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Abstract
Purpose of Review Obesity is strongly associated with the
development of several types of cancers. This review aims
to discuss the recent key mechanisms and actors underlying
the link between adipose tissue metabolism and cancer, and
the unequivocal common mechanisms connecting gut mi-
crobes to adipose tissue and eventually cancer development.
Recent Findings Complex interactions among systemic and
tissue-specific pathways are suggested to link obesity and
cancer, involving endocrine hormones, adipokines, fatty
acids, inflammation, metabolic alterations, and hypoxia.
Emerging evidence also suggests that the gut microbiota, an-
other key environmental factor, may be considered as a con-
verging element. Studies have shown that cancer susceptibil-
ity may be induced in germ-free mice colonized with the gut
microbiota from high-fat diet-fed mice. Suggested mecha-
nisms may involve inflammation, immunity changes,
lipogenic substrates, and adipogenesis.

Summary Cancer development is a complex process that may
be under the control of previously unthought factors such as
the gut microbiota. Whether specific intervention targeting the
gut microbiota may reduce adipose tissue-driven cancer is an
interesting strategy that remains to be proven.

Keywords Gut microbiota . Cancer progression . Adipose
tissue . Adipokines . Inflammation . Bacteria

Introduction

Obesity is associated with diabetes and cardiometabolic dis-
orders. The global burden disease (GBD) study recently re-
ported that obesity is undoubtedly epidemic and as now
reached more than 600 million people [1]. Obesity is charac-
terized by a massive adipose tissue expansion together with
specific changes at the level of immunity, the presence of a
low-grade inflammatory tone (i.e., macrophage infiltration
and cytokines production), and an altered fatty acid storage.
Besides the development of metabolic disorders such as dia-
betes and cardiovascular diseases, obesity is strongly associ-
ated with the development of several types of cancers [2••].

Nowadays, it is commonly accepted that different modifi-
able risk factors such as diet and sedentary life style, alcohol
and tobacco play a major role in the pathogenesis of cancer.
Strikingly, emerging evidence suggests that another key envi-
ronmental factor may be considered as a converging element:
that is the gut microbiota.

Gut microbes have gained remarkable attention over the
last 10 years. Metagenomic (i.e., sequencing of the overall
genome of gut bacteria) and metabolomic (e.g., comprehen-
sive analysis of metabolites and specific molecule) approaches
have helped to elucidate the composition and the metabolic
activity of the gut microbiota. It is estimated that trillions of
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microbes inhabit the human gut, which represent at least a 1:1
ratio between human and microbial cells, or even more [3].
Today, a vast number of publications have associated the com-
position and the metabolic activities of the microbiota with
many diseases and organs (e.g., brain, liver, fat, gut, muscles)
[4]. It is indeed established that gut bacteria participate not
only to shape our immunity but also control the regulation
of glucose, energy, and adipose tissue metabolism via several
mechanisms including inflammation [5•, 6•]. It is important to
note that the metabolic features involving the development of
adipose tissue during obesity are for most of them also asso-
ciated with the development of cancer. However, the exact
mechanisms explaining the obesity-cancer link are not
elucidated.

This review aims to discuss (1) the recent key mechanisms
and actors underlying the link between adipose tissue metab-
olism and cancer, and (2) the unequivocal common mecha-
nisms connecting gut microbes to adipose tissue metabolism
and eventually cancer development.

Adipose Tissue Metabolism and Fat Storage

Adipose tissue is a complex organ which is composed of dif-
ferent cell types. More precisely, preadipocytes, vascular en-
dothelial cells, stroma cells, pericytes, and infiltrating blood
cells (i.e., monocytes, macrophages, lymphocytes, and mast
cells) are in perpetual interaction to fine tune tissue expansion
and metabolic responses [7, 8]. In fact, adipose tissue is con-
stantly subjected to the slight remodeling of its extracellular
matrix. However, during a prolonged positive energy balance,
numerous changes will occur such as new adipocyte forma-
tion, adipocyte hypertrophy, angiogenesis processes (neovas-
cularization), infiltration of immune cells, and an overall pro-
cess considered as “physiological” adipose tissue expansion
[7, 8]. The adjustment of such metabolic controls is essential
for the maintenance of adequate energy storage and adipose
tissue expansion. Nevertheless, chronic energy overload in-
stead of adapting to the demand of the expanding tissue may
lead to inadequate remodeling of the extracellular matrix. In
parallel, the vasculature is critical for the development of the
adipose tissue and the storage of energy [9]. Importantly, in-
sufficient angiogenesis blocks adipose tissue accumulation,
thereby resulting in relative hypoxia and contributes to the
production of many factors from both adipocytes and other
cells composing the adipose tissue [10] (Fig. 1). Data also
show that low-grade inflammation leads to chronic impair-
ment of adipogenesis processes, activation of myofibroblasts,
macrophages, thereby promoting the accumulation of abnor-
mal extracellular matrix, tissue hypoxia, and the production of
angiogenic factors [11–14]. However, chronic inflammation
might also partially be a response due to hypoxia since inflam-
matory cytokines, macrophage migration inhibition factor

(MIF), TGF-β, and matrix metallopeptidase 9 (MMP9) were
induced by hypoxia in primary adipocytes and macrophages
prepared from adipose tissue of lean mice [15]. White adipose
tissue in transgenic and dietary obese mice indeed show re-
duction in the interstitial partial oxygen pressure, and similar
observations were made between adipose tissue of obese and
lean humans [16].

Fat Cells and Cancer

Besides the adipose tissue, other adipocyte-rich organs are
suggested to create microenvironments that are conducive
for tumorigenesis and metastatic progression [17].
Numerous epidemiological data have indeed shown that obe-
sity is associated with increased incidence of several cancers
and more precisely, breast, endometrium, ovarian, colon,
gastro-intestinal, renal, prostate, thyroid, and hematological
malignancies [18–20, 21••]. In countries where obesity prev-
alence has increased rapidly, a significant proportion (~ 20%)
of all new cancers may be attributable to obesity [22]. Obesity
in children from 2 to 14 years is also associated with increased
cancer risk in adulthood by 40% [18]. In addition, weight
control interventions have been shown to be able to reduce
cancer incidence in women [19]. Therefore, obesity is now
projected to replace tobacco as the most common modifiable
risk factor for the development of malignancies [21••].
Interestingly, peri-tumoral fat has been shown to correlate
with lymph node invasion in breast cancer and in esophageal
adenocarcinoma [23]. The mechanisms linking increased ad-
iposity to malignancy are not completely understood.
Complex interactions among systemic and tissue-specific
pathways are suggested and involve endocrine hormones,
adipokines, fatty acids, inflammation, metabolic alterations
(i.e., hyperglycemia and hyperinsulinemia), hypoxia and oxi-
dative stress [24••, 21••], and potentially, the gut microbiota
[19, 25••]; the later will be further discussed in the last part of
this review. In the next part of this review, we will describe
how the adipose tissue and its specific product may directly
contribute to cancer development.

The Adipose Tissue Microenvironment Favors
Tumor Initiation and Progression

Adipocytes indeed represent a significant source of lipids,
cytokines, and adipokines, and their presence in the tumor
microenvironment can affect cell signaling and metabolism
[17]. The next paragraphs summarize the recent findings
linking adipokines and adipose tissue metabolism with cancer
development (Fig. 1).
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Adipokines

Undeniably, adipokines, such as leptin or resistin, promote cancer
cell progression via enhancement of cell proliferation and migra-
tion, inflammation, promitogenic, and anti-apoptosis pathways,
which subsequently can prompt tumor growth and metastatiza-
tion [26]. Cell proliferation and angiogenic pathways that are
affected by adipokines involve JAK/STAT, MAPK/ERK,
PI3K/mTOR, cyclins, and VEGF [21••, 22]. Leptin has recently
been shown to play a role in metabolic reprogramming in breast
cancer cells, consisting of an enhanced use of glucose for bio-
synthesis and lipids for energy production, as a result of the
increased demands of energy and biosynthetic intermediates to
sustain proliferation and invasion [27]. Other potential metabolic
adaptations induced by leptin include stabilization of HIF1-alpha
in hypoxic conditions, increased uncoupled respiration, and ele-
vated expression of MCT4 lactate exporter [28]. Besides adipo-
cytes, cancer-associated fibroblasts (CAFs), the principal cellular
component of the stroma, also express leptin receptor and secrete
leptin, which sustains a short autocrine loop and is able to target
tumor epithelial cells enhancing cancer cell growth and invasive-
ness. Recent results show that activated farnesoid X receptor
(FXR) may be able to counteract the leptin-dependent paracrine
effects on breast cancer restraining the tumor-promoting activi-
ties exerted by CAFs [29]. Serum leptin levels have been shown
to correlate with the incidence of some cancers (breast, endome-
trial, colorectal, prostate), while other studies showed a lack or an
inverse relation with cancer risk [21••, 30]. Increased expression
of the leptin receptor (ObR) has been correlated with decreased
survival in ovarian cancer and the development of distant

metastases in breast cancer [21••]. Finally, leptin also induces
overexpression of leptin, Ob-R, estrogen receptor, and aromatase
mRNA, suggesting the possible involvement of leptin in estro-
gen pathway [31].

Apelin is another adipokine whose levels are increased not
only with obesity [32] but also in several cancers [33, 34].
This adipokine acts through the activation of its receptor
(APJ) to enhance tumor angiogenesis [35]. In addition, apelin
can bind to APJ expressed on lymphatic endothelial cells to
increase tumor lymphangiogenesis and metastatization [36].
Furthermore, apelin has been suggested as a prognostic mark-
er for cancer progression as its levels correlate with cancer
invasion [34].

Obesity is also commonly associated with decreased
adiponectin levels in the circulation, for which an inverse
relationship with the risk of development and progression of
multiple cancers has been described [21••, 37]. Adiponectin
can indeed inhibit cell proliferation, induce apoptosis, and
decrease invasion of tumor cells through the activation of
multiple signaling pathways downstream of the adiponectin
receptors, AdipoR1 and AdipoR2, including AMPK,
PI3K/mTOR, and the nuclear factor-kappaB (NF-KB). In ad-
dition, adiponectin has also recently been shown to inhibit
CREB (cyclic AMP response element-binding transcription
factor) activation in lung adenocarcinoma cells [38]. This ef-
fect further highlights the anti-tumoral potential of adiponectin
as high levels of CREB have been identified in prostate can-
cer, breast cancer, non-small-cell lung cancer (NSCLC), and
leukemia and correlates with cancer cells differentiation and
poor prognosis [39].

Fig. 1 Hypothetical working models of interactions between adipose
tissue metabolism, gut microbiota, and cancer progression. Adipose
tissue and cancer development are sharing several similar mechanisms
and stimulatory factors. The adipose tissue metabolism is profoundly
affected during obesity and metabolic disorders, where the different
cells composing this tissue are secreting cytokines, adipokines, and
lipid mediators that are triggering key metabolic processes devoted not
only to reverse hypoxia but also to expand the adipose tissue for further
fatty acid storage. Among the key actors, the so-called metabolic

endotoxemia which is triggered by the disruption of the gut barrier and
gut microbiota alteration is known to trigger low-grade inflammation, to
increase apelin and leptin secretion, and to change the endocannabinoid
system. All these changes are key elements contributing to a cascade of
events that also profit to cancer cells, thereby leading to an appropriate
environment stimulating cell proliferation, angiogenesis, and eventually
cell migration and metastatization. In turn, data also suggest that cancer
development contribute to change the gut microbiota and support the
formation of a vicious circle
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Recently, it has been discovered that the circulating levels
of survivin, a member of the inhibitor of apoptosis (IAP), are
increased in obese patients [40].

Survivin was already known to be increased in many can-
cers [41] and to have a broad pro-tumoral activity by its asso-
ciation with multiple cell signaling pathways including
PI3K/mTOR, ERK, MAPK, STAT, or HIF-1α. Hence,
survivin correlates with tumor invasion and metastatization,
enhances VEGF expression to promote tumor angiogenesis,
and interferes with chemo- and radiotherapy by inhibiting
apoptosis [42].

Lipid Metabolism

Alterations in the lipid metabolism are part of the
reprogrammed energy metabolism that characterizes cancers
[43]. Indeed, lipids are essential component for tumors to gen-
erate cellular membranes, lipid-derived bioactive molecules
and also to produce energy through mitochondrial fatty acids
oxidation. In many cancers cells, upregulation or increased
activity has been described for key enzymes and transporters
of the lipid pathway [43, 44•]. For example, fatty acid-binding
protein 4 (FABP4) is a key adipokine for fatty acid transport
and plays a role in tumor progression of breast cancer among
others by enhancing proliferation of breast cancer cells, with
no impact on cell migration, likely via activation of the AKT
and MAPK signaling cascades [45]. FABP9, another member
of the FABP family, is increased in prostate cancer patients
and correlates with reduced survival [46]. The fatty acid re-
ceptor CD36 is also unique in its ability to initiate metastasis.
Clinically, the presence of CD36+ metastasis-initiating cells
correlates with a poor prognosis for numerous types of carci-
nomas, and inhibition of CD36 also impairs metastasis, at
least in human melanoma- and breast cancer-derived tumors
[47].

Beside fatty acids uptake, it has been shown that many
cancer cells upregulates acetyl-Coa carboxylase (ACC) and
fatty acid synthase (FASN) expression to increase de novo
lipogenesis and that these high levels correlate with poor prog-
nosis [44•]. One particularity of cancer cells regarding the
lipid metabolism is their ability to signal to adipocytes from
their microenvironment to induce a modification of
adipokines secretion as well as a delipidation of these so-
called cancer-associated-adipocytes (CAA). The released fatty
acids can be used by cancer cells for β-oxidation or as meta-
bolic substrates to sustain a highly proliferative state and sup-
port cancer cells migration [48].

Low-Grade Inflammation

Hypertrophic adipose tissue from obese patient is known to
recruit macrophages and to have an unbalanced ratio between
M1 pro-inf lammatorymacrophages and M2 anti -

inflammatory macrophages. The growing M1 population
secrete inflammatory cytokines including TNF-α and
IL-6 leading to a chronic low-grade inflammation that
promote ROS production and therefore genetic instabil-
ity, cancer cells proliferation, tumor angiogenesis, and
metastatization [49].

Similar to the adipose tissue, tumors also include macro-
phages called tumor-associated-macrophage (TAM). The role
of TAMs in cancer progression has been intensively studied
and reviewed elsewhere [50••]. Briefly, TAMs support tumor
progression by growth factors and ROS production, increased
angiogenesis and lymphangiogenesis, and tissue infiltration
and by creating an immunosuppressive environment.

Gut Microbes Regulate Adipose Tissue Metabolism:
A Link with Cancer?

All the processes regulating adipose tissue metabolism and
described in the first part of this review have also been linked
with gut microbiota activity. For example, seminal papers
from Backhed and colleagues have shown that gut bacteria
allow energy harvesting from nutrients ingested but not
digested by the host [51]. They found that germ-free mice
(i.e., mice raised in the absence of microorganisms) where
leaner, with about 40% less total body fat than mice with a
normal gut microbiota. Strikingly, this is observed even if the
germ-free mice ate 30% more diet than mice harboring a gut
microbiota. The mechanisms of this obvious weight gain due
tomicrobes are not only the increase in energy extraction from
non-digestible food component but also a higher intestinal
glucose absorption and concomitant higher glycemia and
insulinemia, which are two major metabolic factors regulating
lipogenesis and fat storage. In addition, glucose and insulin
promote de novo lipogenesis through the expression of several
key enzymes such as ACC and FAS. This is also associated
with adipocyte hypertrophy mainly through an increase fatty
acid synthesis and storage depending on the activity of the
enzyme lipoprotein lipase (LPL) which catalyzes the release
of fatty acids from circulating lipoproteins [51]. Finally, trans-
ferring the gut microbiota from obese mice into germ-free
mice reproduces the phenotype of fat mass accumulation
and altered adipose tissue metabolism, strongly suggesting a
direct link between the presence of specific microbes in the
gut and the development of adipose tissue [52, 53].

On top of these physiological processes, numerous evi-
dence suggests that gut microbes contribute to the onset of
low-grade inflammation and an altered regulation of lipogen-
esis and adipogenesis processes (i.e., angiogenesis, differenti-
ation, fat expansion), thereby leading to larger adipocytes,
abnormal fat accumulation, and hypoxia (Fig. 1) [54•].

In 2007, the concept of metabolic endotoxemia was dis-
covered. It was shown that the low-grade inflammatory tone
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characterizing obesity, diabetes, and related metabolic disor-
ders is likely due to the translocation of specific proinflamma-
tory molecules from the gut microbiota into the bloodstream.
This factor is the so-called lipopolysaccharide (LPS) which
initiates inflammation, insulin resistance, and metabolic disor-
ders [55]. Thus, metabolic endotoxemia is defined as a modest
increase in circulating LPS, high enough to be involved in the
onset of diseases (Fig. 1). This key mechanism explains how
gut microbes and eventually gut barrier function interfere with
numerous factors regulating fat mass development.

Among the metabolic systems involved in the regulation of
this gut barrier and adipogenesis, it has been shown that
endocannabinoids (eCBs) plays a major role (for review,
[54•]). This system is composed of several bioactive lipids
belonging to the N-acylethanolamines and acylglycerol fami-
lies. Importantly, specific eCBs have been shown to control
not only adipogenesis and inflammation but also angiogenesis
processes.

Interestingly, the beneficial effects of specific eCBs on ad-
ipose tissue metabolism are counteracted by LPS, thereby
leading to adipocyte cell hypertrophy and secretion of
adipokines [11, 56]. It has also been demonstrated that the
production of apelin by the adipose tissue is directly regulated
by both LPS coming from the gut and eCBs [56]. More spe-
cifically, LPS completely abrogated the physiological down-
regulation of apelin and its receptor APJ induced by eCBs.
Therefore, it is suggested that both eCBs and LPS are impli-
cated in adipose tissue metabolism.

Moreover, alteration of specific eCBs may also drive
the development of tumors and metastasis [57•].
Therefore, data suggest that the gut microbiota and meta-
bolic endotoxemia strongly contribute to the regulation of
eCBs tone and eventually may interfere with cancer de-
velopment. Data suggest that leptin sensitivity and levels
may be controlled by the gut microbiota, similar to apelin.
As an example, it has been shown that high-fat diet feed-
ing changes the microbiota composition and is associated
with a higher leptin production. Everard et al. have shown
that changing the gut microbiota by using prebiotics not
only changes the gut microbiota composition, reduces
LPS, reduces leptin levels and increases leptin sensitivity
[58]. Along this line, germ-free mice are also more sensi-
tive to leptin, whereas the colonization of their intestine
with gut bacteria increases leptin production and leptin
resistance [59]. Thus, as discussed above, the gut micro-
biota is known to affect adipose tissue metabolism, cellu-
la r pro l i fe ra t ion , in f lammat ion , and immuni ty.
Consequently, it is also suggested to regulate cancer at
the level of predisposing conditions such as initiation
and progression. Definitive evidence for the role of par-
ticular species in cancer pathogenesis would require more
studies [60••]. Nevertheless, preclinical data suggest a po-
tential link between microbiota, obesity, and cancer [58].

For example, several studies have shown that cancer sus-
ceptibility may be induced in germ-free mice colonized
with the gut microbiota from high-fat diet-fed female
mice, and this even if the recipient mice were fed with a
normal diet [61•]. More strikingly, this effect was also
observed in an intergenerational manner. Thus, this obser-
vation strongly suggests that that factors associated with
adipose tissue metabolism and the gut microbiota contrib-
ute to the onset of cancer (Fig. 1).

Recently, it also become evident that the gut microbiota
modulates the response to cancer therapy and susceptibility
to toxic side effects [25••]. Within the scope, the transfer of
the fecal microbiota of patients who are responsive to cancer
therapy into germ-free mice has been shown to endow those
animals with an ability to respond efficiently to the therapy
[62]. Therefore, it can be speculated that host genetics and
lifestyle in part may indirectly affect carcinogenesis and re-
sponse to cancer therapy through modification of microbiota
composition [25••].

Conclusions

Strong evidence exist regarding the impact of microbiota on
metabolic activities and specific cancer such as colon cancer.
This is indeed easy to understand because of the close vicinity
of microbial cells and their metabolites with colonic cells.
However, it is less evident to directly link the development
of cancers starting at distance from the gut with the gut mi-
crobiota. Nevertheless, evidence suggests that processes of
adipose tissue expansion characterizing obesity are also influ-
enced by the gut microbiota, mainly through inflammatory
mechanisms, immunity changes, lipogenic substrates, and ad-
ipogenesis (Fig. 1). Hence, the adipose tissue and its metabolic
activity during obesity (i.e., adipokines secretion, angiogene-
sis, hypoxia) may directly influence cancer progression. More
impressively, as discussed in this review not only inflamma-
tion but also numerous adipokines produced by the adipose
tissue are linked to cancer initiation, progression and process-
es of metastatization. Therefore, it is important to consider that
cancer development is a complex process that may be under
the control of previously unthought factors such as the gut
microbiota. Whether specific intervention targeting the gut
microbiota may reduce adipose tissue-driven cancer is an in-
teresting strategy that remains to be proven.
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