm reliability of AT8 immunostaining and

staging (data not shown). Immunohistochemistry for amyloid-bA4

peptide (1:100, Dako) was also carried on either the left or right tem-

poral lobe block from each case and in both sides with unilateral

hippocampal sclerosis. In addition, in four selected cases, double im-

munofluorescence labelling for AT8 and glial fibrillary acidic protein

(GFAP) on 8-mm sections (AT8 diluted 1:1200 and polyclonal GFAP

1:500, Dako) was carried out, detected with anti-Rabbit Alexa Fluor

594 and Fluorescein with Tyramide Signal Amplification (PerkinElmer

Life and Analytical Sciences), counterstained with DAPI (4’,6-diamidi-

no-2-phenylindole dihydrochloride, Vector Labs). Sections were

viewed with a Leica SP2 laser confocal microscope.

Braak staging was carried out according to the published standards

((Braak et al., 2006) (Supplementary Table 1 and Fig. 1). Staging was

carried out by three assessors independently (M.T, M.N., R.P.), in ac-

cordance with recent guidelines (Alafuzoff et al., 2008). In all cases,

there was agreement between two of three assessors for Braak stage

and in 50% there was agreement by three assessors (97% of these

disagreements were by one stage only and 75% of these for Stages

0–III). Amyloid-b immunohistochemistry was assessed semi-

quantitatively as absent, moderately frequent or frequent amyloid pla-

ques (Supplementary Fig. 1). In cases with low Braak stage where

clinical cognitive decline was confirmed, addition immunohistochemis-

try for alpha-synuclein (Leica/Novocastra, clone KM5, dilution 1:50,

formic acid pretreatment), ubiquitin (Dako; dilution 1:1200) and

TDP-43 (Abnova, clone 2E2-D3, dilution 1:30 000) was carried out

on a selected hippocampal block.

Other pathology features
The presence of hippocampal sclerosis was evaluated including the

pattern of sclerosis (classical, atypical) and whether bilateral or unilat-

eral. In asymmetrical bilateral cases with hippocampal sclerosis, if

a classical pattern was present on one side this was recorded as a

classical hippocampal sclerosis diagnosis. The qualitative assessment

of hippocampal sclerosis at post-mortem has been previously validated

in a stereological study (Thom et al., 2005). Dynorphin immuno-

histochemistry for confirmation of epilepsy-specific mossy fibre sprout-

ing was carried out in cases with hippocampal sclerosis (Thom et al.,

2009). Pathological evidence of old traumatic brain injury, for ex-

ample old cortical contusions or subdural haematoma, was recorded

based on macroscopic and histological sections. The presence of

cerebrovascular disease (degenerative small vessel white matter

disease, regional cortical infarction, spontaneous cerebral haemor-

rhage or lacuna infarcts) was noted. The presence of atheroma in

the main cerebral vessels alone was not regarded as cerebrovascular

disease.

Analysis
Statistical analysis of associations between Braak stage, clinical and

pathological features was carried out using SPSS (version 16) using

Pearson’s correlation, ANOVA, paired t-tests and multifactor linear

regression analysis; P5 0.01 were considered statistically significant.

Results

Braak staging in epilepsy cohort
Thirty-one per cent of cases were Braak Stage 0 (virtually no AT8

labelling), 15% Stage I, 21% Stage II, 13% Stage III, 18% Stage

IV and 2% Stage V; no Braak stage VI cases were identified.

Overall 63% of cases were male, but there was no significant

influence of sex on Braak stage. The mean age at death was

56.5 years (range 15–96). There was a significant positive cor-

relation between Braak stage and age at death (P50.0001)

(Table 1). Comparing the age distribution in our series with a

previous published large post-mortem series of 2661 cases of a

general autopsy practice (Braak and Braak, 1997), a relative

over-representation of young to middle age adults was noted

(age range 30–50) (Fig. 1A). This likely reflects higher age-

corrected mortality rates in patients with severe epilepsy, for ex-

ample from premature unexpected deaths (Gaitatzis et al.,

2004b). When age-related Braak scores in the epilepsy series

were compared with this control ageing population (Braak and

Braak, 1997), the frequency of lower Braak stages in the youngest

adults was similar. For example in the 30–35 years of age group,

79% in the epilepsy series compared with 83% of cases in

the normal ageing series were Braak Stage 0 (Fig. 1B and C).

However in the middle-aged group (40–65 years), increased

representation of low (I/II) and mid (III/IV) Braak stages were

apparent in the epilepsy series with significant increases noted

for Braak Stages (III/IV) (P5 0.01). For example, 1.8% of patients

aged 50–60 years were Braak Stage III/IV in the normal ageing

series compared with 37.5% in the epilepsy series (Fig. 1B and C).
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Braak staging in relation to seizure
history, epilepsy syndrome and
cognitive decline
Generalized seizures (whether primary or secondary generalized)

were reported as occurring in 96.7% patients and complex partial

seizures in 77.8%; there was no association between these seizure

types and Braak stages (Table 1). Other seizures, including myo-

clonic (10.4%), simple partial seizures (20%) and status epilepticus

(31%) were less frequently recorded overall and not statistically

analysed between Braak groups.

The mean age of onset of epilepsy in this series was 10.2 years

(range 3 months to 78 years) and was not significantly different

between Braak stages (Table 1). The mean duration of epilepsy

was 42.3 years (range 1–86 years). Longer duration of epilepsy

was significantly associated with higher Braak stage (P5 0.001).

However, using multiple linear regression analysis, duration of epi-

lepsy was not associated with Braak stage when the age of patient

was considered (P = 0.52). Seizure events (total number of seiz-

ures or frequency) are a further measure of lifetime seizure burden.

Data regarding maximum seizure frequency was available in

60 patients with maximum recorded generalized seizure frequency

of 200/month (mean 8.12/month). In addition, accurate estimates

of the total number of generalized seizures were recorded in

18 patients with a mean of 488 (range 3–2600). There was, how-

ever, no correlation between seizure frequency or number and

Braak stage. Sudden unexplained deaths in epilepsy were signifi-

cantly more frequent in lower Braak stages (P5 0.001); however,

sudden unexplained death in epilepsy was significantly associated

with younger age at death (mean age at death 40 years; range

15–79 years).

An epilepsy syndrome diagnosis was possible in over half

of cases, either during the patients’ lifetime or retrospectively

confirmed following review of the clinical notes and investiga-

tions, including genetic studies in some cases (Table 2).

There was a significant difference in the Braak stages between

epilepsy syndrome diagnoses, with partial epilepsies

(including temporal lobe epilepsy) more often associated with

higher Braak stages than genetic or idiopathic generalized

epilepsies.

In 69 patients, there were records of psychometric tests carried

out in adult life and cognitive decline was confirmed in 45 (65%)

with severe dementia in 29, moderate dementia in 14 and mild

dementia in two (Table 1). In 11/69 patients, learning disability

was noted on the first evaluation, in addition to progressive cog-

nitive decline. Over the entire series, there was no association

between diagnosis of learning disability and Braak stage

(P = 0.19) (Table 1). Seventy-seven per cent of patients with

Braak score of 3 or more showed progressive cognitive decline.

Of note, 24 patients with cognitive decline had low Braak scores

(0–II); these included four cases with traumatic brain injury, nine

with cerebrovascular disease, three with Dravet syndrome, one

with progressive myoclonic epilepsy, five with bilateral hippocam-

pal sclerosis and one patient with hippocampal Lewy bodies on

alpha-synuclein staining.T
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Braak staging in relation to trauma,
cerebrovascular disease and
malformations of cortical development
The presence of old traumatic brain injury, most frequently fron-

totemporal contusions, was identified in 30% of patients on

macroscopic and histological examination of the brain (Table 3).

There was a correlation between pathological evidence of

traumatic brain injury and clinical documentation of head injury,

which was recorded in 44% of patients in this series (P50.01;

Pearson’s correlation). Of note, only three patients in this series

were categorized as having post-traumatic epilepsy (Table 2). In

the majority of patients, head injury was incurred as result of falls

and accidents following onset of seizures. There was a significant

correlation between the pathological identification of traumatic

brain injury and higher Braak stage (P50.01) (Fig. 2). The pres-

ence of cerebrovascular disease was also significantly associated

Age distribution in epilepsy series compared to a non-epilepsy series

Consecutive PMs (Braak 1997)
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e 
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Figure 1 (A) Distribution of age at death in current epilepsy series: 138 cases compared with 2661 consecutive adult post-mortems (PMs)

in a series published by Braak and Braak (1997) highlighting a greater representation of younger adult deaths in epilepsy series. (B) Braak

stages in age categories from 0 to 80 years at 5-year intervals taken from the same series of Braak and Braak (1997) demonstrating

progressive increase in higher Braak stages with normal ageing. (C) Comparative age categories in current epilepsy series with evidence for

increased representation of mid-Braak stages in middle-aged adults (35–65 age range). Paired t-tests between normal ageing and epilepsy

series confirmed significant differences for Braak stage III/IV (P = 0.001) compared with other stages; 0 (P = 0.014), I/II (P = 0.062) and

V/VI (P = 0.63).
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with higher Braak stages (P5 0.001). There was a significant as-

sociation between the post-mortem diagnosis of cerebrovascular

disease and older age at death (P5 0.01), but not between trau-

matic brain injury and age of death (P = 0.56). Furthermore, using

multiple linear regression analysis to factor for the patients’ age at

death, traumatic brain injury remained significantly associated with

Braak stage (P50.0001), whereas the effect of cerebrovascular

disease became less significant (P = 0.068). Cortical malformation

was identified in 11% of cases, including focal cortical dysplasia

type IIB, tuberous sclerosis, polymicrogyria, and subependymal

nodular or lamina heterotopia. Neurofibrillary tangles were occa-

sionally observed in neurons within the malformations in some

cases, particularly focal cortical dysplasia, as previously reported

(Sen et al., 2007a), but diagnosis of malformations of cortical

development was not associated with higher overall Braak stage

(Table 3).

Braak staging and hippocampal
sclerosis
Hippocampal sclerosis was identified in 40% of the cases with a

classical pattern (neuronal loss in CA4 and CA1) in 28.9% and

an atypical pattern (neuronal loss restricted to either CA1 or the

CA4 region) in 11.1%. In 19.3% of patients (48% of cases with

hippocampal sclerosis), hippocampal damage was bilateral. The

validity of qualitative assessment of hippocampal sclerosis in

post-mortem tissues has been previously verified in a stereological

study (Thom et al., 2005). Dynorphin immunohistochemistry also

confirmed epilepsy-specific patterns of mossy fibre sprouting in

association with hippocampal sclerosis, as previously reported

(Houser et al., 1990; Thom et al., 2005). There was no correlation

overall between the presence, pattern or bilaterality of hippocam-

pal sclerosis and Braak stage in this series (Table 3). Bilateral cases

with hippocampal sclerosis did not demonstrate TDP-43 positive

inclusions in contrast to previous reports of hippocampal sclerosis

associated with Alzheimer’s disease and dementia (Amador-Ortiz

et al., 2007) but in keeping with previous studies of TDP-43 in

hippocampal sclerosis associated with epilepsy (Lee et al., 2008).

Seven cases had Braak Stage III or more and unilateral clas-

sical hippocampal sclerosis; in six a marked asymmetry of AT8

accumulation within the hippocampal subfields was observed

(Figs 3 and 4). On the sclerotic side, significant diminution of

AT8 immunoreactivity was noted in CA1 region compared with

the non-sclerotic side (Figs 3A–B and 4). However, progressive

accumulation of AT8 in the subiculum, molecular layer of the den-

tate gyrus, CA2 and lastly CA3/4 with advancing Braak stages on

the sclerotic side, paralleled corresponding subfield accumulation

on the non-sclerotic side, although a reduced load (Figs 3F–J

and 4). Furthermore, AT8 accumulation in hippocampal projection

cortex (frontal, temporal poles and deep entorhinal cortex layers)

appeared symmetrical between hemispheres in these unilateral

classical cases with hippocampal sclerosis (Fig. 3E and G).

Tau protein in astrocytic cells and
distribution in temporal neocortex
Variable gliosis was noted in the neocortex in all cases with epi-

lepsy, particularly in the subpial region (Chaslins’ gliosis) and layer

I. AT8-positive astrocytes (as confirmed with double labelling

for GFAP in selected cases) were noted in 35% of all cases,

located in layer I (in 52%) and/or periventricular region (in

68%) (Fig. 5A–C). They were present in all age categories, the

youngest 15 years, but overall AT8-positive astrocytes correlated

significantly with advancing age of patient (P50.001) as well as

Braak stage (P50.001). Their morphology included the typical

thorn-shaped astrocytes as previously reported in ageing and

Alzheimer’s disease (Schultz et al., 2004). The presence of AT8-

positive astrocytes was significantly associated with the presence

of traumatic brain injury (P5 0.01) with 53.7% of patients with

traumatic brain injury having AT8-positive astrocytes compared

with 27% with no evidence of traumatic brain injury. In addition,

preferential distribution of tau in cortical sulci was noted in 5.8%,

around cortical penetrating vessels in 6.5% (Fig. 5D and E) and

the white matter in 8% of cases.

Amyloid-b positive plaques
There was an absence of amyloid-b positive plaques in 66% of

epilepsy cases with occasional, moderate and frequent plaques

noted in 14%, 12% and 8% of cases, respectively. The pres-

ence and frequency of amyloid-b immunostaining was associated

with higher Braak stages (P50.0001) but not with pathological

Table 2 Epilepsy syndrome and Braak staging in 138 cases

Epilepsy syndrome
classification
and aetiology

Syndrome Number
of cases
(of 138)

Braak stages (% cases)

0 I II III IV V

Partial/focal/structural Partial epilepsy 66 17.7 12.9 29 16.1 24.2 0
Temporal lobe epilepsy 16 43.8 0 37.5 0 6.2 12.5

Post-traumatic epilepsya 3 33.3 0 0 33.3 33.3 0

Genetic/idiopathic Idiopathic generalized 7 28.6 42.9 0 14.3 14.3 0
Dravet syndrome 3 33 67 0 0 0 0

Progressive myoclonic epilepsy 1 0 100 0 0 0 0

Unknown Syndrome classification not possible 46 43.5 17.4 10.9 10.9 15.2 2.2

a Post-traumatic epilepsy has been included as a separate category for the purposes of this study. There was a significant difference between Braak staging and epilepsy
syndrome (ANOVA) (P5 0.01).
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evidence of traumatic brain injury (P = 0.99). Beta-amyloid

immunostaining in unilateral cases with hippocampal sclerosis

with high Braak stages showed asymmetrical patterns in some

cases, but this was not as consistent a finding as for AT8

immunohistochemistry.

Discussion
The pathological effects of decades of seizures on the brain have

been little explored. In this post-mortem series of patients with

mainly long histories of drug-resistant epilepsy, we have confirmed

age-accelerated tau-protein accumulation. The extent of tau-

pathology correlated with clinical cognitive decline although few

cases with higher Braak Stages (V/VI), associated with high likeli-

hood of dementia (Braak and Braak, 1997; Duyckaerts et al.,

1997; Iqbal and Grundke-Iqbal, 2008) and based on National

Institute of Ageing-Reagen Institute (NIA-RI) criteria (1997),

were identified in our series. The lack of Braak Stage VI cases in

our post-mortem series could reflect the younger age range and

higher standard mortality rates in chronic epilepsy (Gaitatzis et al.,

2004b), with premature death occurring before any progression to

higher Braak stages.

Alzheimer’s disease is a multifactorial and heterogenous condi-

tion (Iqbal et al., 2010) and known risk factors for sporadic

Alzheimer’s disease include age, genetic factors including ApoE

"4 genotype, and head trauma. The influence of seizures on

Alzheimer’s disease pathology is unknown. Alzheimer’s disease

pathology in young adults has been reported in epilepsy surgical

tissues (Mackenzie and Miller, 1994; Gouras et al., 1997; Geddes

et al., 1999; Sen et al., 2007a) and dysregulation of cdk5 and its

activators, known to regulate tau-phosphorylation (Iqbal and

Grundke-Iqbal, 2008), has been shown in hippocampal sclerosis

in epilepsy (Sen et al., 2006, 2007b). This raises the possibility that

seizures, or their cellular effects, might influence degenerative

neuronal pathways or promote a susceptibility to Alzheimer’s dis-

ease pathology. In this post-mortem series, however, we failed to

show a correlation between the maximum frequency of seizures,

seizure number, type, age of onset or duration of epilepsy and the

extent of neurofibrillary pathology. Although syndrome classifica-

tion was not possible in all cases, partial and symptomatic epilep-

sies were more often associated with higher Braak stages than

idiopathic epilepsies or those with a known genetic cause. This

supports the notion that an underlying structural cortical abnor-

mality, as the cause for epilepsy, is more relevant to promoting

Alzheimer’s disease pathology, but requires further investigation.

Our study supports a relationship between head injury occurring

in patients with epilepsy and progressive neurofibrillary tangle

pathology. Our findings invite comparison to the chronic traumatic

encephalopathy occurring in sports people following repetitive

closed head injuries (Corsellis and Brierley, 1959; Corsellis, 1989;

McKee et al., 2009). Chronic traumatic encephalopathy is char-

acterized by accumulation of tau protein particularly in mesial tem-

poral structures, as recently reviewed (McKee et al., 2009). In

chronic traumatic encephalopathy, a preferential localization of

neurofibrillary tangles in a perivascular location, sulcal depths or

superficial cortex is noted. Astrocytic tangles are prominent inT
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superficial layers, and subpial and periventricular zones, with

amyloid-b deposition being a less constant feature (McKee

et al., 2009). In the current epilepsy series, a history of head

injury was recorded in nearly half of the patients, although de-

tailed information of the number of trauma episodes per patient

was not available. In only three cases was head trauma considered

to be a cause of seizures, injury pre-dating the onset of epilepsy.

Pathological evidence of traumatic brain injury, mainly in the form

of old frontotemporal contusions, was present in 30%. We

demonstrated an association between traumatic brain injury and

Braak stage. Furthermore, 66% of cases were amyloid-b negative

and the presence of amyloid-b did not correlate with traumatic

brain injury. In addition, astrocytic tau deposits were noted in a

third of cases in our series in a periventricular or subpial location

similar to reports in cases with chronic traumatic encephalopathy

(McKee et al., 2009) and their presence was significantly asso-

ciated with traumatic brain injury. Although morphologically simi-

lar to the thorn-shaped astrocytes associated with ageing (460

years) (Schultz et al., 2004), in our epilepsy series tau-positive

astrocytes were noted as early as 15 years of age. Although the

precise relationship between single head injury, cognitive decline

and Alzheimer’s disease is ambiguous (Breteler et al., 1995;

Jellinger, 2004), the findings in the present series all underscore

the observation that head injury, or more probably repetitive head

injury, acquired as a result of drug-resistant epilepsy, is associated

with the development of neurofibrillary tangle pathology. In clin-

ical practice, our findings support recommendations that promote

prevention of risk of head injury due to seizures.

Cerebrovascular disease was noted in 40% of this series.

Epidemiological studies have shown that cerebrovascular disease

is more common in chronic epilepsy than control groups (Gaitatzis

et al., 2004a; Hermann et al., 2008b). Antiepileptic drugs as well

as lifestyle factors in epilepsy patients may have adverse effects on

cerebral vasculature (Hermann et al., 2008b). We demonstrated

an association between cerebrovascular disease and Braak stage,

which became less significant when the patient’s age of death was

considered. In contrast, traumatic brain injury, which was not

significantly associated with patient’s age, remained highly asso-

ciated with Braak stage following multivariate statistical analysis.

The hippocampus is affected early in both Alzheimer’s disease

and chronic traumatic encephalopathy. Alzheimer’s disease is asso-

ciated with an increased incidence of unprovoked seizures (Palop

and Mucke, 2009), which are reported to develop late in the

course of the disease (Mendez et al., 1994). In this series, we

were careful not to include patients in whom a neurodegenerative

illness, in particular Alzheimer’s disease, was the primary diagnosis

with secondary symptomatic seizures. Sclerosis of the hippocam-

pus is one of the most common and well-characterized patholo-

gies identified in both post-mortem (Corsellis, 1957; Margerison

and Corsellis, 1966; Meencke et al., 1996) and surgical series of

patients with epilepsy, particularly temporal lobe epilepsy (Bruton,

1988; Blumcke, 2009). In surgical series, hippocampal sclerosis is

typically observed in young adulthood, in the context of refractory

seizures with sclerosis visible on MRI and confirmed in resected

specimens (Wieser, 2004). The neuronal loss is centred on CA1

with more variable loss in other subfields and is accompanied by

mossy fibre pathway reorganization (Houser et al., 1990).

Hippocampal sclerosis pathology may also arise in the elderly due

to heterogeneous causes including anoxic-ischaemic injury and

varied neurodegenerative conditions and is associated with slowly

progressive amnesia and dementia without seizures (Probst et al.,

2007; Zarow et al., 2008). The prevalence of hippocampal scler-

osis in non-epilepsy elderly post-mortem series is �16% (Dickson

et al., 1994) and is bilateral in 50% of these (Zarow et al., 2008).

The pattern of neuronal loss typically involves both CA1 and the

subiculum.

Our post-mortem series represents patients with varied epilepsy

syndromes and without systematic or serial MRI examination in

the majority so that we cannot confirm the time course for the

development of hippocampal sclerosis. The mean age of onset of

epilepsy was 10.2 years overall (and 7 years in cases with hippo-

campal sclerosis). The pattern of hippocampal neuronal loss was

characterized by sparing of subicular neurons with associated

mossy fibre sprouting in the dentate gyrus, typical of hippocampal

Figure 2 Bar chart representing the frequency of history of head injury, pathological confirmation of traumatic brain injury (TBI) and

cerebrovascular disease (CVD) in different Braak stages. PM = post-mortem.
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sclerosis in epilepsy (Thom et al., 2009). In addition, the paucity of

AT8 labelling in the region of sclerosis including threads, ghost

tangles or astrocytes supports the view that the sclerosis predated

the tau accumulation. All these features are evidence that favours

an epilepsy-associated, rather than Alzheimer’s disease-associated,

pathogenesis of hippocampal sclerosis in our series. We identified

hippocampal sclerosis in 40% overall, bilateral in 48%, which is

comparable to a previous series of 650 post-mortem epilepsy cases

Figure 3 AT8 staining in cases with unilateral hippocampal sclerosis. The figures on the left show staining in the sclerotic hippocampus

(HS) with the paired corresponding non-sclerotic hippocampus on the right. (a and b) Case of overall Braak stage V demonstrating abrupt

transition of staining for AT8 between the subiculum and CA1 with a relative lack of staining in CA1, corresponding to the region of

neuronal loss on the sclerotic side; AT8 positivity in CA2 and the molecular layer of the dentate gyrus is present, albeit reduced, compared

with the non-sclerotic hippocampus. (c and d) Dynorphin stained sections of the corresponding hippocampi shown in a and b highlighting

the normal mossy fibre projection pathway on the non-sclerotic side projecting to neurons in CA4 and CA3 (d). In contrast, mossy fibre

sprouting into the molecular layer (ML), with reduced staining in CA3 and CA4, is observed with dynorphin on the side with sclerosis

(c). Comparison between b and d also highlights that the region corresponding to the mossy fibre trajectory is relatively late for AT8

pathology. (e and g) Temporal pole sections (representing a hippocampal cortical projection region) showing similar AT8 staining between

left and right hemispheres in a case with asymmetrical hippocampal sclerosis (case with Braak stage V). (f and h) CA2 sector (case with

Braak stage IV) showing reduced staining in the side with sclerosis and similarly for CA1 sector (i and k; case with Braak stage III) and the

granule cell layer (GCL) (j and l; case with Braak stage IV). Scale bar: a–d = 1000 mm, e–l = 100 mm. SC = subiculum.
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that documented hippocampal sclerosis in 30.5%, with bilaterality

in 56% (Meencke et al., 1996). Hippocampal sclerosis patterns

reflected those reported in surgical temporal lobe epilepsy series

(Bruton, 1988; Blumcke et al., 2007; Thom et al., 2010a), albeit

with greater representation of atypical patterns as previously

noted (Thom et al., 2009). There was no association between

the presence or pattern of hippocampal sclerosis and the Braak

stage.

Tau accumulation in both Alzheimer’s disease and normal

ageing progresses through the hippocampus in a stereotypical se-

quential and hierarchical fashion (Braak et al., 2006; Duyckaerts

et al., 2009; Frost et al., 2009), which may reflect anterograde

propagation along neuroanatomical pathways (Duyckaerts et al.,

2009; Lace et al., 2009). Six distinct stages of hippocampal in-

volvement have been proposed that correspond with known con-

nections between the hippocampus proper and the entorhinal

cortex (Lace et al., 2009). Tau accumulation commences in

CA1/subicular border, then to the outer followed by inner mo-

lecular layer of the dentate gyrus, next CA1 and CA2 and lastly

CA4/3. In the present series, six patients with unilateral hippocam-

pal sclerosis, reorganization of the mossy fibre pathway as con-

firmed with dynorphin immunohistochemistry (Houser et al.,

1990) and higher Braak scores (III–V) showed asymmetry of

AT8 staining in hippocampal subfields. Reduced AT8 staining on

the sclerotic side was apparent in CA1 with the accumulation in

other subfields paralleling that on the preserved side, albeit

reduced. Known hippocampal projection regions, including the

frontal and temporal polar cortex, appeared symmetrically affected

between hemispheres in these cases. In addition, in the

non-sclerotic hippocampus, direct comparison between AT8 and

dynorphin sections highlighted that neurons in the trajectory of a

normal mossy fibre pathway [a component of the indirect hippo-

campal pathway with major input from the entorhinal cortex

(Duvernoy and Cattin, 2005)], were relatively delayed in tau ac-

cumulation compared with adjacent subfields. These findings could

argue against the ‘pathway propagation’ theory of tau accumula-

tion but favour intrinsic cellular ‘time-switches’ or other mechan-

isms for this selective neuronal vulnerability of neurodegeneration.

There is an intriguing convergence between cellular regulatory

pathways and factors that determine normal cortical development

which, when deregulated, can lead to neuronal degeneration

(Bothwell and Giniger, 2000; Wang and Liu, 2008; Mattsson

et al., 2010). Cdk5 is one such developmental regulatory protein

(Lim and Qi, 2003), also pivotal in tau hyper-phosphorylation

(Iqbal and Grundke-Iqbal, 2008). Cdk5 has been previously

shown to be abnormally expressed in epilepsy-associated develop-

mental pathologies such as focal cortical dysplasia (Sen et al.,

2008). Whether brains harbouring malformations are more vulner-

able to superimposed neurodegenerative processes has been little

explored. We have previously noted premature neurofibrillary

Figure 4 Distribution of AT8 pathology in hippocampal subfilelds (CA4, 3, 2 and 1), dentate gyrus granule cells (GC), internal molecular

layer (IML) and outer molecular layer (OML)] subiculum (SC) and entorhinal cortex (superficial and deep cortex). The AT8 was scored

semiquantitatively as: 0 = no staining, 1 = occasional neuropil threads and tangles, 2 = moderate numbers of neuropil threads and tangles,

3 = extensive deposition of neuropil threads and tangles. The accumulative count for six cases with unilateral hippocampal sclerosis and

overall Braak stage of III–V are compared graphically for the side with sclerosis compared with the contralateral non-sclerotic hippocampi.

There was overall significantly reduced AT8 labelling on the sclerotic side (P = 0.007), the greatest reduction of labelling on the sclerotic

side involving CA1, CA4 and CA3 subfields where greatest neuronal loss is perceived.
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tangle accumulation in the dysmorphic neurons of focal cortical

dysplasia in patients with epilepsy (Sen et al., 2007a). Overall, in

the current series the presence of malformation of cortical devel-

opment was not associated with higher Braak staging. A further

study of susceptibility to neurodegenerative processes within the

regions of cortical malformation is required.

Our study also highlights that in around half of the cases in the

series, cognitive decline was not associated with tau accumulation,

suggesting that other factors may play a role in cognitive decline

associated with epilepsy. Developmental delay is a feature of some

childhood-onset epilepsies although the influence of this on sub-

sequent dementia is uncertain (Helmstaedter and Elger, 2009),

and likely to be both heterogeneous and complex. In our series,

a history of learning disability was not associated with a higher

Braak stage. Furthermore, widespread cortical volume changes

may be detected on MRI (Keller and Roberts, 2008), which may

also relate to cognitive decline (Hermann et al., 2008b). In a

recent small series of patients with epilepsy and hippocampal scler-

osis without neurodegenerative disease, gliosis preferentially

involved frontal, temporal and orbitofrontal cortices, which we

argued also reflected subtle traumatic brain injury (Blanc et al.,

2011). Classifications of epilepsies also recognize the existence

of the concept of ‘epileptic encephalopathy’ where cognitive im-

pairment, which may be progressive, is not explained by the

underlying pathology at the light microscopic level but may be a

manifestation of the seizures (Berg et al., 2010). This is highlighted

in the present series in three patients with Dravet syndrome with

cognitive decline in which we have reported an absence of neuro-

pathological or degenerative changes (Catarino et al., 2011).

This study is limited in that we have, by necessity, studied cases

with more severe epilepsy, which will not represent the broader

epilepsy population. In addition, there are no genetic data avail-

able, in particular ApoE "4 genotype; there is evidence that effects

of head trauma are more severe in patients with this genotype

(Friedman et al., 1999; McKee et al., 2009). Complete clinical

data were not available in a proportion of cases, in particular for

seizure frequency and total number of seizures. Clinical investiga-

tion patterns have varied over the 20-year-period of this brain

collection. In a small number of cases, limited brain sampling at

post-mortem did not allow a categorical exclusion of old trauma or

vascular disease and such cases were not included in the analysis.

For control data, we have used large published post-mortem series

from a normal ageing, non-epilepsy population (Braak and Braak,

1997). This utilized silver methods rather than more sensitive AT8

immunostaining for Alzheimer’s disease staging as currently rec-

ommended (Braak et al., 2006). However, in a selection of cases,

Gallyas silver staining showed a good correlation with AT8. In

addition, as our Braak staging in young adults was very similar

to the Braak (2006) study and we had few Braak V and no

Figure 5 Astroyctic AT8. (a) Periventricular region with AT8

positive astrocytes in the subependymal region with corres-

ponding region on GFAP-delta stained section from the same

case shown in inset with similar distribution of morphologically

similar cells. (b) AT8 staining showing astrocytic cells in cortical

layer I and subpial region. (c) Confocal showing co-localization

between GFAP-positive astrocyte and AT8 in the periventricular

region. (d) In a few cases, sulcal accumulation of tau was ap-

parent in the neocortex and (e) perivascular tau distribution in

the temporal neocortex. Scale bars: a, d, e = 50mm, b = 100 mm,

c = 10mm.
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Braak VI stages overall, we consider that Braak staging has not

been overestimated in the current study.

In conclusion, this study supports the occurrence of accelerated

brain ageing in chronic epilepsy although progression to high

Braak stages was infrequent, possibly because of higher rates of

premature mortality. Traumatic brain injury, rather than seizures

themselves, is identified as an associated factor for AT8 accumu-

lation in this series, suggesting that it is important to protect the

head in drug-resistant epilepsy causing falls. It is likely that

Alzheimer’s disease pathology is not the sole explanation for cog-

nitive decline associated with epilepsy, the cause of which requires

further investigation.
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