
Several cellular components of proliferative vitreoreti-
nopathy (PVR) membranes have been previously identified 
[1-3], leading much of the recent work to focus on under-
standing and modulating cellular activities involved [4-6]. 
It has been recognized that the epithelial-mesenchymal 
transition (EMT) of retinal pigment epithelial (RPE) cells 
contributes to the nascency of PVR [7]. RPE cells undergo 
EMT in PVR membranes, and as such are major contributors 
to the excessive deposition of the extracellular matrix in these 
membranes [8-10]. However, the mechanism of initiation of 
EMT is not well understood.

Protein tyrosine phosphatases (PTPs) comprise a diverse 
family of transmembrane and cytoplasmic enzymes. PTPs 
play an important role in regulating the proliferative activity 
of cells and the integrity of cell-cell and cell-matrix contacts 
[11-14]. Previous research in our laboratory indicated that 

sodium orthovanadate (SOV), a general inhibitor of PTPs, 
could accelerate the cell cycle of RPE cells, induce RPE cells 
to differentiate toward better motility, and improve their 
migration activity [15]. The inhibition of PTPs may be the 
main initiator of the EMT of RPE cells. However, it is not 
known which isoform plays a more important role in the 
activation of RPE cells.

Based on the distribution in cells, the classical PTPs can 
be divided into two types: non-receptor PTPs and receptor 
PTPs [16]. Protein tyrosine phosphatase 1B (PTP1B) is a 
non-receptor PTP frequently associated with the endoplasmic 
reticulum and vesicles subjacent to the plasma membrane [17]. 
A study has found that PTP1B associates with N-cadherin 
and may act as a regulatory switch controlling cadherin func-
tion by dephosphorylating β-catenin, thereby maintaining 
cells in an adhesion-competent state [18]. Previous research 
by our laboratory has indicated that the increased expres-
sion of N-cadherin in the RPE cells of the retina after retinal 
detachment may contribute to the migration of RPE cells and 
photoreceptor cell survival [19]. Therefore, the role played by 
PTP1B in the activation of RPE cells needs to be clarified.
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Purpose: To determine whether protein tyrosine phosphatase 1B (PTP1B) is expressed in rat retinal pigment epithelium 
(RPE) cells, to evaluate whether inhibition of PTP1B contributes to initiation of RPE cells into an active state, and to 
investigate the signaling pathways involved in this process.
Methods: Rat retinas were detached by trans-scleral injection of 1.4% sodium hyaluronate into the subretinal space. 
Immunocytochemistry evaluated the expression of PTP1B in RPE cells located at normal and detached retinas. From 
the cultured RPE cells treated with TCS-401, cell proliferation was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetracolium bromide assay, and the protein expression levels of cyclin A and cyclin D1 were determined. The 
effect of TCS-401 on cell differentiation was confirmed by immunostaining for α-smooth muscle actin and by western 
blot. Cell migration activity and PTP1B signaling mechanism were determined. Migration Assay was used to evaluate 
cell migration activity. PTP1B signaling mechanism was determined by use of PD98059 and LY294002.
Results: PTP1B was expressed in the RPE layer of the normal retina. After retinal detachment, weak immunolabeling 
of PTP1B was seen in the RPE cells. TCS-401 promoted the proliferation and expression of cyclin A and cyclin D1 in 
RPE cells. TCS-401 induced RPE cells to differentiate toward better contractility and motility. A migration assay proved 
that inhibiting PTP1B improved the migratory activity of RPE cells. TCS-401 activated extracellular signal-regulated 
kinase (Erk) and protein kinase B (Akt) phosphorylation. Pretreatment with PD98059 and LY294002 abolished TCS-
401-induced activation of Erk, Akt, cell proliferation, and cell migration.
Conclusions: PTP1B may be involved in regulating the active state of RPE cells. The inhibition of PTP1B promoted the 
proliferation, myofibroblast differentiation, and migration of RPE cells, and MEK/Erk and PI3K/Akt signaling pathways 
played important roles in the proliferation and migration process.
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This study was the first to investigate the expression of 
PTP1B in RPE cells and the role of PTP1B in regulating cell 
proliferation, differentiation, and migration using TCS-401, 
a selective inhibitor of PTP1B. The data may be useful for 
understanding the EMT of RPE cells in many pathological 
events, such as the formation and contraction of fibrous 
membranes.

METHODS

Antibodies and reagents: Monoclonal rabbit-anti-human 
PTP1B was purchased from Abcam (Cambridge, UK). Mono-
clonal rabbit-anti-rat extracellular signal-regulated kinase 
(Erk)1/2, p-Erk1/2, protein kinase B (Akt; pan), and p-Akt 
were obtained from Cell Signaling Technology (Danvers, 
MA). Monoclonal mouse-anti-human α-smooth muscle actin 
(α-SMA), monoclonal rabbit-anti-human cyclin A and cyclin 
D1 antibodies, fluorescein isothiocyanate (FITC)-conjugated 
goat-ant-rabbit, and horseradish peroxidase-conjugated 
donkey-anti-rabbit IgG were purchased from Santa Cruz 
Biotechnology (Santa Cruz, CA). Rabbit-anti-human β-actin 
was obtained from Biomedical Technologies (Stoughton, 
MA). TCS-401 was obtained from Tocris Bioscience (Tocris, 
Bristol, UK). PD98059 (an inhibitor of mitogen-activated 
protein kinase kinase/extracellular-signal-regulated kinase 
(MEK/Erk)), LY294002 (an inhibitor of phosphatidylinositol 
3-kinase (PI3K)), and propidium iodide (PI) were purchased 
from Sigma (St. Louis, MO). Fetal bovine serum (FBS) was 
purchased from Atlanta Biologicals (Norcross, GA). BSA 
(BSA) was purchased from Fisher Scientific (Pittsburgh, PA).

Model of retinal detachment: Adult Sprague-Dawley (SD) rats 
of either gender (180–200 g; Vitalriver Laboratory Animal 
Equipment Co., Ltd., Beijing, China) were used in this study. 
Pupils were dilated with a topically applied mixture of 0.5% 
tropicamide and 0.5% phenylephrine (Mydrin-P; Santen 
Pharmaceutical Co., Ltd., Osaka, Japan). Retinas were 
detached from the right eyes of SD rats by trans-scleral injec-
tion of 1.4% sodium hyaluronate (Healon GV; Pharmacia and 
Upjohn Co., Kalamazoo, MI) into the subretinal space (SRS) 
with a 30-gauge needle (BD Biosciences, Franklin Lakes, NJ) 
[19]. Care was taken not to make a break in the detached 
retina. Animals were excluded from the study if they devel-
oped intraocular hemorrhage. The left eyes of all animals 
served as normal control eyes. Animals were sacrificed 10 
days after surgery. All procedures were performed in accor-
dance with the ARVO Statement for the Use of Animals in 
Ophthalmic and Vision Research. The protocol was approved 
by the Medical Ethics Committee of the Affiliated Hospital, 
Qingdao University (Permit Number: 00,863). All surgeries 
were performed under pentobarbital sodium and a topical 

anesthetic (Oxyben; Santen Pharmaceutical Co., Ltd.). All 
efforts were made to minimize suffering.

Primary culture of rat RPE cells: Retinal tissues were 
obtained from adult male SD rats. Rat RPE cells were isolated 
by modifying the method developed by Edwards [20]. Briefly, 
enucleated eyes were soaked in phosphate-buffered saline 
(PBS) solution containing 0.1 mg/mL of streptomycin and 
100 U/mL of penicillin. The anterior section of the eye was 
removed and the vitreous humor was aspirated. The poste-
rior eyecup was incubated in a hyaluronidase (1%) solution 
for 2 min at room temperature. The remaining neural retina 
was removed. Exposed RPE cells were trypsinized (0.25% 
trypsin), incubating the eyecup at 37 °C for 20 min. RPE cells 
were isolated from Bruch’s membrane using a gentle water jet 
of buffered saline through a 1 ml pipette. Later, dissociated 
RPE cells were aspirated and seeded into cell culture flasks. 
The cells were cultured in Dulbecco’s modified eagle’s 
medium/nutrient mixture F-12 (DMEM/F12; Invitrogen, 
Carlsbad, CA) supplemented with 10% FBS. The culture 
medium was changed every two days. After approximately 
seven days, the RPE cells were grown to confluence. Primary 
cultured cells were then trypsinized, resuspended in a culture 
medium, and seeded into cell culture flasks at a density of 
3.0×105 cells per flask. The cells were used between passages 
3 and 5.

Immunofluorescence staining: The eyes in the model of 
retinal detachment were enucleated after cardiac perfusion 
of 4% paraformaldehyde. The anterior segment of the eye and 
the vitreous were removed. After neural retinas were removed 
by forceps, the eyecups were divided into four segments 
(retinal detachment area and non-detached area were labeled, 
respectively), and then spread on the slides. The stretched 
preparations were fixed with 4% paraformaldehyde for 20 
min at room temperature. After washing three times with 
PBS, stretched preparations were pre-incubated for 20 min 
in 5% BSA to block nonspecific binding, and then incubated 
with a primary antibody at room temperature for 3 h. The 
concentration of monoclonal rabbit-anti-human PTP1B was 
1:50. To assess the specificity of the staining, the negative 
control group was processed without the primary antibody. 
Following incubation of the primary antibody, stretched 
preparations were washed with PBS, and then incubated for 
1 h with a 1:200 dilution of the appropriate FITC-conjugated 
secondary antibody at 37 °C. After another wash with PBS, 
slides were coverslipped with glycerol. Positive staining was 
visualized using a confocal laser scanning microscope (LSM-
510; Carl Zeiss, Jena, Germany).

For immunofluorescent analysis of cultured cells, cells 
were seeded onto chamber slides at a density of 1×105 cells 
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per chamber. After washing three times with PBS, cells 
were fixed in 95% ethanol at room temperature for 10 min, 
followed by a further wash with PBS. The fixed cells were 
then permeabilized with 1% Triton X-100 in PBS for 10 min. 
Later cells were blocked, incubated with the primary antibody 
overnight at 4 °C, and washed in PBS. The concentration of 
anti-α-SMA was 1:100. The FITC-conjugated secondary 
antibody was applied for 1 h with a 1:200 dilution at 37 °C. 
Cells were later washed with PBS and mounted in a medium 
containing PI for visualizing the nuclei. Positive staining was 
visualized using the confocal laser scanning microscope.

MTT assay: Cell proliferation was examined using 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetracolium 
bromide (MTT; Roche Molecular Biochemicals, Mannheim, 
Germany) assay. The 5×103 cells grown in a 96-well plate for 
24 h were partially starved in DMEM/F12 supplemented with 
1% FBS for 12 h, and then stimulated with various concentra-
tions of TCS-401 for an additional 24 h. MTT was added to 
the culture medium, and the cells were incubated for an addi-
tional 4 h. The formazan crystals formed were then dissolved 
by adding dimethyl sulfoxide (100 μL per well). Absorbance 
at 490 nm was measured using a microplate reader (Model 
550; Bio-Rad, Tokyo, Japan).

Protein extraction and immunoblotting: Protein prepara-
tion and western blot analysis were performed as described 
previously [15]. Cultured cells grown in culture flasks were 
trypsinized; suspended in a lysis buffer containing 1% Triton 
X-100, 250 mM sodium chloride, 2 mM EDTA, 50 mM 
tris (hydroxymethyl) aminomethane (Tris)-HCl, 10 μg/ml 
leupeptin, and 1 mm phenylmethylsulfonyl f luoride (all 
from Sigma-Aldrich); and homogenized. Equal amounts of 
extracted protein were loaded on 4%–12% polyacrylamide 
gels (Invitrogen) for sodium dodecyl sulfate PAGE. After 
electrophoresis, proteins were transferred to polyvinylidene 
dif luoride membranes (Millipore Corp, Bedford, MA). 
Nonspecific binding was blocked by overnight incubation 
at 4 °C with 5% nonfat dry milk in PBS. The membranes 
were then incubated at room temperature for 2 h with anti-
cyclin A, anti-cyclin D1, anti-α-SMA, anti-Erk, anti-p-Erk, 
anti-Akt, or anti-p-Akt antibodies at a dilution of 1:500. 
Anti-β-actin was used as an internal control for the immu-
noblot. The membranes were washed three times with PBS 
with Tween-20 and then incubated with the appropriate 
horseradish peroxidase-conjugated secondary antibody at a 
final dilution of 1:1000. After final washes with 0.1% Triton 
X-100 in PBS, signals were detected by enhanced chemilumi-
nescence following the manufacturer’s instructions (Pierce, 
Rockford, IL) and exposed to autoradiographic film.

Migration assay: Cell migration was determined using 
a transwell assay: 1×104 cells were placed in the upper 
chamber (Costar, Cambridge, MA) with a volume of 200 μl 
serum-free medium with various concentrations of TCS-401. 
Next, DMEM/F12 with 10% FBS was placed in the bottom 
chamber, with a volume of 600 μl per well. After 12 h incuba-
tion, the cells were fixed in 95% ethanol for 10 min, stained 
with hematoxylin for 5 min, and washed in Dulbecco’s 
calcium and magnesium free PBS (Gibco®; Invitrogen). 
The remaining cells on the upper surface of the filter were 
removed by wiping with a cotton swab. Then the filters were 
cut off, dehydrated using graded ethanol, hyalinized by 
dimethylbenzene, and fixed by neutral resins. Cell migration 
was quantified by the number of cells that migrated across 
the filter toward the lower surface in five random fields per 
filter under microscope. All migration assays were performed 
in triplicate.

Statistical analysis: Statistical analysis was performed using 
SPSS version 15.0 (SPSS, Chicago, IL). Data are expressed as 
mean±standard deviation. Statistical analysis was performed 
using one-way ANOVA and the student’s t test. p<0.05 was 
considered statistically significant.

RESULTS

Detection of PTP1B in rat RPE cells in vivo: At present, many 
PTP isoforms have been identified in various cells, but not 
all tissues express all isoforms. There was no report on the 
expression of any PTPs in RPE cells until now. In this study, 
ICC was used to determine the relative expression of PTP1B 
in RPE stretched preparations (normal and retinal detachment 
areas). As shown in Figure 1A, retinal (one-half to one-third) 
detachments were created in the right eyes of the rats. In vivo, 
intense staining of PTP1B was observed in the cytoplasm of 
RPE cells (Figure 1B). However, the expression of PTP1B in 
RPE cells located at the retinal detachment area (Figure 1C) 
was significantly lower than that in RPE cells located at the 
non-detachment area (Figure 1B).

Inhibition of PTP1B increases proliferation of RPE cells 
in vitro: Experiments were performed to evaluate whether 
TCS-401 had any effect on the proliferation of RPE cells with 
MTT. Cells were incubated with TCS-401 at concentrations 
of 0.5, 1, and 2 μM for 24 h. Among the various concentra-
tions of TCS-401 tested, TCS-401 at a concentration of 0.5, 1, 
or 2 μM was observed to significantly increase the prolifera-
tion of RPE cells compared to the control group (Figure 2A).

The effects of TCS-401 on protein expression levels of 
cyclin A and cyclin D1 in RPE cells were examined. Contact-
inhibited RPE cells were stimulated with fresh growth 
medium with various concentrations of TCS-401 (0.5, 1, 
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and 2 μM) and incubated for 24 h. The results demonstrate 
that the basal levels of cyclin A and cyclin D1 were minimal. 
TCS-401 significantly increased the expression of cyclin 
A and cyclin D1 at the concentrations of 1 and 2 μM in a 
concentration-dependent manner (Figure 2B-D).

Inhibition of PTP1B regulates differentiation of RPE cells: 
The alteration in the cell phenotype was demonstrated by 
the expression of α-SMA, which is characteristic of the 
mesenchymal phenotype. Immunofluorescence and western 

blot evaluated α-SMA in rat RPE cells treated with TCS-401 
at concentrations of 0.5, 1, and 2 μM for 24 h. The results 
demonstrate that the normal RPE cells exhibited little immu-
noreactivity and protein expression for α-SMA. However, the 
immunopositive reaction (Figure 3A) and protein expression 
(Figure 3B) were strengthened along with the increased 
concentration of TCS-401. Furthermore, Figure 3A-C and 
Figure 3A-D show that, like the effect of SOV studied in our 
previous research [15], the treatment of confluent cultures 
with TCS-401 also induced a concentration-dependent 

Figure 1. Immunolocalization of 
PTP1B in RPE cells of a rat model 
of retinal detachment. A: Fundus 
photograph shows half-side retinal 
detachment (arrow) without retinal 
breaks. B, C: Immunolocalization 
of PTP1B in stretched preparations 
of rat RPE (B: non-retinal detach-
ment area, C: retinal detachment 
area). The data are representative 

of at least three independent experiments. Original magnification=400X. PTP1B, protein tyrosine phosphatase 1B; RPE, retinal pigment 
epithelium.

Figure 2. Promotion effects of 
TCS-401 on the proliferation of rat 
RPE cells in vitro. A: Proliferation 
of RPE cells was determined with 
MTT after 24 h incubation with 
concentrations of 0.5, 1, and 2 μM 
TCS-401. The 0.5, 1, and 2 μM 
TCS-401 treatment increased the 
proliferation of RPE cells. *p<0.05, 
compared to the control group. 
B-D: Contact-inhibited RPE cells 
were incubated with 0.5, 1, and 2 
μM TCS-401 for 24 h, and levels of 
cyclin A and cyclin D1 were deter-
mined with western blot analysis, 
respectively. The 1 and 2 μM 
TCS-401 treatment promoted cell 
cycle progression. The data repre-
sent the mean±standard deviation 
of three independent experiments. 
*p<0.05, compared to the control 
group. MTT, 3-(4,5-dimethylthi-
azol-2-yl)-2,5-diphenyltetracolium 
bromide; RPE, retinal pigment 
epithelium.
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release of cell-cell contacts, resulting in the appearance of 
gaps between cells and a gradual loss of monolayer integrity.

Inhibition of phosphatase improves migration activity of 
RPE cells: Results of an in vitro migration assay are shown 
in Figure 4. Cells were measured in a transwell chamber 
in which RPE cells migrated through a porous membrane. 
The mean number of migrated cells in the TCS-401-treated 
RPE cells was significantly higher than the mean number of 
migrated control cells (Figure 4). The mean number increased 
along with the increased concentration of TCS-401 (0.5, 1, 
and 2 μM).

Inhibition of PTP1B activates MEK/Erk and PI3K/Akt 
signaling pathways in RPE cells: To investigate whether 

a PTP1B blockade promotes Erk and Akt phosphorylation 
in RPE cells, various concentrations (0.5, 1, and 2 μM) 
of TCS-401 were added to these cells. It was found that 
TCS-401 at concentrations of 0.5, 1, and 2 μM significantly 
increased phosphorylation of Erk and Akt compared to the 
control group (Figure 5A-B). The activation of Erk and Akt 
by TCS-401 was blocked by pretreatment with PD98059 and 
LY294002, respectively (Figure 5C-F).

MEK/Erk and PI3K/Akt signaling pathways mediate the 
effect of inhibition of PTP1B on proliferation and migra-
tion of RPE cells: Having found that TCS-401 treatment 
activated the MEK/Erk and PI3K/Akt signaling pathways 
and induced proliferation, differentiation, and migration in 
RPE cells, it was examined whether the activation of the 

Figure 3. Promotion effects of 
TCS-401 on the expression of 
α-SMA in rat RPE cells in vitro. 
A: Immunolocalization of α-SMA 
in cultured rat RPE cells. RPE 
cells were stimulated with medium 
at different concentrations of 
TCS-401. ICC studies confirmed 
the TCS-401 concentration-depen-
dent expression of α-SMA (green) 
and change in morphological 
characteristics of cells. PI staining 
(red) indicated nuclei. Original 
magnification=200X. B: Western 
blots showed levels of α-SMA 
proteins in rat RPE cells treated 

with TCS-401 at concentrations of 0.5, 1, and 2 μM for 24 h. The level of α-SMA protein rose along with higher concentrations. The data 
are representative of at least three independent experiments. α-SMA, α-smooth muscle actin; ICC, immunocytochemistry; PI, propidium 
iodide; RPE, retinal pigment epithelium.

Figure 4. Migration of RPE cells 
in response to TCS-401 treatment. 
A: Migration assay confirmed that 
TCS-401 increased the number 
of migrated RPE cells. Original 
magnif icat ion=100X. B: The 
number of migrated cells per HPF 
is shown. The data represent the 
mean±standard deviation of three 
independent experiments. *p<0.05, 
compared to the control group. 
HPF, high-power field; RPE, retinal 
pigment epithelium.
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MEK/Erk and PI3K/Akt signaling pathways played a vital 
role in TCS-401-induced activation of RPE cells. MTT and 
migration assay were used to evaluate the role of MEK/Erk 
and PI3K/Akt signaling pathways on the proliferation and 
migration of RPE cells. As shown in Figure 6A, pretreat-
ment of RPE cells with PD98059 or LY294002 significantly 
inhibited TCS-401-induced proliferation at a concentration 
of 2 μM. In addition, fewer migrated cells were observed in 
the pretreatment groups (treated with PD98059 or LY294002) 

than non-pretreatment group when the cells were treated with 
TCS-401 at a concentration of 2 μM (Figure 6B-C).

DISCUSSION

Retinal detachment followed by blood-retinal barrier break-
down and EMT of RPE cells contribute to the formation of 
fibrous membranes [21,22]. In this process, RPE cells lose 
typical epithelial features and acquire mesenchymal features 
that promote migratory capacity, invasiveness, and elevated 

Figure 5. Phosphorylation of Erk 
and Akt induced by TCS-401. A, B: 
RPE cells were incubated with 0.5, 
1, and 2 μM TCS-401 for 30 min for 
an assay of Erk and Akt phosphory-
lation, and levels of phosphorylated 
and total Erk and Akt were deter-
mined with western blot analysis, 
respectively. C, D: RPE cells were 
pretreated with 20 μM PD98059 
for 30 min and then incubated with 
2 μM TCS-401 for 30 min for an 
assay of Erk phosphorylation using 
western blot. E, F: RPE cells were 
pretreated with 10 μM LY294002 
for 30 min and then incubated with 
2 μM TCS-401 for 30 min for an 
assay of Akt phosphorylation using 
western blot. The data represent 
the mean±standard deviation of 
three independent experiments. *, 
#p<0.05, compared to the control 
group; &p<0.05, compared to treat-
ment with only TCS-401. Akt, 
protein kinase B; Erk, extracellular 
signal-regulated kinase; RPE, 
retinal pigment epithelium.
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resistance to apoptosis [23,24]. It was proved that the inhibi-
tion of PTPs enhanced physiologic functions such as growth, 
proliferation, differentiation, and motility in RPE cells [15]. 
Here, it was demonstrated that the deficiency of PTP1B is a 
strong inducer of EMT in RPE cells.

It was found that trans-scleral injection of sodium 
hyaluronate into the SRS (mimicking retinal detachment) 
downregulated the expression of PTP1B in RPE cells in vivo. 
Animals that developed choroidal hemorrhage were excluded 
because the serum of the extravasated blood contained 
chemoattractants to RPE cells [25]. Retinal breaks were not 
made in this experimental model because this investigation 
focused on the induced changes in the expression of PTP1B 
in RPE cells, and any additional interference deriving from 
the vitreous was avoided. These results revealed that normal 
rat RPE cells expressed PTP1B abundantly. However, the 
level of expression of PTP1B in the detachment areas may 
not be detected by this immunoreactive technique. The 
prominent difference in the expression of PTP1B between 
them suggests that retinal detachment may promote substrate 
phosphorylation related to EMT in RPE cells. The downregu-
lation of PTP1B in retinal detachment areas may contribute 

to phosphorylation and the activation of several plasma 
membrane-associated receptor tyrosine kinases, such as 
epidermal growth factor receptor (EGFR), which seems to 
be an important feature of the pathogenesis of PVR [26-28].

To verify the role of depletion of PTP1B on EMT, the 
biologic behaviors of RPE cells in vitro were observed, using 
TCS-401 (a selected inhibitor of PTP1B). First, it was found 
that, when RPE cells were incubated with various concen-
trations of TCS-401, cell proliferation was significantly 
increased at concentrations of 0.5, 1 and 2 μM, as determined 
with MTT. Exposure of confluent cells to TCS-401 promoted 
cell cycle progression, as seen by the results of protein expres-
sion levels of cell cycle regulatory factors, including cyclin 
A and cyclin D1. This finding suggests that the activity of 
PTP1B must help mediate the suppression of cell cycle entry 
in the RPE monolayer. Second, EMT is also associated with 
the enrichment of mesenchymal proteins, such as α-SMA, a 
highly conserved protein and a major component of microfila-
ments that control cell morphology and motility [29-31]. This 
study showed that the TCS-401-induced inhibition of PTP1B 
enhanced the expression of α-SMA in RPE cells at concen-
trations of 0.5, 1, and 2 μM. The associated upregulation of 

Figure 6. The inhibitory effect of 
PD98059 and LY294002 on TCS-
401-induced proliferation and 
migration in RPE cells. A: Inhibi-
tion of TCS-401-induced prolif-
eration by pretreatment with 10 
μM LY294002 and 20 μM PD98059 
for 30 min, as measured with MTT 
after 24 h incubation. B: Inhibition 
of TCS-401-induced migration by 
pretreatment with 10 μM LY294002 
and 20 μM PD98059 for 30 min, as 
measured with a transwell assay 
after 12 h incubation. Original 
magnif ication=100X. C: The 
number of migrated cells per HPF 
was shown. The data represent the 
mean±standard deviation of three 
independent experiments. *p<0.05, 
compared to the control group. 
#p<0.05, compared to the treatment 
with only TCS-401. HPF, high-
power field; RPE, retinal pigment 
epithelium.
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α-SMA contributes to fibrous membrane contractility [3]. 
Finally, the effect of TCS-401 on the migration of RPE cells 
was determined using a transwell assay. Treatment with 
TCS-401 significantly increased the migration of RPE cells 
at concentrations of 0.5, 1, and 2 μM. Hence, PTP1B may be 
involved in the regulation of proliferation, differentiation, the 
migration of RPE cells, and the re-entry of contact-inhibited 
rat RPE cells into the cell cycle.

Phosphorylation of Erk and Akt is involved in prolif-
eration, angiogenesis, migration, and vascular remodeling 
[32-34]. Furthermore, phosphorylation of some plasma 
membrane-associated receptor tyrosine kinases promotes 
the proliferation and survival of RPE cells, signaling through 
the MEK/Erk and PI3K/Akt pathways [35]. However, the 
signaling mechanism of PTP1B in RPE cells is unclear. To 
gain further insight into the molecular mechanisms by which 
inhibition of PTP1B induces proliferation, the expression of 
α-SMA, and migration in RPE cells, intracellular signaling 
pathways were examined. It was found that treatment of RPE 
cells with various concentrations of TCS-401 significantly 
increased phosphorylation of Erk and Akt. Treatment with the 
MEK/Erk inhibitor PD98059 and PI3K inhibitor LY294002 
blocked the phosphorylation of Erk and Akt in RPE cells, 
indicating that the activation of Erk and Akt depend on PI3K 
and MEK. Next, the functional involvement of the MEK/
Erk and PI3K/Akt signaling pathways in TCS-401-induced 
proliferation and migration of RPE cells was examined. It was 
found that treatment with PD98059 and LY294002 partially 
blocked TCS-401-induced proliferation and migration in RPE 
cells.

To our knowledge, we are the first to explore PTP1B 
expression in RPE. In this study, PTP1B played a role in 
proliferation, myofibroblast differentiation, and migration of 
the RPE cells. PTP1B-induced protein tyrosine phosphoryla-
tion and dephosphorylation regulate the activity of RPE cells 
and may be important physiologic mechanisms of initiation 
of EMT.
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