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Abstract

Motivation: Current advances in omics technologies are paving the diagnosis of rare diseases proposing a
complementary assay to identify the responsible gene. The use of transcriptomic data to identify aberrant gene
expression (AGE) has demonstrated to yield potential pathogenic events. However, popular approaches for AGE
identification are limited by the use of statistical tests that imply the choice of arbitrary cut-off for significance
assessment and the availability of several replicates not always possible in clinical contexts.

Results: Hence, we developed ABerrant Expression Identification empLoying machine LEarning from sequencing
data (ABEILLE) a variational autoencoder (VAE)-based method for the identification of AGEs from the analysis of
RNA-seq data without the need for replicates or a control group. ABEILLE combines the use of a VAE, able to model
any data without specific assumptions on their distribution, and a decision tree to classify genes as AGE or non-
AGE. An anomaly score is associated with each gene in order to stratify AGE by the severity of aberration. We tested
ABEILLE on a semi-synthetic and an experimental dataset demonstrating the importance of the flexibility of the VAE
configuration to identify potential pathogenic candidates.

Availability and implementation: ABEILLE source code is freely available at: https://github.com/UCA-MSI/ABEILLE.

Contact: silvia.bottini@univ-cotedazur.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Omics technologies have revolutionized the world of biology and
medicine tailoring the way to next-generation healthcare. The ad-
vent of whole-exome sequencing (WES) and whole-genome sequenc-
ing (WGS) has greatly accelerated the identification of variants in
previously unknown rare disease genes (Wortmann et al., 2015).
Although these technologies are mainstays in Mendelian disease
diagnosis, their success rate for detecting causal variants is far from
complete, ranging from 25 to 50% (Taylor et al., 2015). Several var-
iants remain as variants of unknown significance (VUS) or they are
missed due to the inability to prioritize them. Recently the employ

of RNA sequencing (RNA-seq) has been proposed (Byron et al.,
2016). This technology provides a direct probing of RNA abun-
dance and sequence of both coding and non-coding genome, includ-
ing allele-specific expression and splice isoforms (Wang et al.,
2009). Despite the very promising premises of RNA-seq to detect
new variants, the pioneering works using this technique improved
the diagnostic power by only 10% (Cummings et al., 2017; Frésard
et al., 2019; Gonorazky et al., 2019; Kremer et al., 2017; Lee et al.,
2020). Transcriptome analysis facilitates genome-wide interpret-
ation of DNA variants, specifically three aberrant events can be ana-
lyzed: aberrant expression, aberrant splicing, allelic imbalance, or
allele-specific expression. Currently, some improvements have been
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achieved in the identification of aberrant splicing events and allele-
specific expression thanks to the development of novel tools
designed for rare diseases such as FRASER (Mertes et al., 2021),
LeafCutterMD (Jenkinson et al., 2020) and ANEVA-DOT
(Mohammadi et al., 2019). On the other hand, the identification of
aberrant gene expression (AGE) in this context requires a paradigm
shift toward a novel way to analyze gene expression data. Usually,
to identify AGE, a comparison of gene expression levels between
two groups of individuals with different conditions such as healthy/
diseased, exposed/unexposed to treatment, or others, is carried out.
The significance of the results is measured by statistical tests whose
statistical power decreases if the two groups are made up of too few
individuals (Khang and Lau, 2015). This approach is not adapted in
the context of rare diseases. By definition, rare diseases concern only
a very small number of subjects, thus the availability of large cohorts
is uncommon. Most importantly, very often, replicates for the same
individual are not available in a such clinical context. Furthermore,
the disposal of a control group, such as healthy individuals, is often
limited. Moreover, the heterogeneity of these pathologies is very
high, which means that the same disease present in several patients
will not be due to the same responsible genes. Consequently, these
individuals cannot be combined to constitute the diseased group.
Finally, Li et al., they showed that most of the popular methods for
detecting differentially expressed genes, identify an elevated number
of false positives (Li et al., 2022). Therefore, classical statistical
methods cannot be used for the detection of AGEs in the context of
rare diseases. Two approaches have been proposed to fulfill these
needs. OUTRIDER (Brechtmann et al., 2018), which combines an
autoencoder and a statistical test to identify AGE, and OutPyR
(Salkovic et al., 2020) which uses a Bayesian model. Although
OUTRIDER showed good results on the Kremer et al. dataset, its
performance relies on considerable sample size (more than 60 sam-
ples) not always possible in the context of rare diseases. OutPyR
showed good performances in reporting injected AGE on small sam-
ple size but the number of total AGE identified was very high lead-
ing to a high number of false positives. Consequently, there is an
urgent burning to develop novel computational approaches to re-
solve the diagnostic deadlock and improve our knowledge of rare
disorders (Labory et al., 2020; Rahman and Rahman, 2018). Here,
we describe ABEILLE, (ABerrant Expression Identification
empLoying machine LEarning from sequencing data) a VAE-based
method for the identification of AGE from RNA-seq data without
the need for replicates and without assumption on the distribution,
using a flexible model obtained after testing several parameters. We
compare its performances to the state-of-the-art alternatives,
OUTRIDER (Brechtmann et al., 2018) and OutPyR (Salkovic et al.,
2020), using semi-synthetic data and a real dataset.

2 Materials and methods

2.1 Datasets
Rare-disease cohort from Kremer et al. The RNA-seq raw read
counts for this cohort were downloaded from Supplementary Data
S1 (Kremer et al., 2017). The cohort is composed of 119 patients
with suspected mitochondrial disease in diagnostic stalemate for
which RNA has been extracted from fibroblasts and sequenced.

Small datasets. We used the Kremer et al. dataset and we created
six smaller sub-datasets of size 110, 90, 60, 30, 20, and 10 samples,
respectively, composed of the 6 patients with validated AGE
(MUC1344, MUC1365, MUC1396, MUC1404, MUC1350, and
MUC1361) and the complementary number of patients to arrive to
the desired dataset size. For each size, we created 10 datasets ran-
domly selecting the patients without the validated AGE. We then
run the two tools ABEILLE and OUTRIDER and we measured how
many times they were able to identify any combination of the six
AGEs depending on the size of the dataset.

GTEx cohort. The Genotype-Tissue Expression (GTEx) project
(Consortium, 2015) is a public database of WGS, WES, and RNA-
seq data collected post-mortem from 54 non-diseased tissue sites
across nearly 1000 individuals. We randomly selected samples from

the GTEx database to build the semi-synthetics datasets. We also
filtered out samples with RIN<6 (RNA Integrity Number).

Semi-synthetic datasets. Due to the absence of a gold standard
real dataset with known AGE, we decided to use a computational
strategy to inject AGE in the GTEx cohort. We implemented the

same strategy as described in the study of Brechtmann et al. (2018).
Briefly, raw read counts in the original dataset were replaced by:

kO
ij ¼ roundðsi2

lu
j 6exp Nð Þru

j Þ (1)

With kO
ij , the generated count for gene j and sample i to substi-

tute to the original value, si is the size number, lu
j the mean of u

across the gene j, ru
j the standard deviation and as described in

(Brechtmann et al., 2018), N is the amplitude of the corrupted count

[a random value drawn in a normal distribution characterized by a
mean of log(3) and a standard deviation of log(1.6)]. AGEs are

injected randomly with probability 10�6, 10�5 or 10�4 resulting in
different percentages of injected AGEs (0.001&, 0.01& or 0.1& re-
spectively) in samples randomly selected from the GTEx database.

We created 18 semi-synthetic datasets composed of 50, 75, 125,
250, 500 and 1000 samples with AGE injected with the three differ-

ent probabilities. For a complete summary of the semi-synthetic
dataset characteristics see Supplementary Table S1.

2.2 Algorithm
ABEILLE is a computational framework to identify AGEs (Fig. 1). It
is composed of two phases: a supervised phase to identify parame-

ters intervals of aberration and an unsupervised one to identify
AGEs.

2.2.1 Supervised phase

The purpose of this phase is to determine the thresholds of parame-

ters implemented in ABEILLE model to discriminate AGEs respect
to normal gene expression (NGE). For this phase, we use two mod-
ules: ABEILLE main and ABEILLE decision tree. Hence, a labeled

dataset with known AGEs must be used. In absence of that, as it is
the case for us, a semi-synthetic dataset can be built. AGEs can be
simulated as described in Brechtmann et al. (2018) and described in

the paragraph ‘Datasets’.
ABEILLE main. The core of ABEILLE is composed by a VAE

followed by a linear regression model.
VAEs are generative models, which means they learn to approxi-

mate a data generating distribution. Through approximation and
compression, these models have been shown to capture an underly-

ing data manifold (a constrained, lower-dimensional space where
data is distributed) and disentangle sources of variation from differ-
ent classes of data.

The variational auto-encoder was built with Tensorflow (Mart�ın
Abadi et al., 2015). The VAE is composed of the input and the out-

put, four hidden layers in the encoder and in the decoder, and the
special latent space of a VAE. The sampling process and the lost
function of the VAE is from the Kingma et al. study (Kingma and

Welling, 2014). Each layer of the encoder or decoder is composed
of the dense layer followed by a batch normalization and the ELU

activation function. More details on the VAE configuration are in
Supplementary Material.

We feed the VAE with the semi-synthetic dataset (I_expr) and let
the model generate the reconstructed counts (R_expr) (Fig. 1A-I).
AGEs present in the original dataset represent a perturbation to the

data distribution. The integrity of reconstructed values by the VAE
is compromised for AGEs. Thus, comparing I_expr and R_expr

should lead the identification of AGEs (Fig. 1A-II left). To enhance
the comparison and evaluate the reconstruction fidelity, we estab-
lished two novel metrics: the divergence score and the delta count

(Fig. 1A-II right). The divergence score D. It measures the diver-
gence between the reconstructed values for each gene by the VAE
and the original values. We define the divergence score as:
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Dij ¼
Lij � lL

i

rL
i

; (2)

Where Lij ¼ kijþ1

k̂ ijþ1

� �
; kij is the original raw count for gene j and sam-

ple i, k̂ij is the reconstructed count for gene j and sample i, lL
i is the

mean of Lij across all the patients and where rL
i is the standard of

deviation of Lij across all the patients.
The delta count D, that we define here as:

Dij ¼ log2

k̂ij

lk
j

 !
(3)

where k̂ij is the reconstructed count for gene j and sample i, lk
j is the

mean of the original counts for gene j.
For each gene, the divergence score and delta count are plotted

for each patient composing the cohort: we expect the points to be
agglomerated very close to each other in case of NGE (high

reconstruction fidelity) while to see point(s) further from the main

agglomeration in case of AGE (low reconstruction fidelity). We thus

apply a linear regression model and calculate parameters associated

to this model to evaluate its position on the plot and its reconstruc-

tion fidelity. These parameters are:

• Typeerror, the standard residues is the distance between the pre-

dicted value on the linear regression and the real value.
• Dfbetas, are statistics that indicate the effect that deleting each

one observation has on the estimates of the regression coefficients

associated with the gene.
• Hat, projection matrix where the value of the diagonal corre-

sponds to leverages. The leverages describe the influence that each

response value has on the fitted value for that same observation.
• CooksD, Cook’s distance is defined as the sum of all the changes

in the regression model when observation i is removed from it.

Fig. 1. The workflow of ABEILLE to identify AGE. It is comprised of two phases: (A) a supervised phase to identify parameters intervals of aberration and (B) an unsupervised

one to identify AGE. (A) We feed the VAE with the semi-synthetic dataset (I_expr) and let the model generate the reconstructed counts (R_expr) (A-I). AGEs present in the origin-

al dataset represent a perturbation to the data distribution. The integrity of reconstructed values by the VAE is compromised for AGEs. Thus, comparing I_expr and R_expr

should lead the identification of AGEs (A-II left). To enhance the comparison and evaluate the reconstruction fidelity, we established two novel metrics: the divergence score and

the delta count (A-II right). For each gene, the divergence score and delta count are plotted for each patient composing the cohort. We thus apply a linear regression model and

calculate parameters associated to this model to evaluate its position on the plot and its reconstruction fidelity (A-III). These parameters were used to feed a decision tree using

the CART algorithm. The obtained decision tree is showed in A-IV. This decision tree gives the intervals of the regression parameters to classify gene expression as AGE or NGE.

(B) The first step is to run the VAE and the linear regression model on unlabeled dataset in order to calculate the regression parameters on the values of divergence score and delta

count obtained by comparing I_expr and R_expr (B-I and B-II). The procedure is the same as described for the supervised phase. The obtained regression parameters on the un-

labeled dataset are compared to the intervals obtained with ABEILLE decision tree during the supervised phase. This allow to classify gene expression as AGE or NGE based on

the regression parameters (B-III). An isolation forest approach is used to calculate the anomaly score to be associated to AGEs (B-IV)
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ABEILLE decision tree. To avoid to set threshold for the parame-
ters calculated on the linear regression to define the AGE, we used a
decision tree approach. Regression parameters calculated on the
semi-synthetic datasets were used to feed a decision tree using the
CART algorithm (Fig. 1A-III). The obtained decision tree is showed
in Figure 1A-IV. This decision tree gives the intervals of the regres-
sion parameters to classify gene expression as AGE or NGE. Once
calculated, these intervals can be used on unlabeled datasets to clas-
sify gene expression by comparing reconstructed counts by the VAE
with the input gene counts through the linear regression model.

2.2.2 Unsupervised phase

This phase can be run once obtained the aberration intervals
through the supervised phase. Alternatively, the aberration intervals
found in this study can be used without re-running the supervised
phase. The unsupervised phase allows to classify gene expression on
unlabeled datasets.

ABEILLE main. The first step is to run the VAE and the linear
regression model on unlabeled dataset in order to calculate the re-
gression parameters on the values of divergence score and delta
count obtained by comparing I_expr and R_expr (Fig. 1B-I and II).
The procedure is the same as described for the supervised phase.

ABEILLE identify. The decision tree calculated in the supervised
phase lead us the intervals of regression parameters to classify gene
expression as AGE or NGE. During this step, the regression parame-
ters calculated by ABEILLE main on the unlabeled dataset are com-
pared with the intervals obtained with ABEILLE decision tree. This
allows to classify gene expression as AGE or NGE based on the re-
gression parameters.

ABEILLE anomaly score. Since ABEILLE is not a statistical
method, classical calculation of P-value is not applicable. Thus, to
score the predicted AGE, we employed an isolation forest approach.
Just like the random forests, isolation forests are built using decision
trees. They are implemented in an unsupervised fashion as there are
no pre-defined labels. Isolation forests were designed with the idea
that anomalies are ‘few and distinct’ data points in a dataset. Each
observation, i.e. a pair of divergence score—delta count, is given an
anomaly score. The closer the score is to 1 the higher is the anomaly.
We run this approach on each plot of divergence score and delta
count for each gene (Fig. 1B-IV) and we retrieve the anomaly scores
for predicted AGE from ABEILLE identify.

2.3 Benchmark of AGE detection methods
We compared the performances of ABEILLE, OUTRIDER and
OutPyR. OUTRIDER and OutPyR were used with their respective
default parameters. We calculated precision, recall and F1 score on
semi-synthetic data by counting the number of AGE injected and
identified and the AGE injected but not identified with the total
number of AGE identified or AGE injected. Precision-recall curves
were built by ranking identified AGE by P-value or Z-score for
OUTRIDER and by divergence score or delta count for ABEILLE.

2.4 Functional analysis
To identify enriched terms in AGEs found in the Kremer dataset by
ABEILLE, OUTRIDER and the case-control approach used in the
original study, we used the R package enrichR (Kuleshov et al.,
2016). EnrichR interrogates 10 gene-set libraries and finds enriched
terms using a hypergeometric test. Results are reported only for sig-
nificant enrichment (P-value < 0.05).

2.5 Exploring ABEILLE VAE features
We developed a Shiny app to allow exploration of ABEILLE
encoded feature dimensions with covariate information. The app is
available at https://jlabory.shinyapps.io/ABEILLE-main/.

2.6 Implementation
ABEILLE is implemented in Python and R. The use of the VAE
allowing the reconstruction of the data can be done in two different
ways, either using the script abeille.py in a standalone way, or by

importing the python function through the framework in R, the to-
tality of the remaining steps working in R. Once the data is recon-
structed, it is enough to import them in R and then to compute the
parameters of divergence score and delta count. The IdentifyAGE
function will then retrieve these parameters as well as the original
data and the reconstructed data in order to select the AGEs.

OUTRIDER is an R package available on Bioconductor. It can
be used in two different ways: either by using the OUTRIDER func-
tion which allows to launch the whole analysis or by proceeding
step by step. To start the analyses, you must first filter out the unex-
pressed genes using the filterExpression function. The next step is to
fit the count data to a negative binomial distribution, and then cal-
culate the P-values. Finally, the last step of the pipeline consists in
calculating the Z-scores.

OutPyR is fully implemented in Python. It uses a Bayesian model
to identify AGEs. OutPyR takes as input an expression matrix in
raw counts. Unlike ABEILLE and OUTRIDER, there is no filtering
step to remove low expressed genes. OutPyR computes a P-value for
each couple of gene-patient and returns a matrix of P-values. We
retained AGEs if the P-values is less than or equal to 0.05.

3 Results

3.1 ABEILLE VAE features capture biological signals
First, we tested the ABEILLE VAE on the Kremer dataset. The
ABEILLE VAE compressed the patients into a lower-dimensional
space, the latent space, composed by 128 features dimension. The
goal was to evaluate ABEILLE on its ability to learn biological sig-
nals in the data. Since ABEILLE VAE works in unsupervised fash-
ion, the compressed features dimension encoded in the latent space
can represent known or unknown biological patterns. Therefore, we
investigated whether or not ABEILLE could distinguish the biologic-
al characteristics available for this cohort: the patient sex and the
batch group. Feature dimension 118 nearly perfectly separates sam-
ples by sex (Fig. 2A) and feature dimension 110 by batch group
(Fig. 2B) indicating that ABEILLE VAE model patient sex and bath
group robustly. We then explored all the 128 features dimension of
the latent space (Fig. 2C). The heatmap shows that features are non-
redundant and highly heterogeneous. Based on the hierarchical clus-
tering dendrogram, we can see that these features capture distinct
signals: for instance, hox group are large signals present in these
data (Kremer et al., 2017) but they are uniformly distributed in the
dendrogram indicating non-redundant features activations. Overall,
these observations showed the ability of the ABEILLE VAE to model
gene expression data of patients through the identification of fea-
tures dimensions that encode for biological patterns.

3.2 Divergence score, delta count and anomaly score:

three novel metrics to identify AGE
VAE are well-established generative models with the ability to re-
construct original data with high fidelity (Kingma and Welling,
2014). Since AGE represents a perturbation to the gene raw count
distribution, the integrity of the reconstruction is compromised for
AGEs. Thus, the comparison of the original and reconstructed
counts allows the identification of AGEs. The divergence score and
delta count are two novel metrics introduced here to evaluate the re-
construction fidelity of the original gene expression counts by the
VAE model. Once AGEs are identified, they are scored by an isola-
tion tree approach that allows to calculate the anomaly score: the
closer this score is to 1, the more severe is the aberration.

We tested these three scores on the Kremer dataset. After using
ABEILLE to identify AGEs, we plotted the divergence score, delta
count and anomaly score for the top and the bottom five AGEs
sorted by anomaly score as well as five randomly chosen NGE
(Fig. 3). We can observe that the divergence score and delta count
allow to easily identify AGE as the point far from the main points
distribution. Similarly, by comparing the distance of the AGE from
the rest of the distribution of the top five compared with the bottom
five, we can see the importance of the anomaly score to sort the
aberration.

ABEILLE: a novel method for AGE identification from RNA-seq 4757
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Then we focused on the experimentally validated pathogenic
candidates in the original publication. These genes have different
sources of aberration in specific patients: MGST1 was identified by
AGE in patient MUC1396, TIMMDC1 was identified by AGE and
aberrant splicing in two patients MUC1344 and MUC1365,
MCOLN1 in patient MUC1361 was identified by AGE although
with a signal slightly inferior of the thresholds of significance for Z-
score and P-values set by the authors, ALDH18A1 was identified by
aberrant splicing with AGE at the limit of thresholds for patient
MUC1404, finally in patient MUC1350, CLPP was identified by al-
lele specific-expression only without any consequences on the ex-
pression level. ABEILLE correctly identified as AGE the genes
MGST1 and TIMMDC1 but could not identify ALDH18A1
(Supplementary Fig. S1). However, this gene mainly shows aberrant
splicing, that is not calculated by ABEILLE. The gene MCOLN1, as
well as in the original publication, can be retrieved as AGE if thresh-
olds are relaxed allowing to include this gene. Finally, CLPP was not
identified as AGE as expected, because, as well as in the original
study, this gene was not identified as AGE but only having allele
specific-expression. Overall, ABEILLE could retrieve the AGE for
the pathogenic candidates identified by Kremer with exception of
ALDH18A1.

Altogether these analyses demonstrated that the divergence
score, delta count and anomaly score are valid parameters to iden-
tify AGE.

3.3 AGE detection on a real dataset
We studied the performance of the three tools, ABEILLE,
OUTRIDER and OutPyR to detect AGEs on real data from Kremer
et al. (2017) and we compared with the classical case-control ana-
lysis performed with DESeq2 by the original study. We found that
OutPyR identified a number of AGEs considerably higher than the
other approaches (Supplementary Table S2).

Then we calculated the number of AGE per patient (Fig. 4A) and
we can observe that the minimal number of AGE per patient identi-
fied by OutPyR is 10696. OutPyR violates the definition of AGE in
rare diseases where we expect very few AGEs for each patient.
These observations rule out OutPyR as a tool for AGE identification
in this context.

We compared the number of AGEs found by OUTRIDER and
ABEILLE with the AGE detected in the original study (Fig. 4B,
Supplementary Table S3). ABEILLE identified a higher proportion
of AGEs in common with Kremer et al. respect to OUTRIDER (P-
value 5.289e-07, fisher test; Fig. 4C): 48% of AGE detected by
ABEILLE are in common with the original study, while only 19%
for OUTRIDER. Very few AGEs identified are common to
ABEILLE and OUTRIDER, meaning that the two tools target differ-
ent AGE populations. Consequently, when we study the intersection
of the AGE found by the two tools with those identified in the ori-
ginal publication, we observe little overlap.

We noticed that in the original Kremer study, the number of
AGE identified for one patient, MUC1372, is considerably high:
493 out of 615 for the entire cohort. Interestingly, ABEILLE found
70 AGEs for this patient, that is, the maximal number of AGE per
patient reported by this tool, while OUTRIDER did not find any
AGE for the same patient. Although further information about the
patient and the data processing would be necessary, our hypothesis
is that OUTRIDER autoencoder is too stringent thus all patterns in
the data are canceled, on the other hand the case-control approach
overestimates the number of AGEs by comparing each patient with
all other of the cohort. In conclusion, ABEILLE seems to offer the
best balance of cofounder controlling without suppression of hidden
biological patterns in the data. This observation highlights the limi-
tation of the case-control approach in this context.

Finally, we investigated the biological meaning of AGE found by
ABEILLE and OUTRIDER compared to the AGE found by the case-
control approach of the original study (Fig. 4D and Supplementary

A

B

C

Fig. 2. ABEILLE VAE features captures biological signals. (A) Encoding dimensions 10 and 1 stratify patients batch group. (B) Encoding dimension 118 separates patients by

sex. (C) Full ABEILLE encoding dimensions by Kremer sample heatmap. Patients on the y axis, biological features on the x axis according to the legend in the plot
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Fig. S2). Overall terms related to mitochondrial biology or diseases
are enriched of AGE identified by ABEILLE, similarly to the AGEs
identified in the original study. On the contrary, AGE identified by
OUTRIDER are poorly enriched in mitochondrial-related gene-sets.
Notably, a novel set of AGEs identified only by ABEILLE showed
significant enrichment in ClinVar variants (Landrum et al., 2014)
related to mitochondrial diseases.

3.4 AGE detection on small dataset size
One of the main limitations in the field of rare diseases is the samples
availability. Thus having a data analysis tool that do not require a
consistent number of samples is pivotal. To test the performances of
ABEILLE and OUTRIDER regarding this fundamental issue, we cre-
ated small sub datasets of the Kremer dataset (see section 2 for more
details). Briefly, we randomly suppressed samples from the original
cohort in order to obtain datasets with sizes: 110, 90, 60, 30, 20 and
10 always keeping the 6 patients with validated AGEs. We repeated
the strategy 10 times for each size thus obtaining 60 datasets. We
then tested the ability of ABEILLE and OUTRIDER to recall any of
the 6 validated AGEs accordingly with the sample size (Fig. 4E). As
expected, OUTRIDER was not able to identify any validated AGE
when the sample size is smaller than 60. On the contrary, ABEILLE
performances are stable regarding the size of the dataset being able to

identify validated AGEs also for datasets composed with less than 30
samples. This analysis demonstrates that the performances of
OUTRIDER strongly depends on the number of samples provided
due to the use of a statistical approach to identify AGEs, while our
novel strategy independent of any statistical test, shows good per-
formances for very small datasets. This result is relevant for the rare
disease context since small cohorts are usually available.

3.5 Precision–recall benchmark for AGE detection
We then studied the identification of AGEs by ABEILLE and
OUTRIDER. To perform this analysis, we injected simulated AGEs
into the GTEx data and counted the number of such AGEs that were
recovered as described in Section 2. We simulated AGEs with three dif-
ferent probabilities resulting in different percentages of injected AGEs
(0.1&, 0.01& or 0.001&). The analysis was repeated for six different
size datasets: 50, 75, 125, 250, 500, 1000 samples (Supplementary
Table S1). We calculated precision, recall and F1 score to measure
ABEILLE and OUTRIDER performances on the 18 semi-synthetic
datasets. Regarding precision, both tools show very similar performan-
ces on all the datasets despite the size and the proportion of injected
AGEs. We can assess that both tools correctly recall similar propor-
tions of injected AGEs. Interestingly, we can observe a stratification of
sensitivity of both tools accordingly with the size of the dataset.

A

B

C

Fig. 3. The three novel parameters defined in ABEILLE: the divergence score, the delta count and the Aberrant Score. Measure of the divergence score versus delta count (first

row) and divergence score versus anomaly score (second row) (A) representing the top five AGEs and (B) the bottom five AGEs found by ABEILLE in the Kremer dataset sorted

by anomaly score; (C) five randomly selected genes where no aberrant expression was found in any patient of the cohort. The red point represents the AGE with the patient

identifier indicated closer to the point and black point the NGE
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Overall, ABEILLE shows higher sensitivity than OUTRIDER especially
for small datasets composed of 50 or 75 samples, while similar values
of this score are obtained for datasets of size bigger than 250 samples.
This result is particularly relevant in the context of rare diseases where
usually only very small cohorts are available. On the other hand, for
these aforementioned datasets, OUTRIDER achieved a slightly better
F1 score. We observe that performances of OUTRIDER strongly de-
pend on the proportion of AGEs injected in the dataset, showing better
results when the proportion of injected AGEs is the highest simulated.
This dependence is less important for ABEILLE. Also, this result is of
particular note in the context of rare diseases since we expect to have
very few AGEs for each patient.

To further explore the properties of the two tools, we calculated
the precision-recall curves on two ranking for each tool, namely P-
values and Z-scores for OUTRIDER and divergence score and delta
count for ABEILLE (Supplementary Fig. S3). On datasets with 0.1&

AGEs injected, ABEILLE ranking by delta count showed the higher
performances than the ranking by divergence score, especially for
datasets sizes above 250 and smaller than 50. When the percentage
of injected AGEs diminish, the ranking by divergence score yielded
better results for ABEILLE. OUTRIDER ranking by P-values are
slightly better than by Z-score.

Overall depending on dataset size and percentage of injected
AGEs, the performances of the tools depend on the score used to
rank the AGEs. This result underlines that the ranking by one score
and defined thresholds are not best suitable for AGE identification.

4 Discussion and conclusions

In this study, we presented ABEILLE, it combines the use of a VAE,
able to model any type of data without any assumption about their

distribution, and a decision tree, allowing to obtain a classification
of genes as AGE or non-AGE. We compared the performances of
ABEILLE with the state-of-the-art alternative OUTRIDER that uses
an AE to normalize the data and then identify AGEs through a stat-
istical test. The performance comparison of these two tools was
done using two datasets: a semi-synthetic dataset and a real dataset
from the study by Kremer et al.

Due to the lack of a ‘gold standard’ dataset with known real AGEs,
we had to generate in silico datasets in order to compare the precision
and recall of these two tools. One limitation of this analysis is that the
GTEx database contains real AGEs over which we have no control and
which suggests an underestimation of the performance of both tools
with our analyses. Our results show that, although both tools have
similar precision, ABEILLE has a higher recall than OUTRIDER espe-
cially for small datasets (<75 samples). Since recall expresses the pro-
portion of correctly found AGEs among the total number of injected
AGEs, we can state that ABEILLE performs better in identifying true
AGEs. ABEILLE performs better on datasets with very few AGEs,
which makes it particularly suitable for rare diseases where a single
gene in a patient may be responsible for the pathology and where the
available cohorts are small. These results were corroborated by the ap-
plication on the real data from Kremer et al. dataset. Here ABEILLE
showed a higher agreement with AGE found by the original study than
OUTRIDER and a higher specificity to detect AGEs experimentally
validated. Of note, ABEILLE outperformed OUTRIDER when sample
size is smaller than 60 samples: while OUTRIDER cannot identify any
of the validated AGE, ABEILLE showed similar performances as
observed on the entire cohort. Thus ABEILLE is suitable for AGE iden-
tification in the context of rare diseases.

We did not compare ABEILLE with other known methods for
RNA-Seq data analysis such as DESeq2 (Love et al., 2014) or edgeR
(Robinson et al., 2010), because the estimation of AGEs is not based

A B D

C

E

Fig. 4. Benchmark of ABEILLE, OUTRIDER and OutPyR on real data. (A) The number of AGEs per patient is reported sorted in descending order for ABEILLE, OUTRIDER

and Kremer, in ascending order for OutPyR. (B) Venn diagram representing the number of AGEs shared by ABEILLE, OUTRIDER and Kremer. (C) Mosaic plot showing the

proportion of AGEs shared by ABEILLE and Kremer or OUTRIDER and Kremer with respect to not shared AGEs. (D) Summary of the functional analysis results performed

on AGEs identified by the 3 approaches on 11 ontologies regarding terms related to mitochondrial biology and diseases. (E) Performances of ABEILLE and OUTRIDER on

small datasets
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on the same principle. While these methods are suitable for identifica-
tion of fold-change variation comparing two population, ABEILLE is
conceived to identify AGE in one population. Moreover, these methods
require several replicates to obtain reliable results and in general these
replicates are not produced in the context of diagnostic research.
However, it could be interesting to add these estimators to ABEILLE in
order to improve the decision tree used to identify AGEs.

Finally, we tested ABEILLE and OUTRIDER on finding AGEs in
single-tissues of the GTEx dataset (data available at https://zenodo.
org/record/6395166). Both tools showed some limitations to handle
these data, leading to a large number of genes with very low expres-
sion identified as AGE. For OUTRIDER this limitation was already
claimed by the authors because of a possible poor fit of the negative
binomial model. For ABEILLE, the issue is in the sparsity of the data
because we optimized the model for small datasets where we do not
expect a high degree of sparsity as in the single-tissue datasets in
GTEx. Thus a novel model should be developed to handle single-
tissue and multiple-tissues AGE identification, although we do not
expect to have data from several tissues for the same patient in the
diagnostic context.

In conclusion, we have demonstrated that ABEILLE is a valid al-
ternative to OUTRIDER, especially for small cohorts composed by
less than 60 samples, targeting a different population of AGEs more
specific for aberrant expression than the population of AGEs identi-
fied by OUTRIDER. The advantages of ABEILLE are: ability to
have good performances on small cohorts thanks to the VAE model
that performs the learning phase on less data because of the sam-
pling in the latent space, more flexibility due to the representation of
each input point as a normal distribution in the latent space that
should be able to approximate any other distribution and more re-
sistant to noise.

In the future, we need to perform more tests in order to evaluate
the ability of ABEILLE to work properly on different types of data
and not only on RNA-Seq data. The ability to analyze different types
of data could pave the way for the use of ABEILLE on multi-tissues
and multi-omics data, including proteomic and metabolomic data.

Data availability

The data underlying this article are available in the article, in its on-
line Supplementary Material and at the repository https://zenodo.
org/record/6395166. The app to explore the latent space is available
at https://jlabory.shinyapps.io/ABEILLE-main/. ABEILLE source
code is freely available at: https://github.com/UCA-MSI/ABEILLE.
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