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Chinese hamster ovary (CHO) cells have been used widely in the pharmaceutical industry for production of biological therapeutics
including monoclonal antibodies (mAb). The integrity of the gene of interest and the accuracy of the relay of genetic information
impact product quality and patient safety. Here we employed next-generation sequencing, particularly RNA-seq, and developed a
method to systematically analyze the mutation rate of the mRNA of CHO cell lines producing a mAb. The effect of an extended
culturing period to mimic the scale of cell expansion in a manufacturing process and varying selection pressure in the cell culture
were also closely examined.

1. Introduction

Thedevelopment of next-generation sequencing (NGS) tech-
nologies has greatly improved the efficiency of sequencing
and contributed to the understanding of dynamic changes
in gene expression [1]. With the maturation of NGS, its
applications in biomedical research and drug discovery
have greatly advanced the identification of disease related
mutations and the development of molecules targeting the
aberrantly expressed gene products [2–6]. Massively parallel
cDNA sequencing (RNA-seq) has revolutionized transcrip-
tomics studies compared to microarray technologies [7].
RNA-seq allows both qualitative and quantitative analysis of
the expressed gene product at messenger RNA (mRNA) level
with wide dynamic ranges and superior sensitivity [8].

Mammalian cell lines such as the Chinese hamster ovary
(CHO) cells have been widely used in the production of
recombinant therapeutic product includingmonoclonal anti-
bodies [9, 10]. These cell lines are propagated extensively
to reach large-scale production vessel. Production cell lines
are generated by transfecting the host cells with a plasmid
vector expressing the gene of interest (GOI) and a selection
marker, followed by drug treatment and clone selection.

During a large-scale manufacturing process, cells from a
frozen bank need to be expanded multiple times to reach a
final volume as large as 20,000 liters.The integrity of the GOI
and the accurate flow of genetic information throughout this
process are crucial to product quality. Traditionally, protein
sequencing and mass spectrometry are used to characterize
the final product for its consistency and homogeneity at the
protein level [11]. DNA sequencing based on the Sanger or
pyrosequencing method has also been used for sequence
analysis of themRNA (via cDNA) [12]. Although thesemam-
malian host cells have a proven track record in consistently
producing high-quality products, a potential threat is posed
to the quality of the final product by the drug selection
process, cloning procedures, and environmental stress over
extended passaging conditions [13]. Product variants includ-
ing point mutations could develop during the life cycle of
the production cells. However, the extent of this risk has not
been fully understood due to the limitations of traditional
molecular biology tools mentioned above.

In this study, we explored the use of RNA-seq technology
for the characterization of the mutation rate in a stably trans-
fected CHO cell line expressing a recombinant monoclonal
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antibody (mAb) under extensive in vitro passaging. The goal
is to identify and quantify mutations in a cell population at
the transcript level under various culture conditions. We first
carried out a feasibility study by mixing two slightly different
mAb light chain cDNAs at different ratios and subjected the
mixture samples to RNA-seq analysis. The detection limit of
the mutation rate was determined by the feasibility study.
Since mutation rate is presumably related to the length of
passaging and the presence of potentially mitogenic selection
reagents, such as methotrexate (MTX), we next cultured
the CHO cell line continuously to reach an in vitro cell
age of ∼150 population doubling levels (PDLs). In parallel,
increasing the dose of MTX was also evaluated for its impact
on mutation rate. The method we developed in this study
will be instrumental in defining the cell culture parameters
to ensure consistent and reliable product quality.

2. Materials and Methods

2.1. Feasibility Study by cDNAMixing. Two cell clones (A and
B) expressing a human IgG with different light chain (LC)
sequences were thawed from frozen banks and cultured in
alpha-MEM (Gibco, Cat. 12561) containing 10% dialyzed fetal
bovine serum (FBS, SAFC, Cat. 12015C) and 0.45% glucose
(Sigma, Cat. G8769). Cells were passaged and expanded for
RNA extraction. RNA extraction was performed using the
RNeasy kit (Qiagen, Cat. 74104), andRNAwas eluted in 50 𝜇L
RNase-free water. RNA concentrationwasmeasured onNan-
oDrop Spectrophotometer (ND-1000, Thermo Scientific).

RT-PCR of IgG light chains was set up with 200 ng RNA
per sample using the OneStep RT-PCR kit (Qiagen, Cat.
210212) in 50 𝜇L reaction volume. RT-PCR was run on the
Applied Biosystems 2720 Thermal Cycler with incubation
periods of 30min at 50∘C and 15min at 95∘C, 30 cycles
of 30-second denaturing at 94∘C, 30-second annealing at
62∘C, and 2min extension at 72∘C, followed by final 10min
incubation at 72∘C. cDNA was purified using the Qiaquick
PCR Purification Kit (Qiagen, Cat. 28106) and eluted in 30 𝜇L
EB buffer (10mM Tris-Cl, pH 8.5). cDNA concentrations
were measured on NanoDrop. The cDNA of clone B was
mixed with cDNAof clone A atmixing ratios of 5%, 1%, 0.5%,
0.1%, 0.05%, and 0.01%. Triplicate samples of pure cDNA of
clones A and B and each mixture were submitted to BGI for
RNA-seq.

See Supplementary Information in Supplementary Mate-
rial available online at http://dx.doi.org/10.1155/2016/8356435
for light chain and primer sequences.

2.2. cDNA Preparation from Cell Line under Different Culture
Conditions (Main Study). Clone A, derived from a single
cell, was thawed from a frozen bank at about 14 PDLs since
serum-free adaptation and cultured in Ex-cell ACF CHO
medium C5467 (SAFC Cat. 86016C-1000mL) with 4mM L-
glutamine (Gibco, Cat. 25030), 1x Trace Elements A (Cellgro
Cat. 99-182-C1), and 1x Trace Elements B (Cellgro Cat. 99-
175-C1). Cells after thawing were termed PDL 0 and around
1 million cells were pelleted and resuspended in 350 𝜇L RLT
buffer with 1% beta-mercaptoethanol for RNA extraction.

Cells were further passaged at 0.5million/mL every 3-4 days
in the presence of 0, 20, or 80 nMMTX (Sigma Cat. 8407), at
37∘C and 7.5% CO

2
.

At PDLs 0, 50, 100, and 150, 15 million cells were pelleted,
divided into 3 aliquots upon lysis (except PDL 0 sample
which was divided into replicates at RNA level) and RNA
was extracted following Qiagen protocol (Qiagen RNeasy
kit, Cat. 74104). Reverse transcription was performed with
200 ng RNA using the AccuScript High Fidelity RT-PCR kits
(Agilent, Cat. 600180). The thermal program includes 5min
incubation at 65∘C and cooling to room temperature for
5min, followed by addition of 1 𝜇L of 100mM dithiothreitol
(DTT) and 1 𝜇L of AccuScript Reverse Transcriptase. The
reaction was further incubated at 42∘C for 30min and stored
at 4∘C. Three separate reverse transcription reactions were
performed for PDL 0 RNA to create replicates. cDNAs of
heavy chain (HC), light chain (LC), dihydrofolate reductase
(DHFR), andGAPDHwere amplified via PCRusing PfuUltra
HF DNA polymerase (Agilent, Cat. 600380) and the follow-
ing thermal cycle program: 1min at 95∘C, 30 cycles of 30 sec-
onds at 95∘C, 30 seconds at 64∘C (62∘Cannealingwas used for
DHFR), and 3min at 68∘C, followed by a final 10min incuba-
tion at 68∘C. PCRproductswere purified usingQiaquick PCR
Purification Kit (Qiagen, Cat. 28104). For each sample, equal-
molar ratios of HC, LC, DHFR, and GAPDHwere mixed to a
total cDNAmass of 2.5 𝜇g and submitted for RNA-seq at BGI.
The experimental procedure is outlined in Figure 1.

For the feasibility study, the amplified fragment for light
chain corresponded precisely to the target sequence. In the
main study, a slightly larger region was amplified for each
target to ensure that the region of interest was outside the
range of the PCR primers themselves.The references used for
mapping were modified accordingly.

2.3. RNA-Seq. At BGI, cDNA was fragmented to an average
fragment size of 170–180 bp using Covaris. OnThermomixer,
these fragments were subjected to end-repair and the 3
end was adenylated. Adaptors were ligated to the 3 ends.
The ligation products were purified on TAE-agarose gel, and
∼14 rounds of PCR amplification were performed to enrich
the purified cDNA template. For quality control, the library
was validated on the Agilent Technologies 2100 Bioanalyzer
and the ABI StepOnePlus Real-Time PCR System. Qualified
libraries were sequenced on Illumina HiSeq2000 and 100Mb
clean sequence data were generated for each.

See Supplementary Information for details on sequences
of primers and amplified regions. Analysis was performed
excluding the regions corresponding to the PCR primers.

3. Results

3.1. Feasibility Study. cDNAs from two clones expressing
light chainwith closely related but slightly differing sequences
were mixed in different ratios to assess the ability of NGS to
quantitatively detect the fraction of mutant bases in a mixed
population.The sequences chosen for this were each 714 bases
long and differed in 46 positions. The sequence alignment is
shown in Figure S1.
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Figure 1: Experimental outline of RNA-seq studies of production CHO cell lines.The tested CHO cell lines expressing mAb were propagated
in suspension. Cell pellets were isolated and RNA samples were subsequently extracted. Reverse transcription was performed on the RNA
samples and certain genes of interest were amplified from cDNAs. After library preparation, the product was sequenced on Illumina
HiSeq2000. Details of data analysis are described in Section 3.

Detecting the fraction of sequence reads from a mixture
of these clones is fundamentally different than detecting
emerging mutations in cell culture in that one would not
expect to find so many mutations emerging at once. In terms
of the data analysis, the main impact is on the ability to map
reads. For example, in the sequence between positions 80 and
120, there are more than a dozen sequence differences. By
default, most short-readmappers will onlymap reads reliably
when the error rate is less than around 5%. If sequences
including mixtures of reads from clones A and B were
mapped directly to clone A reference, some reads from clone
Bwould notmap at all to cloneA reference.This would not be
expected to happen in the real case of an emerging mutation
at a single position. To address this issue, for the feasibility
study, we map reads to a reference sequence that includes
both clone A and clone B sequences, using BWA (https://
github.com/lh3/bwa; version 0.7.0; Li H. and Durbin R.
(2009) Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics, 25, 1754–1760. [PMID:
19451168]). BWA will output the single best alignment for
each read in SAM format. For reads from regions where
clones A and B differ, the alignment will indicate that the
mapping was specific to reference A or B. For reads from
regions where clones A and B do not differ, reads will be
randomly assigned to one reference or the other. In order
to obtain a mapping that is consistent with what we would
expect to find in the real study if any one of the 46 mutations
had occurred singly, we modify the mappings obtained in
this way as follows. We replace all occurrences of the clone
B sequence identifier in the SAM-formatted alignment files
with the clone A identifier, and we ignore the trailing tag
fields. Since there are no insertion or deletion differences
between the two clones, the SAM file obtained in this way
is perfectly consistent with what would have been obtained
if the mutations had occurred separately. This procedure is
equivalent to mapping reads to each of the clone sequences
separately, determining which reference was a better fit and

then translating the clone B alignments to become clone
A alignments. In this case, that translation step is trivial
since the two sequences differ only by substitutions. The key
advantage of this approach over any single-referencemapping
approach is that it eliminates the possibility of any edge
effects or incorrectly induced insertions or deletions in the
alignments in regions where the clones A and B sequences
are significantly different. Had we used a more exhaustive
approach such as a Smith-Waterman alignment of all reads to
the clone A sequence, for example, the resulting alignments
of reads from clone B that included significantly differing
sections would have had small errors in alignment that would
have confounded the analysis. Also, it is important to note
that this modified alignment procedure is only relevant for
the initial validation portion of this study.

Aside from this mapping difference, the analysis for the
feasibility study is performed exactly as for the main study.
Sequence data were received from BGI in FASTQ format.
Adapters were removed using SeqPrep (https://github.com/
jstjohn/SeqPrep; version 0.4; unpublished) and aligned to
the reference sequence using BWA. Coverage across the light
chain sequence for all samples is shown in Figure S2. The
overall mapping rate across all experiments was very high,
generally around 99%, and the reads aligned with a very low
mismatch rate, typically around 0.2 mismatches per 90 bp
read. This indicates that we had very little contamination in
the experiment.

The SAMtools program “mpileup” (https://github.com/
samtools/samtools; version 0.1.19; Li H.∗, Handsaker B.∗,
Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abeca-
sis G., andDurbin R. and 1000Genome Project Data Process-
ing Subgroup (2009) The Sequence alignment/map (SAM)
format and SAMtools. Bioinformatics, 25, 2078-9. [PMID:
19505943]) was used along with custom scripts to extract for
each position in the target region the counts of each base of A,
C,G, andT, aswell as the numbers of insertions and deletions.
Insertions were counted according to the base immediately
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preceding the insertion regardless of what sequence was
being inserted. Similarly, deletions were attributed to the base
being deleted, regardless of how many bases were spanned
by the overall deletion. These counts were stratified based on
whether they were found from reads aligned in the forward
or reverse directions. Bases with quality scores less than
15 were ignored in this analysis. This cutoff was selected
to remove a minimum amount of data (typically 2–5% of
bases), while eliminating the lowest quality bases, which are
mainly those with reported base quality of two, indicating
that the sequencer failed to call the base at the position.
Within each experiment, for each position in each target
sequence, a preferred orientation was determined based on
which orientation gave rise to higher overall coverage. Only
data from reads in the preferred orientation at each position
was used to generate final results. Overall, this step has the
impact of removing a small portion of very-low-quality data,
at the cost of ignoring just under half of the overall sequence
data, which has little impact on most positions.

This decision to use only data from reads in a preferred
orientation is driven by the fact that some sequence contexts
are problematic for sequencing (observed in a variety of
targeted sequencing experiments; unpublished results). The
problem may arise from any step in the process, from
amplification to library prep to the sequencing itself.The issue
is often found in regions that are G-rich. The reads on the
G-rich strand will often have errors, while the reads from
the other C-rich strand do not. In those cases, we find that
the “better” strand usually has higher coverage, presumably
because the sequencer was unable to generate acceptable
reads from that direction and/or some of the base calls had
quality scores below the threshold of 15. By applying a cutoff
based on coverage, we are able to identify the “better” strand
without explicitly biasing the analysis to lower-frequency
results. For consistency, the strand choice is made once for
each unit of analysis, the feasibility study, and the main study.

Once the data have been processed to the counts of A, C,
G, and T, indels and deletions for each position, we can deter-
mine the consensus sequence and the rate of occurrence for
each possible alternate allele at each position. If we consider
the data from the unmixed sample for clone A to be our ref-
erence, and any alternate allele observations to be errors, we
find that the error rate across all possible positions, measured
as the frequency of the most common alternate allele at each
position, ranges from less than 0.01% to a high of 0.27%, with
99%of possible alternate alleles occurring at a rate of less than
0.2%. The full distribution is shown in Figure 2.

To assess the reproducibility of the data, we looked at the
apparent error rates for each possiblemutation using replicate
experiments. Figure S3 shows plots of error versus error for
two of the 100% clone A reference samples versus the third.
The plot has a point for each possible base at each position,
including the reference base.The reference base calls all hover
near 1 when there are consensus base calls that all fit into the
same pixel on the log-log plot. In this way, the plot focuses
attention on the erroneous base calls.The red, green, and blue
curves correspond to a difference in apparentmutation rate of
10%, 1%, and 0.1%, respectively. Using these plots, it is possible
to quickly identify any outliers that might correspond to true
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Figure 2: Distribution of error rates across all positions in light
chain from the feasibility study. The most frequent alternate allele
at each position is used to populate the figure.

mutations and to get an estimate of the overall noise level in
the experiment.

For these samples, there are a few points very close to
the blue 0.1% line, but none that actually cross it in either
comparison. By contrast, when there is a true signal in the
data set, data points are expected to be well outside this
region. For example, if we take two of the 0.1% spiked controls
and two of the 0.5% spiked controls and compare them to the
0% reference, we obtain the plots in Figure S4.The points cor-
responding to the true spiked-in mutations are colored red.

We will take the signal for each mutation in each spiked-
in sample to be the difference between the average alternate
allele rate observed in each of the three replicate spike-in
samples and the average alternate allele rate observed for the
corresponding mutation in the replicate reference samples.
For each of these possible mutations, we will use a 𝑡-test
to assess whether the difference between the two means is
statistically significant. Given the small numbers of replicates
involved, the 𝑡-test results will not be used aggressively, but
rather as a filter to weed out spurious results (uncorrected 𝑃
value cutoff of .01).

The main results from the samples in the feasibility study
are shown in Figure 3. We find that the estimates of mixing
ratio are very accurate.Themedian signals at positive control
sites for the 0.01%, 0.05%, 0.1%, 0.5%, 1%, and 5% spike-
in experiments were 0.017%, 0.057%, 0.11%, 0.57%, 1.1%,
and 5.3%, respectively. The range of signals was typically as
much as ±2x, however. Certain sites have consistently lower
or higher signal estimates across different spike-in levels,
suggesting that the variability may be sequence-dependent
and may not be corrected by additional sequencing.

All 46 true-positive mutations are observed with statis-
tical significance for spike-in levels of 5%, 1%, and 0.5%.
At the 0.1%, 0.05%, and 0.01% spike-in levels, 45/46, 42/46,
and 10/46 of the mutations are observed. Across all control
sites (true negative), 27 false positives were observed. The
observed signal was less than 0.01% in most of those cases,
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Figure 3: The seven horizontal bands of points correspond to
experiments with mixing ratios of 0.01%, 0.05%, 0.1%, 0.5%, 1%, 5%,
and 100%. There are points for each position in light chain for each
sample sequenced. The 𝑥-axis corresponds to the apparent signal
for each spiked-in sample. In order to include the negatives that
result from this measurement on the log-scale plot, they are plotted
as their absolute values, colored grey, and offset just below the
other points. The points corresponding to the spiked-in mutations
are colored blue and offset just above the other points. The light
blue points did not meet the threshold for statistical significance.
True-negative mutations that did meet the criteria for statistical
significance are colored purple instead of black. All points have had
a small amount of vertical jitter added.The jitter and offsets serve to
allow visualization of the full distribution of points for the negative
and positive controls.

and the highest signal observed was 0.03%. By contrast,
for the positive control sites at the 0.1% spike-in level, the
lowest observed excess signal was 0.0599%. Based on these
observations, we set the following thresholds for mutation
detection in the main study: excess mutation signal of more
than 0.05%with a𝑃 value less than .01. In the feasibility study,
these criteria would yield 45/46 true positives at the 0.1%
spike-in level, with no false positives. The one false negative
had an apparent signal of 0.12% but just barely missed the 𝑃
value cutoff with a value of .012. Therefore, these settings are
designed to be sufficient to detect (or rule out)mutationswith
a true signal of more than 0.1%.

It is worth noting here that had we been interested only
in mutations at higher levels, the natural thresholds based
on this feasibility study would always be around one-half of
the desired mutation detection rate. That threshold would
still allow perfect sensitivity for all 46 tested mutations, while
minimizing the false positive rate.

3.2. Main Study. We found that the error profile for the main
study was slightly different than that observed in the feasi-
bility study. Overall, the error profile was better for the main
study, with an average error rate over all possible substitutions
and indels of .011%, versus .017% for the feasibility study.

However, while there were no mutations with a back-
ground rate of more than 0.3% in the feasibility study, there
were four such mutations in the main study, including two
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Figure 4: Comparison of a baseline sample from the main study
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at each position. The dotted lines correspond to a mutation rate of
0.3%.
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Figure 5: Histogram of counts of mutations meeting the threshold
for detection of mutations at the 0.1% level for each experimental
condition tested. Those mutations that also met the criteria for the
0.5% level are highlighted in light grey.

above the 1% level. The overall correspondence between
the error rates was nevertheless quite good overall. See the
error : error plot in Figure 4. More importantly, the error
profiles for the main study samples compared to replicates
within that study were very consistent. See the error : error
plots for the reference samples in Figure S5.

We proceeded with the analysis as described. Across all
nine samples covering no MTX, 20 nM MTX, and 80 nM
MTX at 50, 100, and 150 PDLs, 245 mutations met the
criteria established in the feasibility study for the 0.1% level.
These were unevenly distributed across the samples, biased
strongly toward samples with larger PDLs. The distribution
of mutations is shown in Figure 5. Also highlighted in this
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Main study results (LC)
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Figure 6: Four panels correspond to each of the four targets: light chain, heavy chain, GAPDH, and DHFR (clockwise from the top left).
Each panel has points for each experimental condition, stratified vertically, exactly as done for the feasibility study (Figure 3). The coloring,
jittering, and offsets for the points are also identical to Figure 3, except that there are no spike-in signals here, and hence no blue points.
Positions meeting the criteria for significance (𝑡-test 𝑃 value <.01) are colored purple.

figure are those mutations that would have met the criteria
for mutation detection at the 0.5% level. In total there were
ten signals detected at that level.

The same analysis was performed with identical settings
for the other three targets in the experiment. The pattern of
mutations was very similar in each case.The plots in Figure 6
show the apparent rate of mutation for all possible mutations
in each of the four targets studied. In this more quantitative
view, it is possible to see the full distribution of error rates
across the study. While many mutations met the criteria for
statistical significance (𝑡-test 𝑃 value <.01; points colored
purple), the vast majority of those have a very low apparent
mutation rate. Since we had only triplicate data, it was not
possible to use a more stringent statistical cutoff. However, it
is also possible to see some general trends in this view. Across
all four targets, as the PDL increases, the distribution of
apparent mutation rates shifts uniformly higher, for example.
Presumably this reflects small, true shifts in the population
accumulating over time, though few mutations met our
criteria for detection. In terms of specific mutations meeting

the criteria established for detection at the 0.5% level, the
numbers of signals observed in light chain, heavy chain,
DHFR, andGAPDHwere 10, 17, 4, and 0, respectively. A table
with all signals found across all four genes is included in the
Supplementary Information.

4. Discussion

Here we explored using RNA-seq technology for the detec-
tion of emerging mutations in a CHO cell line producing a
recombinant antibody during long-term culture. In the feasi-
bility study, we established a high-confidence mutation level
detection limit of 0.1%, which is significantly more sensitive
than traditional molecular biology or protein characteriza-
tion techniques. The detection limit of mutation by Sanger
DNA sequencing is around 15–20% [14]. When comparing
the feasibility study to the main study, we noticed that the
background error profile revealed by sequencing replicates
of the same biological sample can vary from batch to batch.
Within each batch, the error profile at each position (whether
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arising from amplification, library prep, or sequencing itself)
was very consistent. Therefore, a reference run should be
included in each sequencing batch and used to assess vari-
ation within each batch. By considering each position to
have an independent error profile, we can implicitly account
for a variety of error sources without knowing exactly what
contribution each source makes.

In the main study, we analyzed all three exogenous genes
introduced by the expression vector, which were heavy chain
and light chain of the mAb, and the DHFR selection marker.
We also analyzed the house-keeping gene GAPDH as a
representative host endogenous gene. As the study shows,
the mutation rate displayed a clear increasing trend with
extended culture passaging. And, in most cases, the mutation
rate also increased in the presence of selection pressure
(MTX). In the actual cell culture manufacturing process,
the cell inoculum typically needs to be passaged for at least
30–40 PDLs starting from a frozen cell bank, and often in the
presence of selection pressure such asMTX.Our experiments
were designed to sufficiently cover this manufacturing
window with respect to both process conditions. In Figure 6,
there is a noticeable jump in the numbers of significantmuta-
tions (above 0.1%) starting at 150 PDLs. At the same time, up
to 100 PDLs, only the sample treated with 80 nMMTX exhib-
ited detectable mutations higher than 0.5%. No mutation
above 0.5%was observed in the house-keeping gene GAPDH
under any of the culture conditions. This indicates that
increasing selection pressure and extending passaging period
mainly affect the stability of the transgenes but have minimal
effect on endogenous host genes, presumably due to the
deleterious effect to the host. It is noteworthy that mutation
rate can be described in two ways. The first is the number
of mutations above the 0.1% detection limit across the
entire gene fragment. And the second is the percentage of
population that carries a specific point mutation. Both repre-
sentations showed similar trend in our study.

On the molecular level, mutations identified in mRNA
can be attributed to DNA template mutations [15], transcrip-
tional errors [16, 17], or posttranscriptionalmodifications [8].
Understanding the mechanism behind individual mutations
requires further characterization of all these possible factors,
including DNA sequence analysis of the expression vector
inserted into the genome. In addition, mutations detected by
RNA-seq require confirmation by protein sequence analysis
to assess their impact on product quality.

NGS technologies have played increasing roles in the
development of cell culture production process and facilitated
the understanding of the production cell line. There has not
been a report on applying RNA sequencing to systematically
analyze mutation rate during extended passaging of produc-
tion CHO cells. Production cell line stability with respect
to sequence integrity is crucial for the biopharmaceutical
industry because cell lines carrying the intended transgene
sequences are essential for product quality and patient safety.
Here we have demonstrated that RNA-seq can help to ensure
the accurate flowof genomic information to the final product.
Although CHO cell lines developed with DHFR as the
selection system are used as a model system in this study
to characterize gene stability, the methods developed in this

study should also be applicable for other production host cell
lines and selection methodologies. The information gener-
ated should further stimulate investigation on the molecular
mechanisms behind sequence variations in mRNA.
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