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Abstract: The endogenous gasotransmitter H2S plays an important role in the central nervous,
respiratory and cardiovascular systems. Accordingly, slow-releasing H2S donors are powerful tools for
basic studies and innovative pharmaco-therapeutic agents for cardiovascular and neurodegenerative
diseases. Nonetheless, the effects of H2S-releasing agents on the growth of stem cells have not
been fully investigated. H2S preconditioning can enhance mesenchymal stem cell survival after
post-ischaemic myocardial implantation; therefore, stem cell therapy combined with H2S may be
relevant in cell-based therapy for regenerative medicine. Here, we studied the effects of slow-releasing
H2S agents on the cell growth and differentiation of cardiac Lin− Sca1+ human mesenchymal stem cells
(cMSC) and on normal human dermal fibroblasts (NHDF). In particular, we investigated the effects of
water-soluble GSH–garlic conjugates (GSGa) on cMSC compared to other H2S-releasing agents, such
as Na2S and GYY4137. GSGa treatment of cMSC and NHDF increased their cell proliferation and
migration in a concentration dependent manner with respect to the control. GSGa treatment promoted
an upregulation of the expression of proteins involved in oxidative stress protection, cell–cell adhesion
and commitment to differentiation. These results highlight the effects of H2S-natural donors as
biochemical factors that promote MSC homing, increasing their safety profile and efficacy after
transplantation, and the value of these donors in developing functional 3D-stem cell delivery systems
for cardiac muscle tissue repair and regeneration.
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1. Introduction

The gasotransmitter H2S is a physiological signalling molecule in mammalian cells that stimulates
important molecular pathways [1–3]. Endogenous H2S is produced in tissues from l-cysteine
by the activity of cystathionine γ–lyase (CSE), cystathionine β-synthase (CBS), thiosulfate:cyanide
sulphurtransferase (TST, EC. 2.8.1.1; rhodanese) and 3-mercapto-piruvate sulfurtrasferase (3-MST) [4–6].
In the last decade slow H2S-releasing donors have been suggested as exogenous sources for therapeutic
applications in cardiovascular [7–9], neurodegenerative [1,4,10] and gastrointestinal diseases [11,12].
One of most relevant problems in the H2S-based therapy is the identification of an appropriate posology
and an accurate administration protocol of H2S donors, in order to avoid the high risk of overdosing.
Therefore, slow H2S releasing agents, such as garlic derivatives, seem to exhibit the pharmacological
features needed to generate H2S with a controlled rate and represent an interesting natural alternative
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for therapeutic applications. Organo-sulfur compounds (OSCs) derived from the garlic compound
allicin, such as S-allylcysteine (SAC) diallyldisulfide (DADS) and diallyltrisulfide (DATS), have been
recognized to have potential pharmacological properties, related to the H2S signaling pathway [13,14].
In particular, the allylsulfides DADS and DATS, which are the major components of oil-soluble
garlic extract, are H2S slow-releasing donors. Their intracellular H2S-release mechanism requires
the cooperation of reduced GSH, as elucidated by Kraus et al. [13]. In regards to the α carbon of
a diallyl polysulphide, GSH acts as a nucleophilic substituent and the nucleophilic substitution leads
to S-allyl glutathione and allyl perthiol [13]. By thiol/disulphide exchange with GSH, allyl perthiol
can be transformed either into allyl glutathione disulphide (GSSH) and H2S, or into H2S2 and S-allyl
glutathione through a nucleophilic substitution by GSH at the α-carbon. Finally, H2S2 can interact
with GSH, resulting in GSSH and H2S. Therefore, polysulfides have recently been considered potential
physiological mediators that are able to activate membrane channels, enzymes, and transcription
factors by sulfhydration mechanism. The cytotoxicity of OSCs and H2S-donors in general likely
depends on their concentration per cell and on their metabolic rate in the cells, which in turn depends
on the cell type. The exogenous H2S can have pro- [15–18] or anti-apoptotic effects [19–22], depending
on the individual cell phenotype and on the experimental settings used, such as the concentration of
H2S. Previous studies suggest that garlic-derived OSCs selectively induce programmed cell death in
neoplastic cells but not in their physiological counterparts or adult stem cells [23–30]. H2S is able, in
fact, to improve cell survival in a cell-specific manner by activation of molecular signalling [31]. H2S
represses programmed cell death and inflammation by downregulation of inflammatory cytokines,
such as, for example, TNF-α, IL-1b, NF-kB, IL-8 and IL-6 [32–35]; furthermore, it regulates blood
pressure–lowering, and exerts anti-nociceptive and cardioprotective effects due to the activation of
cardiac extracellular signal-dependent-kinases, such as Akt pathways and KATP channels [36,37].

To assess the effects of H2S-donors with antitumor properties on adult stem cells, in this
study, water-soluble glutathione-garlic extract (GSGa) was produced using the protocol previously
described [16,38], and it was used for treatment of human adult stem cells. GSGa is a particular extract
rich in glutathione-conjugates with pro-apoptotic properties on cancer cell lines and the ability to
promote their G2/M phase cell cycle arrest [16]. The data herein presented demonstrate that, in contrast
with the effects on tumor cells, GSGa treatment of cardiac Lin− Sca-1+ human mesenchymal stem cells
(hereinafter, cMSC) improves their viability, proliferation and migration rate, without affecting their
plasticity. The effects of the treatment on cMSC were also compared with other H2S-donors, such as
Na2S and GYY4137. Our previous studies performed on other H2S releasing systems (nanoemulsions,
hydrogels and nanofibers) showed that the H2S release improves the proliferation of cMSC, as well as of
normal human dermal fibroblasts (NHDF), and increases the expression of proteins related to cell–cell
interaction, such as connexin 43, and cell survival under oxidative stress [38–40]. H2S-donors, in fact,
display relevant antioxidant properties; they can either act as reducing agents/scavengers by directly
reacting with ROS species or rescue the cells from oxidative stress by promoting glutathione production,
which is the most abundant and potent intracellular antioxidant species [41]. Exogenous H2S can protect
primary rat cortical neurons from oxidative stress, so it can be a powerful neuroprotective agent due to
its cytoprotective, anti-inflammatory, antioxidant and anti-apoptotic properties [41–44]. Furthermore,
recent studies demonstrate that H2S preconditioning protects bone marrow-derived mesenchymal
stem cells (BMSCs) from hypoxia, and biologically-active factors released by conditioned-H2S BMSCs
provide protection of neurons exposed to ischaemic conditions [45]. On these bases, we investigated
the antioxidant properties of GSGa, demonstrating its ability to inhibit cell death induced by ROS
damage or CoCl2 in cMSC and normal human dermal fibroblasts (NHDF). These properties were
related to an upregulation of antiapoptotic and antioxidant proteins, such as Bcl2, NAD(P)H quinone
oxidoreductase 1 (NQO1) and thioredoxin (Trx). Furthermore, a prolonged treatment of cMSC
with GSGa allowed us to obtain a selected cMSC line, named GcMSC, which showed an increased
proliferation and migration rate as well as resistance to oxidative stress, while preserving the stem cell
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multi-potency. Therefore, these results suggest a potential use of prolonged treatment with H2S-donors
for the optimization of adult stem cells for tissue engineering and repair.

2. Results

2.1. H2S-Donors Promote Proliferation and Migration of cMSC

The effects of H2S on stem cells have not been fully investigated. To further study the effect of H2S
donors on human adult stem cells, Na2S, GYY4137 and water-soluble garlic extracts (GSGa) were used
for the treatment of cMSC. In Figure 1, the effects of H2S releasing agents on the cell proliferation of
cMSC are shown. Cell viability was analyzed after three days of treatments with different H2S-donors
and, in general, an increase of cMSC proliferation in a concentration-dependent manner was observed
with respect to the control, especially after treatment with GYY4137 and GSGa (Figure 1b,c). Notably,
Na2S treatment induced a decrease in proliferation at 25 and 50 µM concentrations, probably due to
a direct cytotoxic effect for the high concentrations of H2S. By contrast, at higher H2S concentrations,
100 and 200 µM, an increase in cell proliferation was observed after 3 days of growth (Figure 1a).
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Figure 1. Effects of H2S slow-releasing agents on cell proliferation and migration of cMSC. Cell
proliferation of cMSC (5 × 103 cells/cm2) after 3 days of treatment at different concentrations of (a)
Na2S (25, 50, 100 and 200 µM) and (b) GYY4137 (25, 50, 100 and 200 µM); (c) cell proliferation of cMSC
treated for 3 days with 5 and 10 µL of Ga (141 mg/mL d.w) and 5, 10 and 20 µL of GSGa (136 mg/mL
d.w). (d) Bright field micrographs of cMSC cultured for 3 days in the presence and in the absence
of 136 µg/mL of GSGa. (e) Scratch wound healing assay on cMSC cultured in the absence (cMSC) or
in the presence of 680 µg/mL of GSGa (+GSGa). Micrographs in the upper and lower panels were
taken immediately after the scratching (0 h) and after 48 h (48 h) respectively; cells shown in the lower
panels were stained with crystal violet dye. Quantification of wound closure was calculated by three
independent experiments. Error bar indicates S.D.; n = 3 or 5. Statistical significance is shown as
* p value ≤ 0.05, ** p value ≤ 0.01, *** p value ≤ 0.005.

Both GYY4237 and GSGa induced an increase in the cell proliferation in a concentration dependent
manner. After three days of treatment with 680 µg/mL of GSGa, a statistically significant increase
of up to 170.3 ± 41.99% of cell proliferation with respect to the control was observed (Figure 1c). By
contrast, the treatments with both water-soluble garlic extracts obtained without reaction with GSH
(Ga) and GSH, at similar concentrations used for the GSGa treatment, did not induce an increase in cell
viability, demonstrating that the relevant role on the induction of the stem cell proliferation by GSGa
treatment is due to the presence of glutathionyl-conjugates. A cell proliferation increase due to the
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GSGa treatment was also confirmed by microscopy analysis, as shown by micrographs of the cells after
three days culture in the presence or in the absence of 136 µg/mL of GSGa (Figure 1d). The proliferation
and migration were also assessed by scratch test (Figure 1e); the cell cultures after 48 h in the presence
of GSGa showed a closer scratch than in the absence, probably due to concomitant increase in both cell
migration and proliferation.

2.2. Antioxidant Properties of GSGa and Increase in cMSC Survival under a Chemical Hypoxia-Mimicking Agent

The antioxidant properties of the GSGa was tested using a pDNA damage assay based on assessing
the cleavage effect of oxidant species such as H2O2 or Cu2+ and Co2+ ions in the presence of ascorbic
acid (Figure 2a,b). The presence of GSGa at 10.8 µg/µL inhibited the pDNA cleavage obtained in both
cases: after incubation with 100 µM of H2O2 and after incubation with 100 µM of Cu2+ and 10 mM
ascorbic acid. The pDNA cleavage was also reduced in the presence of 100 µM of CoCl2 and 10 mM
ascorbic acid by addition of GSGa, as shown by the presence of the supercoiled form of the pDNA
and the reduced presence of a cleaved form after treatment with CoCl2 (Figure 2b). The effects of
CoCl2 on the cMSC viability were also studied in the presence and in the absence (see also Figure S2
in Supplementary Materials) of 680 µg/mL of GSGa in the cell culture medium (Figure 2c), showing
a protective anti-hypoxic effect of the GSGa, in turn resulting in an increase of 15% in cell survival in
the presence of 0.25 mM of CoCl2. An increase in the expression of HIF-1α was observed under CoCl2
treatment in the presence of GSGa (Figure 2d).
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Figure 2. Antioxidant properties of GSGa. (a) Inhibition of pDNA cleavage by GSGa; 0.5 µg of pDNA
after addition of H2O2 (100 µM) or CuCl2 (100 µM) and ascorbic acid (10 mM) in 20 mM Tris HCl, pH
7.4, buffer after 0 (lane 1) or 15 min (lane 2) of incubation at 37 ◦C in the absence (lane 3, 4, 7 and 8) or in
the presence (lane 5, 6, 9 and 10) of 10.8 µg/µL of GSGa. (b) 0.5 µg of pDNA after addition of CoCl2
(100 µM) and ascorbic acid (10 mM) in 20 mM Tris HCl, pH 7.4, buffer after 0 (lane 1) and 15′ (lane 2)
incubation at 37 ◦C in the absence (lane 3 and 4) or in the presence (lane 5 and 6) of 10.8 µg/µL of GSGa.
Note: (∞), (o), (-) and (c) are respectively the supercoiled, circular, linear and cleaved pDNA forms.
(c) Cell viability of cMSC (by MTT assay) after 40 h of treatment with 0, 0.25 and 0.5 mM of CoCl2 in
the presence (+GSGa) or in the absence (cMSC) of 680 µg/mL of GSGa. The integral images of the gels
are in reported in the Supplementary Materials (Figure S3). (d) western blot and densitometric analysis
of HIF-1α expression in cMSC after exposure to CoCl2 in the presence or in the absence of GSGa in the
culture medium. Error bar indicates S.D. Blots are a representative experiment of three independent
experiments. ** p value < 0.01 (one-way ANOVA test).



Int. J. Mol. Sci. 2020, 21, 1638 5 of 24

Therefore, the cytoprotective effect of GSGa against CoCl2 could promote the expression of
hypoxia-responsive element (HRE)-controlled genes by reduction of HIF-1α subunit degradation.

2.3. GSGa Improves Cell Survival under Oxidative Stress

H2S is a physiological mediator that limits inflammation and free radical damage [46] and is able
to upregulate ARE-gene transcription [47]. In Figure 3, the protective effects of the pretreatment with
GSGa from the oxidative damage induced by H2O2 on NHDF and cMSC cultures are shown. Figure 3a
shows the micrographs of NHDF after 12 h of H2O2 exposure and pretreating with GSGa. After three
days of growth in the presence (GSGa) or in the absence (NHDF) of 680 µg/mL of GSGa, the cells were
re-seeded, and after adhesion (6 h from seeding), H2O2 was added to the cell culture medium at a final
concentration of 100 µM. Pretreatment with GSGa induced major resistance to the oxidative stress due
to presence of H2O2, as was observable by the presence of a larger number of the cells in the well
(Figure 3a,b).
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Figure 3. Antioxidant effect of GSGa on cells. (a) Micrographs of NHDF after 0 and 12 h of treatment
with H2O2 (100 µM), with (+GSGa) or without (NHDF) the addition of 680 µg/mL GSGa (see also
Figure S5); (b) micrographs of cMSC (CTRL) after 24 h of treatment with H2O2 (100 µM), with or
without the addition of 680 µg/mL of GSGa. Cells were dyed with crystal violet; (c) Cell viability of
cMSCs after 24 h of growth in the presence of H2O2 (100 µM) (cMSC) (as control) and in the presence of
680 µg/mL of GSGa (+GSGa) or Na2S (95 µM) or GSH (100 mM); (d) FACS cell cycle analysis of cMSC
cultured for 24 h in the presence of H2O2 (100 µM) and with addition of either GYY4137 (80 mM) or
GSGa (680 µg/mL). Error bar indicates S.D. Experiments were performed in three or five biological
replicas. **** p valule ≤ 0.0001 (one-way ANOVA).

Moreover, the presence of GSGa in the medium significantly prevented H2O2-induced cell death
of cMSC (Figure 3b). To determine whether GSGa treatment of cMSC could protect from oxidative
damage, cMSC were treated with 100 µM H2O2 for 24 h either in the presence or in the absence of
680 µg/mL of GSGa (Figure 3c). An increase of 36.7% cell survival in the presence of GSGa with respect
to its absence was observed. Furthermore, the effect due to the presence of GSH and Na2S in the
medium was also analyzed, resulting in cell viability of 89.7%, compared to 44.4% cell viability without
H2O2. The FACS cell cycle profiles after treatment confirmed the increased percentage of cMSC in the
subG1-phase after treatment with H2O2, which was not observable in the presence of GSGa, confirming
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the antioxidant properties of the glutathione-conjugate extract. Moreover, in the presence of a known
H2S-donor, such as GYY4137, the same decrease in the subG1-phase was not detected (Figure 3d).

2.4. GSGa Increases the Expression of Pro-Cell Survival and Differentiation-Associated Markers

The molecular mechanisms underlying GSGa’s cytoprotective effect on both NHDF and cMSC
were investigated using western blot analysis of the cellular extract after 3 days of treatment with GSGa
(680 µg/mL). The expression of the proteins involved in the cellular redox system, such as thioredoxin 1
(Trx1) and NQO1, and the anti-apoptotic protein Bcl2, were substantially increased after treatment with
GSGa (Figure 4a,b). In particular, Bcl2 was increased up to 10 times compared to control non-treated
cMSC (Figure 4a).
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Figure 4. Effects of the GSGa on the protein expression. (a) Representative western blot analysis of the
expression of p-ERK1/2, Bcl2, Trx1 and GAPDH in cMSC cultured for 3 days in the presence (+GSGa) or
in the absence (cMSC) of 680 µg/mL of GSGa; (b) Representative western blot analysis of the expression
of NQO1, GAPDH in both cMSCs and NHDFs cultured for 3 days in the presence (+GSGa) or in the
absence (MSC or NHDF) of 680 µg/mL of GSGa, The integral figure of the NHDFs blot and the original
western blot of MSC for NQO1 expression are shown in the Supplementary Materials (Figures S9 and
S10); (c) Representative western blot analysis of the expression of p(Ser 473)Akt in cMSC after 3 days
of treatment with (+GSGa) or without (cMSC) GSGa, GAPDH expression was used as normalization
control. Error bar indicates s.e.m or S.D. Experiments were performed in three or five biological replicas
(one-tailed Student’s t-test).

Furthermore, to determine the potential pathways involved in the GSGa-mediated pro-cell
survival effect, the activation of extracellular signal-regulated kinases ERK1/2 and Akt, also known as
protein kinase B, was observed in cMSC after GSGa treatment (Figure 4a,c). An increased activation of
ERK1/2 (p-ERK1/2) was observed in treated cMSC compared to control (Figure 4a), therefore ERK1/2
could be responsible for the pro-survival and anti-apoptotic effect of GSGa. After three days of cell
culture in the presence of 680 µg/mL of GSGa (Figure 4c), the intracellular level of p(Ser 473)-Akt in
cMSC was increased.

The expression of proteins involved in the commitment of the cardiac muscle phenotype
differentiation was also assessed by fluorescence microscopy and western blot analysis. Figure 5a,b
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show the fluorescence micrographs of cMSC after 3 days of growth in the presence and in the absence
of 680 µg/mL of GSGa. An increased expression of the proteins α-smooth muscle actin (α-SMA) and
connexin 43 (Cx43) were observed in the cMSCs cultured in the presence of GSGa and the increased
expression was maintained over time after 6 or 7 days of treatment (Figure S7 in Supplementary
Materials). As shown in Figure 5c, treatment of cMSC with 680 µg/mL of GSGa led to a significant
increase of the expression of α-SMA and Cx43 proteins.
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Figure 5. GSGa increases the expression of cardiac phenotype markers. Fluorescent micrographs
of 5 × 103 cells/cm2 of cMSC cultured for 3 days in the presence (GSGa) and in the absence of
680 µg/mL of GSGa, (a) α-SMA expression is shown in red and (b) Cx43 is stained in green; (c) western
blotting and densitometric analysis of the protein expression in cMSC after 3 days of treatment with
680 µg/mL of GSGa. The expression of the proliferation marker and the proteins Cx43 and α-SMA was
significantly upregulated after treatment compared to the control. Images are representative of five
independent experiments. Error bar indicates S.D. Experiments were performed as three biological
replicas. * p value ≤ 0.05 (one-tailed Student’s t-test).

2.5. Prolonged Treatment with GSGa Stimulates Cell Proliferation, Resistance to Oxidative Stress and
Migration of cMSC

Thanks to the cytoprotective properties of H2S-donors, the preconditioning of stem cells before their
transplantation has recently gained attention. On this basis, we performed a prolonged pretreatment
of the cells using a low concentration of GSGa with the aim to select cMSC with more resistant features
to the oxidative stress compared to non-treated cells. In detail, cMSC were cultured for one month
in the presence of 140 µg/mL of GSGa and the selected line was named GcMSC. The resistance to
oxidative stress was tested by exposure of cMSC and GcMSC to 100 µM H2O2 for 24 h. Figure 6a
shows the representative optical micrographs of the cells after H2O2 treatment, where it is evident that
the GcMSCs had higher cell density and improved morphology compared to cMSC after treatment.
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Figure 6. Prolonged GSGa treatment for selection of oxidation-resistant cMSC line. (a) Micrographs
of cMSC and GcMSC seeded at 1 × 104 cells/cm2 of density, after 24 h from seeding in the presence
or absence of H2O2 (100 µM). Scale bars are 100 µm. Cells were stained using crystal violet. (b) Cell
viability of control (cMSC), GcMSC (GcMSC) and of GcMSC in the presence also of 680 µg/mL of
GSGa (GcMSC+GSGa) after 24 h of treatment with H2O2 (100 µM). The data were obtained by five
independent experiments and analyzed using ANOVA one-way test. (c) Optical micrographs of cMSC
and GcMSC (1 × 104 cells/cm2 of density) at 0 or 12 h of treatment with H2O2 (100 µM). Scale bars
are 100 and 50 µm; (d) FACS profiles (on the top) and histograms of the cell cycle distribution (on the
bottom) of cMSC (as control) and GcMSC cultured for 12 h in the presence or in the absence of H2O2

(100 µM). (e) Representative western blot analysis of the expression of Bcl2, Trx1 in cMSC and GcMSC.
The original figure is shown in the Supplementary Materials Figure S9. Experiments were performed
as three biological replicas. Error bar indicates S.D. ** p value ≤ 0.01; **** p value ≤ 0.0001 (one-way
ANOVA).

This result was also confirmed by a WST-1 viability assay (Figure 6b). GcMSC showed a survival
of up to 15 ± 5.3% higher than the cMSC used as control. Notably, further addition of GSGa to the
medium of the GcMSC culture, led to a survival of 42.5 ± 5.7%. This last value was higher than that
obtained with only the addition of GSGa (36.7% ± 7.67, Figure 3c) without preconditioning.

GcMSC were more resistant than cMSC to the oxidative damage by the cellular density after 12 h
of treatment with H2O2 (Figure 6d). This finding was also confirmed by the cell cycle analysis, which
showed that the percentage of the GcMSC population in the subG1-phase was half that of cMSC. This
increased resistance to the oxidative stress was also in agreement with higher levels of expression of
proteins associated with pro-survival Bcl2 and Trx1 in GcMSC compared to those in cMSC (Figure 6e
and Figure S6b in Supplementary Materials). The cell migration ability was also tested using both
the percentage of scratch wound closure after 48 h, shown in Figure 7a, and the trans-well migration
through the membrane after 6 h. In both cases, the GcMSC migration was significantly higher than
that of cMSC.
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Figure 7. Prolonged GSGa treatment improves cMSC migration. (a) Scratch wound healing assay
of GcMSC and cMSC; micrographs in the upper and lower panels were taken immediately after the
scratching (0 h) and after 48 h of growth respectively. The quantification of the wounded area invaded
was calculated by two independent experiments. (b) Micrographs of a 6 h trans-well migration assay
of GcMSC and control cMSC. Cells were stained with crystal violet dye. Scale bars are 200 µm in panel
A, and 50 µm (upper) and 30 µm (lower) in panel B, respectively. * p value ≤ 0.05 (one-tailed Student’s
t-test). Error bar indicates s.e.m.

2.6. Prolonged Treatment with GSGa Does Not Affect the Mesenchymal Stem Cell Plasticity

To assess the multipotency of the GcMSC, they were subjected to different differentiation protocols.
As shown in Figure 8, GcMSC were able to differentiate into different cell types: osteoblasts, adipocytes,
chondrocytes and cardiocytes. In particular, the cardiogenic differentiation was assessed by the
expression of human troponin T2 (TNNT2). The microscopic analyses of the cells did not show any
relevant differences between the cell plasticity of GcMSC and cMSC.
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Figure 8. Multipotency of cMSC and GcMSCs. Chondrogenic, adipogenic and osteogenic differentiation
of cMSC and GcMSC (cMSC pretreated with 136 µg/mL of GSGa for one month). The cells were stained
using Alizarin red S, AdipoRed and Alcian blue dyes for osteogenic, adipogenic and chondrogenic
differentiation, respectively. For cardiogenic differentiation, cells were stained using an anti-TNNT2
and an Alexa Fluor®® 488 donkey anti-mouse secondary antibody. Scale bars are 5, 10, 50 µm as
indicated. Experiments were performed as three biological replicas.
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2.7. GSGa Treatment of cMSCs Modulates the Expression of Genes Related to the Cardiovascular Disease and
Detoxification Enzymes

To determine the signaling pathways modulated by the treatment with GSGa, the global
transcriptional profile (50,599 genes) of cMSCs was analyzed by gene microarray analysis. In
total, 388 and 165 genes showed modulated expression in the cMSCs treated for 3 days with GSGa and
in the GcMSCs, respectively, compared with the control. In detail, 266 genes were downregulated and
122 were upregulated after GSGa treatment with respect to the control, while 77 genes were upregulated
and 88 downregulated in GcMSC with respect to cMSC. Figure 9a shows the respective heat-maps.
Volcano plots from microarray analysis are shown in Figure S8 (in Supplementary Materials). Venn
diagram (see Figure 9b) of cMSC vs. GSGa and cMSC vs. GcMSC shows that 36 genes were regulated
in both acute and prolonged preconditioning. Interestingly, the transcription of genes involved in the
metabolism of xenobiotics and the MAPK signaling pathway, such as cytocrome P450 and myocyte
enhancer factor 2C (MEF2C), was changed, after both the preconditioning treatments (see Table S1 in
Supplementary Materials). However, these results must be confirmed by protein expression analysis.
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Figure 9. Transcriptional profiling of cMSC following GSGa treatment. (a) Heat-maps show
significantly upregulated and downregulated genes in cMSC following prolonged (GcMSC/cMSC)
or 3-day (GSGa/cMSC) GSGa treatment and those in GSGa with respect to GcMSCS (GcMSC/GSGa).
Heat-maps were generated by hierarchical clustering of genes accordingly to the fold change. Cut-off

p value ≤ 0.05; Cut off fold change 1.5. (b) Venn diagram depicts overlap of differentially regulated
genes after 3 days (GSGa) and 30 days (GcMSC) of treatment. The diagram has been generated by
using InteractiVenn webtool (http://www.interactivenn.net) inputting the probe name lists from the
gene array data. (c) Selection of significantly upregulated genes following GSGa treatment whose
function was associated with cardiovascular diseases. (d) Histograms show gene expression variation
(upregulation: up; downregulation: down) after GSGa treatment (GSGa) of genes associated with the
diseases indicated in the legend.

Among the proteins upregulated after treatment, four proteins were found to be either
downregulated or not expressed at all in certain cardiovascular diseases. In particular, the protein
tyrosine-protein kinase receptor (TYRO3) was found to be upregulated in treated cMSC, while its
expression is reported to be downregulated in atherosclerotic carotid plaque [48]. Actinin alpha
2 (ACTN2) was also upregulated upon treatment with GSGa, while it has been reported to be
downregulated in cardiomyopathy/dilated cardiomyopathy [49]. This protein is expressed in skeletal
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and cardiac muscle tissue and it serves as a bridge for anchoring myofibrillar actin thin filaments and
titin to Z-discs. Finally, two more proteins were found to be upregulated upon treatment: sarcoglycan
delta (SGCD) and serum response factor binding protein 1 (SRFBP1), usually downregulated or
mutated in hypertrophic and dilated cardiomyopathies and during heart failure, respectively [50,51].

The analysis, performed using DAVID 6.8 program (https://david-d.ncifcrf.gov/home.jsp), of the
functions of the genes both up and downregulated in cells after GSGa treatment with respect to the
control showed that 52.5% of the genes whose expression was altered upon the treatment were linked
to the cardiovascular system/cardiovascular diseases (approximately 24.3% were upregulated and the
remaining 28.2% were downregulated), 33.4% of the altered genes were linked to neurodegenerative
diseases (21.9% upregulated, 11.5% downregulated), and 18.6% were associated with diabetes (9.7%
upregulated, 8.9% downregulated) (Figure 9c). The remaining 6.4% were associated with obesity and
were all downregulated (Figure 9c).

3. Discussion

The water-soluble garlic extract, named GSGa, obtained by conjugation of garlic OSCs with
glutathione was here investigated for its antioxidant properties and its ability to induce cell proliferation
and migration in adult stem cells.

Recently, in vivo and in vitro studies have shown that NaHS is able to enhance the survival of
bone marrow-derived mesenchymal stem cells (BMSC) upon hypoxia-ischaemic conditions [45]. Our
results show an increase of the cMSC proliferation in a concentration-dependent manner with respect
to the control after treatment with GYY4137 and GSGa. These data are in agreement with previous
results demonstrating the ability of H2S to promote neural stem cell proliferation and differentiation
and to protect against hypoxia-induced decreases in hippocampal neurogenesis [52].

The cytotoxic effect observed at 50 µM of Na2S could be compatible with a very fast H2S-release,
while at higher concentrations this initial cytotoxic effect was compensated by a positive effect on the
cell growth of a slow H2S release due to the protein S-sulfhydration. As already described, the cellular
or tissue response may be influenced by the manner in which cells and tissues are exposed to H2S [53].
Both Na2S and NaHS instantaneously generate H2S and are very short-lived compounds, indeed
they are not ideal H2S-donors for studying the physiology, whereas enzymatic or GSH-derived H2S
synthesis is considerably slower, over a much longer time [13,54–56]. The GSGa was also able to
improve the stem cell migration as demonstrated by the scratch assays where the cell cultures after
48 h in the presence of GSGa showed a closer scratch than in the absence. This effect was probably due
to concomitant increase in both cell migration and proliferation.

The antioxidant properties of the GSGa was also tested using a pDNA damage assay based on
assessing the cleavage effect of oxidant species such as H2O2 or Cu2+ and Co2+ ions in the presence of
ascorbic acid. The presence of GSGa inhibited the pDNA cleavage obtained in both H2O2, CuCl2 and
CoCl2. GSGa showed a protective anti-hypoxic effect on the cMSC, leading to an increase of 15% in cell
survival with increased expression of HIF-1α. The HIF-1α subunit of the heterodimeric transcription
factor HIF is continuously synthesized, hydroxylated and degraded through the ubiquitin–proteasome
system [57]. Under hypoxic or hypoxic-mimic conditions, such as after treatment with CoCl2, a chemical
hypoxia-mimicking agent, the prolyl-hydroxylase activity is inhibited and consequently HIF-1α is
stabilized for translocation into the nucleus and dimerization with HIF-1β [58]. Active HIF-1 regulates
the expression of genes involved in the anti-hypoxic/oxidant cellular response. Target genes of HIF-1
are involved in different biological pathways, such as energy metabolism, angiogenic signaling,
growth, apoptosis, and cell migration [59]. The cytoprotective effect of GSGa against CoCl2, similarly
to other H2S-donors [60], could reduce HIF-1α subunit degradation, promoting the expression of
hypoxia-responsive element (HRE)-controlled genes.

During the last decade, it has been demonstrated that H2S is a physiological mediator that limits
inflammation and free radical damage [46] by reacting with multiple oxidant stressors including
peroxynitrite [57], superoxide radical anion [61], and hydrogen peroxide [62]. Moreover, H2S is
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able to upregulate ARE-genes transcription [47] and also produce glutathione persulfide (GSSH) in
mitochondria [63–65], a more efficient H2O2 -scavenging molecule than GSH. The pretreatment with
GSGa of both NHDF and cMSC cultures led to an increase in cell survival from the oxidative damage
induced by H2O2.

The presence of GSGa led to an increased percentage of cells in the S/M/G2-phase, which could
be related to both an increase of S-phase or a partial cell-cycle arrest in G2 phase. This increased
rate of MSCs in the S/M/G2-phase was not observed in the presence of GSGa, without the addition of
H2O2 (see Figure S4 in Supplementary Materials). Therefore, the GSGa treatment could have both
a direct protective effect against oxidative species, as demonstrated using the pDNA degradation assay,
and an indirect effect in which it elicits a cellular antioxidant response by inducing ARE-controlled
gene expression.

The molecular mechanisms underlying GSGa’s cytoprotective effect on both NHDF and cMSC
were here investigated using western blot analysis.

In both cMSC and NHDF, the treatment with GSGa also led to an increased expression of NQO1,
and these results are also in agreement with previous findings [45]. NQO1 is one of the target proteins of
the transcription factor Nrf2, involved in the antioxidant response of mammalian cells. NQO1′s primary
activity is the 2-electron reduction of endogenous and exogenous quinones to their corresponding
hydroquinones through the use of either NADH or NADPH as the hydride donors, thus preventing the
formation of radical species [66]. NQO1′s antioxidant effects also correlate with its role in preserving
a reduced pool of endogenous antioxidant molecules and stabilizing the tumor suppressor protein
p53 [67]. The activity of antioxidant enzymes is regulated in the cell by the Nrf2-antioxidant response
element (ARE) pathway. Nrf2 is a transcription factor normally found in the cytoplasm bound to the
Kelch-like ECH-associated protein 1 (Keap1), which acts as a substrate adaptor protein for the Cullin3
(Cul3)-containing E3-ligase complex. The interaction between the aforementioned complex and Keap1
leads to Nrf2 ubiquitination and, eventually, to its degradation [68]. During oxidative stress, Keap1
undergoes structural modifications that result in the exposure of lysine residues, which become targets
for ubiquitination and subsequent degradation [69]. Similarly, H2S is able to induce the dissociation
between Nrf2 and Keap1 through the sulfhydration of the Cys151 residue on Keap1 [70]. Nrf2 is
therefore free to translocate to the nucleus where it binds to ARE (Figure 10).
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The activation of extracellular signal-regulated kinases ERK1/2 and Akt, also known as protein
kinase B, was observed after GSGa treatment in both cMSC and NHDF (see also Figure S6a in the
Supplementary Materials). ERK1/2, belonging to the Ras-Raf-MEK-ERK signal transduction cascade, are
involved in the regulation of several cellular processes such as cell adhesion, cell cycle progression, cell
migration, cell survival, differentiation, metabolism, proliferation and transcription [71]. The activation
of ERK1/2 follows the phosphorylation of the residues Tyr 204/187 and Thr 202/185 by MEK [71]. ERK1/2
targets include hundreds of cytoplasmic or nuclear substrates involved in different cellular processes.
ERK1/2 could be responsible for the pro-survival and anti-apoptotic effect of GSGa, considering that
an increased activation of ERK1/2 (p-ERK1/2) was observed in treated cMSC compared to control.
Akt activation has also been associated with numerous crucial cell functions, such as proliferation,
differentiation, cell migration, survival and angiogenesis [72].

This marked activation of Akt was also in agreement with the effect induced by H2S-releasing
agents on normal cells and BMSCs [45,73,74]. Therefore, our results are in agreement with recent
findings that link H2S pro-survival effects to the activation of the PI3K/Akt pathway [72,75,76].

GSGa treatment of cMSCs also led to increased expression of the proteins α-smooth muscle
actin (α-SMA) and Cx43. Their increased expression can be linked to a commitment of the cells
towards a cardiac phenotype. Cx43, in fact, is the most abundant isoform of gap-junction channels in
cardiac tissue and its increased expression is also in agreement with our previous data obtained using
H2S- releasing nanoemulsions [40]. Generally, Cx43 expression is low in MSC [77], while high Cx43
expression in MSC can improve their survival and cardiomyogenesis after transplantation [78,79].

Thus, the therapeutic efficacy of cardiac progenitor/stem cell transplantation could be enhanced by
the overexpression of Cx43 because it promotes neovascularization, reduces infarct size and preserves
cardiac function preservation in the ischemic heart [80–82]. Cell therapy using MSC overexpressing
Cx43 reduces infarct size, improving the heart functionality [74,80]. These results suggest a possible
use of GSGa preconditioning of cMSC for improving their survival and eventually potentiate their
ability to promote cardiac muscle tissue repair.

Thanks to the cytoprotective properties of H2S-donors, the preconditioning of stem cells before
their transplantation has recently gained attention. H2S-donors are, without a doubt, promising
exploitable tools to overcome the massive cell death that occurs after the implantation of stem cells
in the site of injury for stem cell therapy. Currently, not many studies have investigated the use of
H2S-donors in tissue repair, and most of them are focused on short-term preconditioning of the stem
cells prior to transplantation. The time-span of the pretreatment varies from as short as 30 min to
48–72 h [45,81,82]. A selected cell line named GcMSC was obtained after long-term preconditioning
and was here characterized. GcMSCs were more resistant to the oxidative stress and further addition
of GSGa to the medium of the GcMSC culture, and led to a survival higher than that obtained with
only the addition of GSGa without preconditioning. This result suggests that the combination of these
two approaches might be the best choice for potential in vivo applications.

This increased resistance to the oxidative stress was also in agreement with higher levels of
expression of proteins associated with pro-survival/proliferation, such as pERK-1, p-Akt, Bcl2 and Trx1,
in GcMSC compared to those in cMSC (Figure 6e). One of the most important features of a successful
stem-cell based therapy is the ability of the implanted cells to migrate to the site of injury, proliferate
and eventually differentiate in order to replace the damaged tissue. The cell migration ability was
tested using both the percentage of scratch wound closure and the trans-well migration, and in both
cases, the GcMSC migration was significantly higher than that of cMSC.

These results are in agreement with the recent studies that demonstrate that H2S is able to
promote migration and wound healing. The underlying mechanism involves increased levels of p-Akt,
p-ERK1/2 and phosphorylated glycogen synthase kinase-3b [81–83]. Overall these results demonstrate
that prolonged cell GSGa pre-conditioning could represent a powerful tool for selecting adult stem-cell
lines that maintain an increased proliferative and migration capability and resistance to oxidative
stress, suggesting a potential successful approach for future in vivo/therapeutic applications. GcMSC
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were able to differentiate into different cell types and the analyses performed did not show any relevant
differences between the cell plasticity of GcMSC and cMSC.

The microarray data analysis showed that 52.5% of the genes, whose expression was altered
upon the GSGa treatment, (+GSGA), were linked to the cardiovascular system/cardiovascular diseases,
neurodegenerative diseases and diabetes. As previously stated, the study of the effects of H2S on
pathological conditions is focused mainly on the field of cardiovascular and neurodegenerative diseases.
The first report of an H2S cytoprotective effect goes back to 1996, when Abe and Kimura reported
a beneficial role of NaHS in inducing long-term potentiation of the hippocampus at micromolar
concentrations [84]. After that, interest gradually increased and other roles of this gasotransmitter in
the central nervous system (CNS) and in neurodegenerative diseases were reported. In particular,
H2S concentration is relatively high in the brain, due to the tissue-specific expression of CBS. Indeed,
H2S has been reported to enhance N-methyl-D-aspartate (NMDA) receptor-mediated responses and
to modulate Ca2+ and pH homeostasis in neurons, microglial cells and astrocytes [85]. Exogenous
administration of H2S has been therefore seen as a potential therapeutic tool for the cure of several
CNS diseases including Alzheimer’s disease, Parkinson’s disease, ischemic stroke and traumatic brain
injury [86]. H2S also plays a central role in regulating cardiovascular system homeostasis. Changes in
endogenous H2S levels have been correlated to many diseases, including heart failure, myocardial
ischaemia and atherosclerosis [87]. On this basis, our results are in agreement with the effects of
other H2S donors on cardiovascular and neurodegenerative diseases and suggest the possible value of
investigating other potential target proteins whose expression can be regulated upon treatment with
the natural H2S-donor GSGa.

4. Materials and Methods

4.1. Preparation of Water-Soluble Extracts from Allium sativum L. and H2S-Release Assay

The garlic water-soluble extracts (GaWS and GSGa) were prepared as previously described [16].
Briefly, 5 g of garlic cloves were crushed in 50 mM Tris-HCl buffer at pH 7.5 at room temperature for
about 5–10 min with or without 10 mM reduced glutathione (GSH) and then the crushing procedure
was continued in liquid N2. After centrifugation, the water soluble fraction was stored at −20 ◦C for
molecular characterization by RP-HPLC. RP-HPLC analysis was performed using mod. LC-10AVP
(Shimadzu, Milan, Italy), equipped with a UV detector (Shimadzu, Milan, Italy) and a C18 column
(150 mm × 4.6 mm, 5 µm, CPS Analitica, Rome, Italy). The solvent B gradient (solvent B: 80% CH3CN,
0.1% TFA; solvent A: 0.1% TFA) used was: 0–5 min, 0%; 5–55 min, 60%; 55–60 min, 60% and 65–85 min
90%. The elution was monitored at 220 nm. To obtain the dry weight of the extract (and therefore its
concentration), 100 µL of GSGa extract were lyophilized.

4.2. H2S Release Assay

H2S production and release by GSGa, GYY4137 and Na2S was assessed by methylene blue assay
as previously described [16]. Briefly, each sample with 1 mM dithiothreitol (DTT) in 50 mM Tris HCl,
pH 7.4 (150 µL final volume) was incubated at 37 ◦C on a shaker for 30 min. After the incubation,
20 µL of solution I (20 mM N’, N’-dimethyl-p-phenylene-diamine-dihydrochloride in 7.2 M HCl) and
20 µL of solution II (30 mM FeCl3 in 1.2 M HCl) were added to each solution. After an incubation time
of 10 min at room temperature, coupled to gentle mixing of the solutions, absorbance was measured
at 670 nm. Na2S was used to elaborate a standard curve (Figure S1A in Supplementary Materials)
and the H2S- release from GYY4137 was also tested by MB assay and compared to that from GSGa
(Figure S1B Supplementary Materials). All the results in this work were elaborated and plotted using
GraphPad Prism version 5.0 software (GraphPad Software, San Diego, CA, USA).
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4.3. Plasmid DNA Cleavage Inhibition Assay

These experiments were performed as previously described with minor modifications [40]. Briefly,
reagents were added to a 0.5 mL microfuge tube in the following order: 0.5 µg of plasmid DNA, 20 mM
Tris-HCl steril pH 7.4 buffer, 10.8 mg/mL of GSGa, 100 µM of either H2O2 or CuCl2 or CoCl2 and 10
mM ascorbic acid, and sterilized ddH2O to a final volume of 10 µL. After an incubation period of
15 min at 37 ◦C, the reactions were stopped by the addition of 2 µL of gel loading buffer (5% glycerol,
0.125% bromophenol blue, 25 mM EDTA) and freezing. Samples were kept on ice until electrophoresis
in 0.8% agarose gel in TAE buffer.

4.4. Cell Viability Assay

Cell viability and proliferation were tested either by MTT 3-(4,5-dimethylthiazol-2-yl)
-2,5-diphenyltetrazolium bromide [88] or WST-1(4-[3-(4-lodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-
1,3-benzene disulfonate (Cell Proliferation Reagent WST-1, Roche, Mannheim, Germany) [88] assay as
indicated. After each treatment, the medium was replaced with fresh DMEM high glucose without
phenol-red (Gibco, Life Technologies, Milan, Italy) containing tetrazolium salt WST-1 (5% v/v) or MTT
(0.5 mg/mL). The cells were then incubated for 3 h at 37 ◦C, 5% CO2. Absorbance of the medium was
evaluated using a microplate reader at a wavelength of 450 nm for WST-1. For MTT assay, formazan
crystals were solubilized with a solution of isopropanol and DMSO (1:1) and then the absorbance was
measured at a wavelength of 570 nm.

4.5. Cell Migration

4.5.1. Scratch Wound Healing Assay

cMSC were seeded into 24-well plates (6.5 × 104 cells/cm2) and incubated over night at 37 ◦C, 5%
CO2, so that the cells would reach confluency the next day. After 24 h, a scratch-wound was created
with a 1 mL sterile pipette on the cell monolayer of each well. The medium was then removed and
cells were washed twice with PBS; fresh medium was added to each well (800 µL/well). Area of the
scratch-wound at time 0 and after 48 h was measured with ImageJ Software. Percentage of wound
closure was measured as follows:

Wound closure (%) = (Wound surface area after 48 h/Wound surface area at time 0) × 100

4.5.2. Trans-Well Migration Assay

Cell migration was assessed using 8 µm-pore-size Falcon TM Cell Culture Inserts (Thermo Fisher
Scientific, Milan, Italy). cMSC (0.1 × 106) were added on the upper chamber of the inserts in serum-free
DMEM. Complete medium was added to the lower chamber of the inserts to attract the cells. After
incubation for 6 h at 37 ◦C, 5% CO2, cells were removed from the upper surface of the trans-well
membrane with a water-wetted cotton swab. Cells that had migrated on the other side of the membrane
were fixed and stained for 20 min with a solution containing 6% (v/v) glutaraldehyde and 0.5% (w/v)
crystal violet in deionized water. The inserts were then washed repeatedly with water. Air-dried
membranes were analyzed by optical microscopy.

4.6. Protection from Oxidative Stress

NHDF were seeded at a density of 3 × 103 cells/cm2 and cultured for three days in the absence or
in the presence of 680 µg/mL of GSGa. After that, the cells were reseeded at a density of 104 cells/cm2

and after 6 h of incubation, the medium was replaced with fresh medium containing 100 µM of H2O2.
After 12 h, cell survival was assessed by optical microscopy. Two different experiments were performed
in order to analyze the anti-oxidant effect of GSGa treatment on cMSC. In the first one, cMSCs and
GcMSCs were seeded at a density of 5 × 103 cells/cm2 and after 24 h of growth the medium was
replaced with fresh medium containing 100 µM of H2O2 with or without the addition of 680 µg/mL of
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GSGa, GSH (100 µM), Na2S (100 µM) or GYY4137 (300 µM). After 24h, the medium was replaced with
fresh DMEM medium (Gibco, Life Technologies, Milan, Italy) without phenol red and cell viability
was assessed by WST-1 assay (Sigma-Aldrich, Milan, Italy). Cell cycle distribution analysis was
performed by flow cytometry (FACS analysis) after 12 h of incubation. Briefly, cells (about 0.5 × 106)
were harvested and stained with 50 µg/mL propidium iodide (Sigma-Aldrich, Milan, Italy) for 30 min
at 4 ◦C. After incubation, the samples were immediately analyzed using a FACSCalibur flow cytometer
(Beckton and Dickinson, San Josè, CA, USA). The data obtained were then elaborated with the WinMDI
free software. The second experiment was performed using cMSC and GcMSC that were seeded
at a density of 104 cells/cm2 and after 6 h of growth, the medium was replaced with fresh medium
containing 100 µM of H2O2. After 12 h of growth, cell survival was assessed by optical microscopy.

4.7. cMSC and NHDF Cultures and Immunofluorescence Analyses

Cell studies were conducted on cMCS and NHDF (Lonza, Basel, Switzerland) cell lines. cMSC
were extracted by auricular biopsies made during the course of coronary artery bypass surgery
from patients after signing a written consent form as previously described [38–40,89,90]. Cell
cultures were grown in DMEM (Dulbecco’s modified Eagle medium) (Gibco, Life Technologies, Milan,
Italy), containing 10% v/v FBS (Fetal Bovine Serum) (Gibco, Life Technologies, Milan, Italy), 1% w/v
penicillin-streptomycin (Sigma-Aldrich, Italy), and 1% w/v L-glutamine (Sigma-Aldrich, Italy). To
perform the microscopy analyses, cMSCs, after the treatment, were washed in PBS, fixed in PBS with
4% v/v PFA at 4 ◦C for 15 min, permeabilized with 0.2% v/v Triton X-100 (Sigma-Aldrich, Italy) for
30 min and after washing, were incubated with specific antibodies for immunofluorescence microscopy.
The antibodies used were anti-α-smooth muscle actin (α-sma) mouse, anti-connexin-43 (Cx43) mouse
(Sigma-Aldrich, Italy), anti-human troponin T2 (TNNT2), followed by the appropriate Alexa Fluor®®

488 fluorochrome-conjugated secondary antibody (Invitrogen, Life Technologies, Milan, Italy). Nuclei
were stained with Hoechst 33342 (Sigma-Aldrich, Italy). The cells were analyzed by fluorescence
microscopy using a Nikon Filter microscope and Lucia G version 4.61 software.

4.8. Protein Extraction and Western Blot Analysis

Proteins were extracted from cMSCs using 100 µL of RIPA buffer containing a protease inhibitor
cocktail (Sigma-Aldrich, Italy) and pervanadate (Sigma-Aldrich, Italy) as phosphatase inhibitor and
after 90 min of incubation in ice were sonicated for 10 sec at 0 ◦C. Samples were centrifuged for
10 min at 8000 rpm at 4 ◦C. Protein content was determined by BCA protein assay (Sigma-Aldrich,
Milan, Italy), and the SDS-PAGE of cell extracts (30 µg of protein) were performed using 12 or 15%
polyacrylamide gel. PVDF membranes (Sigma-Aldrich, Italy) were used for electro-blotting and were
then blocked and probed with primary monoclonal antibodies (Ab-ERK1/2 rabbit, Ab-p-ERK1/2 rabbit,
Ab-Trx rabbit, Ab-NQO1 rabbit, Ab-Akt and Ab-pAKT-(pSer473) rabbit, A, Ab-α-sma rabbit, b-Cx43
rabbit) (Sigma-Aldrich, Italy,) overnight at 4 ◦C. Immunoblots were next processed with secondary
antibodies (Sigma-Aldrich, Italy) for 2 h at room temperature. Immunoblot with Ab-GAPDH rabbit or
Ab-β-tubulin mouse (Sigma-Aldrich Italia, Milan Italy) were also probed for controlling the protein
loading. The protein complex formed upon incubation with specific secondary antibodies (dilution
1:10000) (Sigma-Aldrich, Milan, Italy). Immunoblots were probed with a Super Signal West Pico
kit (Thermo Scientific, Milan, Italy) to visualize signal, followed by exposure to Fluorchem Imaging
system (Alpha Innotech Corporation-Analitica De Mori, Milan, Italy) or using a X-ray film (Kodak,
Sigma-Aldrich, Italy).

4.9. Cell Differentiation

Control untreated cMSC and those pre-treated for one month with 140 µg/mL of GSGa (GcMSCs)
were seeded in 35 mm dishes at a density of 5000 cells/cm2 until they reached a confluency of 80–90%.
For adipogenic and osteogenic differentiation, the cells were stimulated for 3 days in the differentiation
mediums, StemPro®®Adipogenesis Differentiation Kit and StemPro®®Chondrogenesis Differentiation
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Kit (Gibco, Life Technologies, Milan, Italy), respectively. After 3 days, the medium was removed and
the cells were washed twice with PBS and fixed with 4% v/v PF for 20 min at room temperature in the
dark. Cells were then washed once with PBS, stained with Alcian Blue pH 2.5 to detect chondrogenic
differentiation or Adipo Red for the adipogenic differentiation and analyzed by optical and fluorescent
microscopy, respectively. For osteogenic differentiation, confluent cells were stimulated for 3 days
with DMEM supplemented with 10% FBS, 1% w/v penicillin-streptomycin (Sigma-Aldrich, Italy), 1%
w/v L-glutamine (GIBCO, Life Technologies, Milan, Italy), 1% v/v non-essential amino acids solution
(Sigma-Aldrich, Italy), 50µg/mL ascorbic acid, 10 mM β-glycerophosphate and 10 nM dexamethasone.
After the stimulation period, the cells were stained with Alizarin Red dye and analyzed by optical
microscopy. Cardiogenic differentiation was performed following the instructions provided with
the Human Cardiomyocyte Immunocytochemistry Kit®® (Life Technologies, Milan, Italy); after
differentiation, cells were fixed as previously described and stained with a primary mouse anti-human
troponin T2 (TNNT2) antibody and an Alexa Fluor®® 488 donkey anti-mouse secondary antibody.

4.10. Microarray

RNA was extracted from cells, using a RNAeasy Kit (Qiagen, Manchester, UK). RNA was reverse
transcribed, converted to cDNA, amplified, and labeled with a cyanine-3 dye using a Low Input
Quick Amp labeling kit from Agilent. Labeled cRNAs were hybridized to human gene expression
microarrays (Agilent, Cheshire, UK). The data were extracted using the Agilent Feature Extraction
software (version 10.7.3.1) and analyzed using Agilent GeneSpring GX software (version 12.1, Agilent,
Cheshire, UK). An unpaired Student’s t test with Benjamini–Hochberg multiple testing correction was
applied in order to analyze significant differences of expression, mRNAs with a p value of less than or
equal to 0.05 and a fold change of greater than 1.5 were considered to be both statistically significant.
Heat-maps were generated by Agilent GeneSpring GX software (version 12.1) with a hierarchical
clustering algorithm based on normalized intensity value by using Euclidean similarity measurements
(cut-off p value 0.05; cut-off fold change 1.5). Microarray analyses were performed using the DAVID
6.8 program [91,92] and InteractiVenn webtool (http://www.interactivenn.net).

4.11. Statistical Analysis

GraphPad Prism version 6.0 for Windows (GraphPad Software, San Diego, CA, USA) was used
for the statistical analysis. Data obtained from three or five independent experiments were quantified
and analyzed for each variable using a one-way ANOVA test or in some cases one-tailed Student’s
t-test. A p value of < 0.05 was considered to be statistically significant. Standard deviations or the
standard error means were calculated and presented for each experiment.

5. Conclusions

The endogenous H2S levels help regulating the equilibrium of several organs, including the
respiratory, reproductive, neuronal, renal, cardiovascular, gastrointestinal and liver systems. The broad
physiological role of this lipid-soluble gasotransmitter is due to its membrane permeability, although its
unique chemical reactivity towards some macromolecules in different cell lines makes this gas a selective
signalling molecule. Here a garlic water-soluble extract obtained with glutathione conjugation was used
as a natural H2S-releasing agent to analyse the effects of both acute and prolonged preconditioning on
progenitor stem cells. Although the protective effect of H2S by the oxidative stress was well investigated
in the human cells using NaHS as H2S donor [1,41], the effects of potential nutraceutical bio-products,
such as GSGa, on MSC has not yet been assessed. Several studies suggest that the inherent reparative
capability of the body could in theory be supported by incrementing the efficiency of the endogenous
MSC via therapeutic exogenous MSC [93–95].

One of the most relevant problems in cell-based therapy is the optimization of the stem cell
delivery system and of the capability of multipotent stem cells to proliferate, migrate and differentiate,
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generally, in compromised sites where active oxidative and inflammatory processes are ongoing, with
the aim of improving tissue repair and regeneration.

We demonstrated that the cell line selection by GSGa conditioning significantly improves the
ability of the cMSC to proliferate, migrate and survive oxidative injury by activation of the expression
of both HRE- and ARE-mediated transcription genes. The subsequent increase in antioxidant enzymes
and molecules might protect against cellular senescence induced by oxidative stress. Moreover, we
demonstrated that the prolonged GSGa treatment does not affect the cell plasticity of cMSC, although
it improves the expression of proteins such as α-SMA and Cx43, which are important in muscle tissue
commitment. The results presented here suggest the possibility of ameliorating MSC therapy by
prolonged treatment with natural H2S-releasing donors that could improve MSC homing to the site of
injury, promoting their cell proliferation, migration and survival under oxidative stress conditions and
ultimately favouring the capability of MSC to secrete paracrine factors with both immunoregulatory
and structural functions for microenvironment regeneration.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/21/5/1638/
s1.
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3-MTS 3-mercapto-piruvate sulfurtrasferase;
α-SMA α-smooth muscle actin;
AcH3 acetylated histone H3;
ACTN2 Actinin alpha 2;
Akt Protein kinase B;
ARE Antioxidant response element;
BAD-NE BSA/ALA/DADS nanoemulsion;
BCA bicinchoninic acid;
BMSCs bone marrow mesenchymal stem cells;
CBS cystathionine β-synthase;
CNS central nervous system;
CSE cystathionine γ–lyase;
Cx43 connexin-43;
cMSCs Lin-Sca-1+ human cardiac progenitor cells;
DADS diallyl-disulfide;
DMEM Dulbecco’s modified Eagle medium;
DATS diallyl-trisulfide;
DU145 cells prostate cancer cell line;
ERK1/2 extracellular signal–regulated kinases 1/2;
FBS Fetal Bovine Serum; H2S, hydrogen sulfide;
HO1 heme oxygenase 1
Keep1 Kelch ECH associating protein 1;
MEF2C myocyte enhancer factor 2C
MSCs mesenchymal stem cells;
NHDF normal human dermal fibroblasts;
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NQO1 NAD(P)H quinoneoxidoreductase 1;
NMDA N-methyl-D-aspartate;
Nrf2 nuclear factor erythroid 2-related factor 2;
NSAIDs non-steroidal anti-inflammatory drugs;
OSCs Organo-sulfur compounds;
p21 cyclin-dependent kinase inhibitor 1;
SGCD sarcoglycan delta;
Trx1 thioredoxin 1;
TYRO3 tyrosine-protein kinase receptor;
SRFBP1 serum response factor binding protein 1;
TFA trifluoroacetic acid;
TNNT2 human Troponin T2;
TST thiosulfate: cyanide sulfurtransferase enzyme.
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