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The optimization problem of drug release based on the multilaminated drug-controlled release devices has been solved in this paper
under the inverse problem solution scheme. From the viewpoint of inverse problem, the solution of optimization problem can be
regarded as the solution problem of a Fredholm integral equation of first kind. The solution of the Fredholm integral equation of
first kind is a well-known ill-posed problem. In order to solve the severe ill-posedness, a modified regularization method is
presented based on the Tikhonov regularization method and the truncated singular value decomposition method. The
convergence analysis of the modified regularization method is also given. The optimization results of the initial drug
concentration distribution obtained by the modified regularization method demonstrate that the inverse problem solution
scheme proposed in this paper has the advantages of the numerical accuracy and antinoise property.

1. Introduction

It is well known that the controlled release device is usually
used to regulate the release of active material for maintaining
a preset concentration of the active material for a specified
period of time. In recent years, the technique has been widely
used in many fields, including drug, food, and cosmetics [1,
2], due to its safety and effectiveness. Especially, in the drug
research field, the controlled release device has been of con-
siderable interest to many scholars. Generally, the burst effect
is not a desired delivery profile for drug release behavior,
which will cause overdose of drug and systemic toxicity [3].
During the last three decades, several matrix geometries have
been used to avoid this undesired effect, in which, the multi-
layer matrix device is an effective and simple device geome-
try[4–6]. For the multilayer matrix devices, the matrix core,
containing the drug, is covered by one or more modulating
layers that act as rate-controlling barriers. Researches have
revealed that for the multilayer matrix devices, the reasonable
initial drug loading can efficiently control the burst effect [7].

For understanding and simulating the real release mech-
anisms from these complicated multilaminated matrix
devices better, application of mathematical models is a good

choice [8–10]. In 1961, Higuchi [11], who is regarded as the
“father of mathematical modeling of drug release”, proposed
a simple but surprising equation to quantify the drug release
from monolithic dispersions with slab geometry: the famous
Higuchi equation. After that, more and more scientists paid
their attentions to the mathematical modeling of drug
release, which can significantly contribute to the product
development and mechanism understanding. Especially,
over the last thirty years, there are many new progresses for
different controlled release devices. Helbling et al. [12] used
the refined integral method to study the controlled dispersed
drug release from planar nonerodible polymeric matrices and
derived an analytical solution in 2010 and then presented a
novel mathematical model for drug-controlled release based
on the torus-shaped single-layer devices in 2011. Streubel
et al. [13] developed a new multilayer matrix tablets to obtain
the bimodal drug release profiles and used theophylline and
acetaminophen as the model drugs to investigate the effects
of some parameters on the resulting release rates. Yin and
Li [14] introduced the fractional calculus to model the anom-
alous diffusions and presented some new mathematical
models to describe the drug release based on degradable
and nondegradable slab matrices. Wu and Zhou [15] studied
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several factors affecting the kinetics of diffusional drug
release based on the finite element method. Nevertheless,
most of the previous methods focus on how to forecast the
drug release profiles based on the given parameters. There
have been few studies to investigate how to choose the suit-
able control parameters, in multilayer devices, to make the
drug release profile as close to the desired release profile as
possible. As far as we known, in 1998 and 1999, articles [5,
16] made relatively big contribution to this area firstly. In
these two manuscripts, Lu and his coworkers employed a for-
mal optimization approach to correctly determine the initial
drug concentration in the layer so as to coincide with the
required release profile as much as possible. To obtain the
desired release rates in multilaminated drug delivery devices,
Georgiadis and Kostoglou [7] presented a systematic optimi-
zation framework based on a simple mathematical model.
Nauman et al. [17] designed a multilaminated drug delivery
device, which has two or three layers with different initial
drug concentration distributions. By adjusting the parame-
ters in this device, all kinds of drug release profiles can be
obtained. As shown in previous articles, the optimizations
of the available control parameters have been performed in
the frame of optimization. However, we can also treat this
problem from another viewpoint, that is, the viewpoint of
inverse problem. In fact, many practical problems in different
fields can be reduced into the solution of inversion problems,
such as geophysical exploration and medical imaging. In this
article, from the viewpoint of the inverse problem, we adopt a
solution scheme of inverse problem to solve the optimization
problem of multilaminated drug-controlled release, which
has been transformed into a diffusion equation initial value
inverse problem. A classical regularization method, that is
Tikhonov regularization method [18], and its variant have
been attempted to solve the inverse problem. In 1963,
Tikhonov proposed the Tikhonov regularization method
firstly. Since then, many scholars turned their attentions to
this rather effective method, developed many different vari-
ants in different space settings, and applied these regulariza-
tion methods to solve all kinds of problems in science and
engineering fields [19–22]. Fu et al. [23] applied the Fourier
method to solve some ill-posed problems and systematically
considered a posteriori choice of the regularization parame-
ter; Zheng and Wei [24] used a spectral regularization
method to solve the Cauchy problem of TFADE based on
the solution given by the Fourier method; Zhao [25] intro-
duced a mollification method to solve the ill-posed problem
by using the expanded Hermit functions; Cheng et al. [26]
presented an optimal filtering method to approximate a Cau-
chy problem for the Helmholtz equation in a rectangle and
showed the Hölder-type error estimate; Bonesky et al. [27]
applied an adaptive wavelet algorithms to solve an inverse
parabolic problem describing the industrial process of melt-
ing iron ore in a steel furnace; Zhang and Li [28] established
a new regularization method to solve the ill-posed problem
based on the singular system theory of compact operator.

In this article, we propose a modified regularization
method based on a new regularizing filter function obtained
by combining the method presented in the paper [28] with
the truncated singular value decomposition method. We also

show the convergence analysis of the proposed method. The
regularization parameters are determined with the L-curve
method suggested by Hansen in [29]. Then, we apply the
modified regularization method to the optimization problem
of the initial drug concentration distribution based on the
multilaminated drug-controlled release devices and obtain
some better results.

In the reminder of the paper, it is organized as follows.
We describe the mathematical model for the multilaminated
drug-controlled release devices and the corresponding
inverse problem solution scheme for the optimization of
drug-controlled release in Section 2. In Section 3, a modified
regularization method is described in detail. This is followed
by numerical simulation in Section 4 and Section 5, and
lastly, the conclusion is indicated in Section 6.

2. Mathematical Model and Inverse Problem
Solution Scheme

2.1. Mathematical Model. Figure 1 shows a multilaminated
drug-controlled release device, which has N layers. The
device has a thickness L and initial drug concentration
VðXÞ. It is sealed at the leftmost side by an impermeable layer
and contacts with outside through the rightmost side. It is
assumed that the device is not significantly swelling and
eroding during drug release. Here, Ciði = 1, 2,⋯,NÞ are the
drug concentrations of each layer, respectively. The present
analysis focuses only on the case of low drug concentration.

Mathematically, this problem can be modeled as one-
dimensional partial differential equation based on Fick’s
second law of diffusion:

∂C
∂τ

=
∂
∂X

D
∂C
∂X

� �
, ð1Þ

where C is the drug concentration, D is the diffusivity, and X
and τ are the position and release time for one-dimensional
diffusional processes, respectively.

Under the assumption that zero flux and zero concentra-
tion are prescribed at the interface with impermeable layer
and the environment, respectively, thus, the boundary condi-
tions are as follows:

∂C
∂X

����
X=0

= 0, τ > 0, ð2Þ

C τ, Lð Þ = 0, τ > 0: ð3Þ
The initial conditions are imposed as follows:

C 0, Xð Þ =V Xð Þ, τ = 0, 0 < X < L: ð4Þ

The flux of drug is also defined as follows:

J τ, Lð Þ = −D X=Lð Þ
∂C
∂X

����
X=L

, τ > 0, ð5Þ

where VðXÞ denotes the initial drug concentration.
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2.2. The Inverse Problem Solution Scheme. For the mathemat-
ical model (Equations (1)–(5)), if the initial conditions and
the boundary conditions are known, the process to compute
the concentration distribute functions Cðτ, XÞ is a forward
problem, which is a well-posed problem. Conversely, how
to identify the initial Condition (4) is a classical inverse prob-
lem, if we know the boundary Conditions (2) and (3) and
additional Condition (5). Generally speaking, the inverse
problem is ill-posed and always needs to be solved with some
special algorithms, e.g., the Tikhonov regularization method.

Assume that the diffusivity is constant, we use the follow-
ing dimensionless processing to simplify the computation
process: c = C/C0, v =VðXÞ/C0, x = X/L, t =D0τ/L2, j = JL/
D0C0, d =D/D0 = 1, where C0 is a reference concentration
and D0 is a reference diffusivity.

Thus, the previous mathematical model (Equations
(1)–(5)) can be rewritten as follows:

∂c
∂t

=
∂2c
∂x2

: ð6Þ

Boundary conditions:

∂c
∂x

����
x=0

= 0, t > 0,

c t, 1ð Þ = 0, t > 0:
ð7Þ

Initial conditions:

c 0, xð Þ = v xð Þ, t = 0, 0 < x < 1, ð8Þ

Additional conditions:

j t, 1ð Þ = −
∂c
∂x

����
x=1

= j tð Þ, t > 0: ð9Þ

In fact, from the viewpoint of inverse problem, the prob-
lem to determine the initial conditions vðtÞ based on the
above mathematical model (Equations (6)–(9)) is a diffusion
equation inverse problem and can further come down to a
solution problem of Fredholm integral equation of first kind.

The first step is to solve Equations (6)–(8), which is a dif-
fusion equation initial boundary value problem. The method
of separating variables leads to the analytical solution:

c t, xð Þ = 〠
∞

k=0
2e− k+1/2ð Þπ½ �2t cos k +

1
2

� �
πx
ð1
0
v xð Þ cos k +

1
2

� �
πxdx:

ð10Þ

From Equation (10), the flux jðtÞ, namely, the additional
conditions, in Equation (9), can be determined by differenti-
ation with respect to x as follows:

j tð Þ = −
∂c
∂x

����
x=1

= 〠
∞

k=0
2e− k+1/2ð Þπ½ �2t k +

1
2

� �
π sin k +

1
2

� �
πx

ð1
0
v xð Þ cos k +

1
2

� �
πxdx

= 〠
∞

k=0
2 −1ð Þk k +

1
2

� �
πe− k+1/2ð Þπ½ �2t

ð1
0
v xð Þ cos k +

1
2

� �
πxdx

= 2
ð1
0
〠
∞

k=0
−1ð Þk k +

1
2

� �
πe− k+1/2ð Þπ½ �2t cos k +

1
2

� �
πx

" #
v xð Þdx:

ð11Þ

Then, using Equation (11), the previous inverse problem
(Equations (6)–(9)) for determining initial conditions can
further be transformed into the following Fredholm integral
equation of first kind:

2
ð1
0
〠
∞

k=0
−1ð Þk k +

1
2

� �
πe− k+1/2ð Þπ½ �2t cos k +

1
2

� �
πx

" #
v xð Þdx = j tð Þ,

ð12Þ

where vðxÞ is the unknown function and the kernel func-
tion is

k x, tð Þ = 〠
∞

k=0
−1ð Þk k +

1
2

� �
πe− k+1/2ð Þπ½ �2t cos k +

1
2

� �
πx:

ð13Þ

Thus, successful solution of the Fredholm integral
equation of first kind will lead to the effective identifica-
tion of the initial conditions in the mathematical model
(Equations (6)–(9)), that is, the optimization of the initial
drug concentration in the optimization problem of drug
release based on the multilaminated drug-controlled
release devices. However, the solution of the Fredholm
integral equation of first kind is a well-known ill-posed
problem, especially, for the case of input data with noise.
We usually need a suitable and specific method to solve
it. In the next section, we propose a new regularization
method to solve Equation (12).

3. The Modified Regularization Method

Kirsch [30] proposed the concept of regularizing filter
function to investigate the ill-posed problem. As shown in
[30], for the regularizing filter function, we have the follow-
ing Lemma:

C1 C2 C3 CN

Drug diffusion

X = 0 X = L

Figure 1: Drug release from a multilaminated drug-controlled
release device.
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Lemma 1. Let X and Y be both Hilbert spaces, K : X→ Y be
compact with singular system ðμi, xi, yiÞ, and q : ð0,+∞Þ ×
ð0, kKk�→ R be a function with the following properties:

(1) ∣qðα, μÞ ∣ ≤1, ∀α ∈ ð0,+∞Þ,∀μ ∈ ð0, kKk�
(2) For ∀α ∈ ð0,+∞Þ, there exists cðαÞ > 0, such that ∣q

ðα, μÞ ∣ ≤cðαÞμ,∀μ ∈ ð0, kKk�
(3) lim

α→0
qðα, μÞ = 1, ∀μ ∈ ð0, kKk�

Then, the operator Rα : Y → Xis defined by

Rαy = 〠
∞

i=1

q α, μið Þ
μi

y, yið Þxi, ð14Þ

which is a regularization strategy, where kRαk ≤ cðαÞ:We call
the function qðα, μÞ satisfying the previous three properties
regularizing filter function for K .

Based on the singular system theory of the compact
operator, the regularized solution of the famous Tikhonov
regularization method can be expressed in the following
formula:

xδα = Rαyδ = 〠
∞

i=1

q α, μið Þ
μi

yδ, yið Þxi, ð15Þ

where qðα, μÞ = μ2/ðα + μ2Þ, (α > 0, 0 < μ ≤ kKk) is the
Tikhonov regularizing filter function, and yδ is the dis-
turbed data.

In the paper [28], Zhang and Li presented an improved
regularization method based on a new regularizing filter
function qðα, μÞ = μσ/ðα + μσrÞ1/r , r > 0, ∈ σ ≥ 1 and proved
that the regularization solution can achieve the optimal
asymptotic convergence rate by selecting reasonable regular-
ization parameters.

Similarly, in this paper, a new regularization method is
introduced based on the previous improved regularization
method and the truncated singular value decomposition
(TSVD) regularization method. The convergence and the
optimal asymptotic order of the new regularized solution
are also obtained.

3.1. A New Regularizing Filter Function. The regularizing fil-
ter function corresponding to the improved regularization
method proposed in literature [28] is as follows:

q α, μð Þ = μσ

α + μσrð Þ1/r , r > 0, σ ≥ 1: ð16Þ

The filter function of the truncated singular value decom-
position regularization method is as follows:

q α, μð Þ =
1 μ ≥ α

0 μ < α
:

(
ð17Þ

Based on the previous two methods, we introduce a new
regularizing filter function, which is defined as follows:

q α, μð Þ =
1 μσr ≥ α

μσ

α + μσrð Þ1/r
μσr < α

,

8><
>: ð18Þ

where α > 0, 0 < μ ≤ kKk, r > 0, σ ≥ 1:
Using Equation (18), we can make the large singular

value not be modified and the small singular value be filtered.
Thus, the modified regularization method adopting the new
regularizing filter function will lead to a more accurate regu-
larized solution.

For the new regularizing filter function, we prove the fol-
lowing theorem.

Theorem 1. The function qðα, μÞ defined by Equation (18)
satisfies the assumptions (1), (2), and (3) of Lemma 1, namely,
the function qðα, μÞ defined by Equation (18) is a regularizing
filter function.

Proof.

(1) It is sufficient to consider the case μσr < α. In this case,
qðα, μÞ = μσ/ðα + μσrÞ1/r < 1 because μσ = ðμσrÞ1/r <
ðα + μσrÞ1/r

(2) For the case of μσr ≥ α, we conclude that μσr/α ≥ 1,
that is, μ/α1/σr ≥ 1; this proves that jqðα, μÞj = 1 ≤ 1/
ðαÞ1/σrμ

For the case of μσr < α , we have qðα, μÞ = μσ/ðα + μσrÞ1/r .
The choice q = σ/σ − 1 leads to

q α, μð Þ = μ

α + μrð Þ1/r
≤

μ

α1/r
: ð19Þ

If σ > 1, let p = σ and q = σ/σ − 1. Thanks to the Yong
inequality α + μσr ≥ α1/p ⋅ μσr/q, we have α + μσr ≥ α1/σ ⋅
μrðσ−1Þ, which yields

μσ

α + μσrð Þ1/r ≤
μσ

α1/σr ⋅ μσ−1
=

μ

α1/σr
: ð20Þ

Thus, the inequality qðα, μÞ ≤ μ/α1/σr holds for ∀σ ≥ 1.
That is the property (2) in Lemma 1 holds withcðαÞ = 1/α1/σr,
for∀α > 0.

(3) It is obvious that qðα, μÞ = 1, as α→ 0

So, from Lemma 1, we can know that the function qðα, μÞ
defined by Equation (18) is a regularizing filter function and
the corresponding regularization operator Rα : Y → X is as
follows:
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Rαy = 〠
∞

i=1

q α, μið Þ
μi

y, yið Þxi: ð21Þ

Then, a modified regularization method can be con-
structed based on the regularization operator Rα from Equa-
tion (21), which can also be used to solve the ill-posed
problem for the case of input data with noise. The regularized
solution xδα is therefore defined by xδα = Rαyδ =∑∞

i=1ðqðα, μiÞ
/μiÞðyδ, yiÞxi:

We combine the singular system theory of the compact
operator with the previous theorem and show the following
result for the regularized solution.

3.2. Error Analysis of the Regularized Solution

Theorem 2. Let x+ = ðK∗KÞvz ∈ RðK∗KÞv, z ∈ X, with kzk ≤
E; for the regularization operators Rα : Y → X from Equation

(21), we choose the regularized parameters αðδÞ = c
ðδ/EÞσr/ð2v+1Þ for some c > 0; then, the following estimate holds:

xδα δð Þ − x+
��� ��� =O δ2v/ 2v+1ð Þ

� �
, ð22Þ

where x+ is the solution of Kx = y, xδαðδÞ ≔ Rαy
δ is the approx-

imation of x, and K∗ denotes the adjoint operator of K .

Proof. The error between x and xδαðδÞ is

xδα − x+
��� ��� ≤ Rαk k ⋅ δ + Rαy − x+k k, ð23Þ

Theorem 1 yields kRαk ≤ cðαÞ = 1/α1/σr . From RαKx =∑∞
i=1

ðqðα, μiÞ/μiÞðKx, yiÞxi, x =∑∞
i=1ðx, xiÞxi, and ðKx, yiÞ = ðx,

K∗yiÞ = μiðx, xiÞ, we conclude that

Rαy − x+k k2 = 〠
∞

i=1
q α, μið Þ − 1j j2 ⋅ x+, xið Þj j2

= 〠
∞

i=1
q α, μið Þ − 1j j2 ⋅ K∗Kð Þvz, xið Þ�� ��2

= 〠
∞

i=1
q α, μið Þ − 1j j2 ⋅ 〠

∞

j=1
μ2vj z, xj
� 	

xj, xi

 !�����
�����
2

= 〠
∞

i=1
q α, μið Þ − 1j j2 ⋅ μ2vi z, xið Þ�� ��2

= 〠
∞

i=1
q α, μið Þ − 1j j2 ⋅ μ4vi ⋅ z, xið Þj j2:

ð24Þ

If μσr < α, jqðα, μiÞ − 1j < 1 because 0 < qðα, μÞ < 1; thus,

q α, μið Þ − 1j j ⋅ μ2vi < μ2vi = μσrið Þ2v/σr < α2v/σr , ð25Þ

If μσr ≥ α, qðα, μÞ = 1, so

q α, μið Þ − 1j j ⋅ μ2vi = 0 ⋅ μ2vi = 0 < α2v/σr: ð26Þ

Then, jqðα, μiÞ − 1j ⋅ μ2vi < α2v/σr holds for all two cases.
Therefore,

Rαy − x+k k2 < α4v/σr 〠
∞

i=1
z, xið Þj j2 = α4v/σr ⋅ zk k2 ≤ α4v/σr ⋅ E2,

ð27Þ

that is kRαy − x+k < α2v/σr ⋅ E. Thus, we have shown that

xδα − x+
��� ��� ≤ 1

α1/σr
⋅ δ + α2v/σr ⋅ E: ð28Þ

The choice of αðδÞ = cðδ/EÞσr/ð2v+1Þ leads to the corre-
sponding estimate

xδα δð Þ − x+
��� ��� ≤ δ ⋅ c

δ

E

� �σr/ 2v+1ð Þ" #−1/σr
+ c

δ

E

� �σr/ 2v+1ð Þ" #2v/σr
⋅ E

= δ ⋅ c−1/σr ⋅
δ

E

� �−1/ 2v+1ð Þ" #
+ c2v/σr ⋅

δ

E

� �2v/ 2v+1ð Þ
⋅ E

= c−1/σr ⋅ E1/ 2v+1ð Þ ⋅ δ1− 1/ 2v+1ð Þð Þ + c2v/σr ⋅ δ2v/ 2v+1ð Þ ⋅

E1− 2v/ 2v+1ð Þð Þ

= c−1/σr + c2v/σr
� 	

⋅ E1/ 2v+1ð Þ ⋅ δ2v/ 2v+1ð Þ:

ð29Þ

This yields

xδα δð Þ − x+
��� ��� =O δ2v/ 2v+1ð Þ

� �
: ð30Þ

4. Solution of the Fredholm Integral
Equation of First Kind

For validation purpose, in this section, the modified regular-
ization method proposed in this paper is applied to solve the
Fredholm integral equation of first kind.

Example 1. We first consider the following integral equation
of first kind.

ð1
0
1 + tsð Þetsx sð Þds = y tð Þ, 0 ≤ t ≤ 1, ð31Þ

with the right-hand side and the analysis solution given
by yðtÞ = et and xðtÞ = 1.

We discretize the integral equation by the compound
trapezoidal formula and obtain the linear system.

AX = b, ð32Þ
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where A ∈ R100×100 and the error-free right-hand side b =
½yðt0Þ,⋯,yðtmÞ�T ∈ R100. The associated contaminated vector
~b is given by the following formula.

~b = b 1 + δ × randð Þ, ð33Þ

where δ denotes the noise level and rand is a number ran-
domly generated within the interval ½0, 1�. In this example,
the noise level is assumed to be 0.001.

We solve equation AX = ~b with the Tikhonov regular-
ization method and our method, respectively. The regular-
ization parameters are chosen by using the L-curve
method. The corresponding L-curve for the Tikhonov
regularization method is shown in Figure 2. The corner
of L-curve is located at the points (kAX − ~bk2, kXk2) with
the regularization parameter α = 3:7866 × 10−3. We set the
parameters of the modified regularization method σ = 4
and r = 1:5 as suggested in the paper [28]. Figure 3 depicts
the comparison between the results obtained by the
classical Tikhonov regularization method and the exact

0
0

0.5

1

1.5

x
 (t

)

2

0.2 0.4 0.6 0.8 1
t

Tikhonov regularization solution
Exact solution

Figure 3: The results of Tikhonov regularization method.
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Figure 4: Regularization parameter choice (L-curve).
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Figure 2: Regularization parameter choice (L-curve).
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solution. Figure 4 shows the corresponding L-curve for the
modified regularization method, and the regularization
parameter is 2:1147∗e − 3. And we compare the results
obtained by the modified regularization method and the
exact solution in Figure 5. As we can see that, from these
two results, the modified regularization method is more
effective than the classical Tikhonov regularization
method.

Example 2. Consider the following Fredholm integral equa-
tion of first kind.ð1

0
etsx sð Þds = y tð Þ, 0 ≤ t ≤ 1, ð34Þ

which has a unique exact solution xðtÞ = e2t , and the right-
hand side is given by yðtÞ = ðet+2 − 1Þ/ðt + 2Þ.

x
 (t

)

0
0

0.5

1

1.5

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

Modified Tikhonov regularization solution
Exact solution

Figure 5: The results of modified regularization method.
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The parameters involved in the numerical simulation are
the same as the previous example. We also apply the
Tikhonov regularization method and our method to solve
Equation (34), respectively. The L- curve for Tikhonov
regularization method is shown in Figure 6. The corner of
L-curve is located at the point for α = 4:2365 × 10−3.
Figure 7 depicts the comparison between the results obtained
by the classical Tikhonov regularization method and the
exact solution. Figure 8 shows the corresponding L-curve
for the modified regularization method, and the regulariza-
tion parameter is 2:7659∗e − 3. Figure 9 gives the comparison
between the results obtained by the modified regularization
method and the exact solution. From Figures 7 and 9, we
can conclude that the modified regularization method works
better for this problem.

From the previous numerical results, we can conclude
that the modified regularization method is effective for the
Fredholm integral equation of first kind for the case of input
data with noise. Meanwhile, as shown in Section 2, the deter-
mination of the initial drug concentration in the optimiza-
tion problem of drug release based on the multilaminated
drug-controlled release devices can be transformed into the

solution of the Fredholm integral equation of first kind. So,
in the next section, we adopt the proposed method to deal
with the optimization problem of drug-controlled release
from multilaminated devices.

5. Optimization of Drug-Controlled
Release from Multilaminated Devices

5.1. The Optimization of Initial Drug Concentration. The ini-
tial drug concentration is an essential parameter in the multi-
laminated controlled release system, which can affect the
drug release greatly. A reasonable initial drug concentration
can lead to the drug release with the desired flux. Based on
the inverse problem solution scheme, the initial drug concen-
tration can be inverted from the known drug release flux. In
the following, we will determine the initial drug concentra-
tion for three different cases with the proposed inverse prob-
lem solution scheme based on the Tikhonov regularization
method (TRM) and the modified regularization method
(MRM), respectively. The three different desired release pro-
files are shown in Figure 10.
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5.1.1. Case 1.We first consider a typical case. In this case, sup-
pose that the desired flux is constant (jðtÞ = 1,  0 ≤ t ≤ 0:5).
For the Fredholm integral equation of the first kind
(Equation (12)), set the right-hand side equal to 1, that is,
jðtÞ = 1. The Tikhonov regularization method and modified
regularization method are applied to solve this ill-posed
problem. The inverse results are shown in Figure 11, and
the computational drug release flux based on the inversed
initial drug concentration are depicted in Figure 12. It is seen
that from Figure 12, the optimal release profile obtained with
TRM remains flatter pattern at initial stage and has a smaller
deviation from ideal case. However, bigger error appears as
the time increases. The mean square deviation for TRM can
reach 0.2174. We can also observe that, for MRM, although

the optimized release fluctuates at the initial stage, the devia-
tion from the desired release remains smaller over the entire
computation time. Compared with TRM, the mean square
deviation for MRM is also relatively less, which is 0.1692.

5.1.2. Case 2. In some cases, we maybe desire to obtain an
approximately linearly increasing profile, e.g., to build up a
tolerance for the chemical material transmitted. In the fol-
lowing, the ideal release profile is given with the function
jðtÞ = 1:5 − 2t, 0 ≤ t ≤ 0:5. The inversed results obtained by
using the previous two different regularization methods are
shown in Figure 13 and the optimized release profiles are
depicted in Figure 14. We can conclude that MRM has obvi-
ous advantages over the TRM. In Figure 14, the optimized
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Figure 10: Three different desired flux. Case 1: constant release rate. Case 2: linearly decreasing release rate. Case 3: nonlinear release rate.
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Figure 11: The inverse results. (a) Results obtained by TRM. (b) Results obtained by MRM.
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Figure 12: The computational drug release flux based on the inversed initial drug concentration.

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2

Th
e i

ni
tia

l d
ru

g 
co

nc
en

tr
at

io
n 
v

(x
)

(a)

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

2

1.5

3

2.5

Th
e i

ni
tia

l d
ru

g 
co

nc
en

tr
at

io
n 
v

(x
)

(b)

Figure 13: The inverse results. (a) Results obtained by TRM. (b) Results obtained by MRM.
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release profile almost coincides with the desired release flux
for MRM, whereas the performance of TRM remains poor.
The mean square deviations of two methods are 0.1285 and
0.0164, respectively.

5.1.3. Case 3. Some situations demand a nonlinearly release
rate, e.g., linearly increasing follow by a constant release,
and without burst. A typical example is the delivery of the
some anticancer drug.

For this case, the release rate function is

j tð Þ =
24t 0 ≤ t ≤ 0:05

1:2 0:05 < t ≤ 0:5

(
: ð35Þ

The inversed results obtained by using two different reg-
ularization methods are shown in Figure 15 and the opti-
mized release profiles are depicted in Figure 16. From these
two figures, we can see that the performance of MRM is bet-

ter than that of TRM. The mean square deviations of two
methods are 0.3019 and 0.2164, respectively.

5.2. Antinoise Property Analysis. In practice, we cannot guar-
antee that the right-hand side of the Fredholm integral equa-
tion of the first kind (Equation (12)) is known exactly.
Instead, jðtÞ usually contains some error, say, δ > 0. There-
fore, we will consider the initial drug concentration optimiza-
tion problem for the case of the right-hand side with a
perturbed data.

Assume that we know δ > 0 and with perturbed data jδðtÞ
satisfying jjδðtÞ − jðtÞj ≤ δ. It is our aim to solve the following
perturbed equation.
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Figure 15: The inverse results. (a) Results obtained by TRM. (b) Results obtained by MRM.
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We use the modified regularization method to solve the
above perturbed equation for three different cases.
Figure 17 shows the error between the inverted results with
noise and that without noise against the different noise levels.
We can conclude from Figure 17 that the error increases
apparently with the increment of noise level. However, even
for the noise level of δ = 0:3, the results are acceptable. To
further show the optimization results intuitively, we list the
initial drug concentration optimization results with δ = 0:1
for three different cases in Figures 18–20. These three pic-
tures demonstrate that the modified regularization method
we proposed can still work well. It means that the MRM
has a good antinoise property.

6. Conclusion

We have proposed a new viewpoint to solve the optimiza-
tion problem of drug release based on the multilaminated
drug-controlled release device, that is, inverse problem
solution scheme. The objective of this paper is to show
that the inverse problem solution scheme is effective for
the optimization problem of drug release. Based on the
inverse problem solution scheme, the optimization prob-
lem of drug release can be transformed into the diffusion
equation initial value inverse problem and further con-
verted to the Fredholm integral equation of first kind.
The solution of Fredholm integral equation of first kind
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Figure 17: The error against the noise level.
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Figure 18: The inverse initial drug concentration for Case 1 with δ = 0:1.
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is an ill-posed problem, which have to be solved by suit-
able regularization method.

To solve this ill-posed problem, we introduce a new regu-
larizing filter function and propose a modified regularization
method. The error analysis of the regularized solution
obtained by the proposed method is also verified. Further-
more, for three various desired release flux, the modified regu-
larization method is applied to inverse the initial drug
concentration. As seen in the examples, the method proposed

in this paper has been successful at inverting the initial drug
concentration. This demonstrates that the modified regulari-
zation approach is well suited to solving this ill-posed problem.

Also shown in this paper is the result that the modified
regularization method has a better antinoise property for
the initial drug concentration estimation. With 10% noise,
the results obtained with the MRM are satisfactory.

In all, the better results obtained in this paper mean that
the inverse problem solution scheme exhibits its effectiveness
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Figure 19: The inverse initial drug concentration for Case 2 with δ = 0:1.
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and superiority, for the optimization problem of drug release
based on the multilaminated drug-controlled release device,
to some extent in both theoretical research and numerical
simulation. There is a good potential that the proposed
method can be employed to solve more complicated cases,
such as multiparameter identification and high-dimensional
problem. And this is an important direction for us to face
in future.
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