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Abstract
In general, it is not feasible to collect enough empirical data to capture the entire 
range of processes that define a complex system, either intrinsically or when viewing 
the system from a different geographical or temporal perspective. In this context, an 
alternative approach is to consider model transferability, which is the act of translat-
ing a model built for one environment to another less well-known situation. Model 
transferability and adaptability may be extremely beneficial—approaches that aid in 
the reuse and adaption of models, particularly for sites with limited data, would ben-
efit from widespread model uptake. Besides the reduced effort required to develop 
a model, data collection can be simplified when transferring a model to a different 
application context. The research presented in this paper focused on a case study to 
identify and implement guidelines for model adaptation. Our study adapted a general 
Dynamic Bayesian Networks (DBN) of a seagrass ecosystem to a new location where 
nodes were similar, but the conditional probability tables varied. We focused on two 
species of seagrass (Zostera noltei and Zostera marina) located in Arcachon Bay, France. 
Expert knowledge was used to complement peer-reviewed literature to identify 
which components needed adjustment including parameterization and quantification 
of the model and desired outcomes. We adopted both linguistic labels and scenario-
based elicitation to elicit from experts the conditional probabilities used to quantify 
the DBN. Following the proposed guidelines, the model structure of the general DBN 
was retained, but the conditional probability tables were adapted for nodes that char-
acterized the growth dynamics in Zostera spp. population located in Arcachon Bay, 
as well as the seasonal variation on their reproduction. Particular attention was paid 
to the light variable as it is a crucial driver of growth and physiology for seagrasses. 
Our guidelines provide a way to adapt a general DBN to specific ecosystems to maxi-
mize model reuse and minimize re-development effort. Especially important from a 
transferability perspective are guidelines for ecosystems with limited data, and how 
simulation and prior predictive approaches can be used in these contexts.
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1  |  INTRODUC TION

Ecological models and related decision-support frameworks support 
defining problems, conveying ecological concepts and relationships, 
characterizing potential system responses to management pertur-
bations, and evaluating alternative management policies (McCann 
et al., 2006). High-quality data are fundamental to such modeling, yet 
it may be expensive, insufficient, or indeed unavailable. Numerous 
ecological studies have shown the effect of limited data on the pre-
dictive accuracy of models (e.g., Chen, 2003; Pearce & Boyce, 2006; 
Vaughan & Ormerod, 2003). One approach to provide modeling de-
cision support in challenging data environments is to transfer a gen-
eral model from another context to the one being managed.

The difficulty of collecting enough empirical data to capture 
the entire range of processes that define a complex system is ex-
acerbated, when viewing the system from a different geographical 
or temporal perspective (Clark,  2001; Yates et al.,  2018). When a 
general model is developed to illustrate the “ecological causal web” 
of key variables and their influences on an ecosystem (Marcot 
et al., 2006), it becomes potentially applicable to a wide range of do-
mains. As long as the core character of the decision-making process 
remains the same, model transfer can be more cost effective and 
enhance model uptake.

In ecology, there are many examples of spatial and temporal 
transfer of species distribution models (Bridge et al., 2020; Sequeira 
et al., 2016, 2018). Models have also been used in different locations 
(Barbosa et al., 2009; Lauria et al., 2015; Randin et al., 2006) and 
times (Barbosa et al., 2009; Moreno-Amat et al., 2015; Rapacciuolo 
et al., 2012; Tuanmu et al., 2011) to which they were originally de-
veloped. However, there remain many challenges in model transfer-
ability. These include challenges with the theory (Yates et al., 2018), 
data use (Aubry et al., 2017; Morán-Ordóñez et al., 2017), methods 
for transfer for different modeling methods (Heikkinen et al., 2012; 
Sequeira et al., 2018), and resultant interpretation of transferability 
(Wenger & Olden, 2012).

Ongoing efforts have been made to better understand the pat-
terns and determinants of model adaptation and transferability. For 
example, Lauria et al. (2015) examined and evaluated model transfer-
ability across regions using a four-step framework: model selection, 
model evaluation, model transferability between regions, and model 
mapping. In the methodology developed by Lauria et al. (2015), the 
smallest Akaike Information Criterion was used to determine the 
best model; Spearman rank and the coefficient of determination (R2) 
were used to evaluate the relationship between observed and pre-
dicted values, and at the “mapping” stage, species-environment rela-
tionships were used to interpolate the distribution of the species in 

the same geographic area in which the model was calibrated. Moon 
et al.  (2017) created a more analytical approach to characterize a 
given model's application niche by synthesizing information from 
databases, previous research, and models in unique and innovative 
applications to produce performance curves indicating whether a 
specific model is acceptable or not for a distinct context.

Undeniably, correlative models relating ecological metrics to en-
vironmental and spatial predictors are often used and play a critical 
role in supporting management and conservation efforts worldwide. 
However, such models consider only a subset of the relevant eco-
logical processes. Even when other variables are included in models, 
there may be no data available for that variable nor an understand-
ing of how it interacts with other variables. This makes predictions 
of ecological interactions beyond the range of observed values very 
challenging. Dealing with ecological problems is inherently complex 
since ecosystems are composed of heterogeneous, complex net-
works with nonlinear relationships and limited predictability (Folke 
et al., 2004; Starfield, 1997). This is due to multiple interactions that 
occur within ecosystems and between system components across 
temporal and spatial dimensions (Green et al., 2005).

In this paper, we consider the challenge of adapting a Dynamic 
Bayesian Networks (DBN) model of an ecosystem developed in a 
generic context and transferring it to a specific context. DBNs have 
been widely used as a tool to assist in ecological research and man-
agement in numerous studies where network structures capture 
nonlinear, dynamic processes in response to natural and anthro-
pogenic stressors (Maxwell et al., 2015; Trifonova et al., 2015; Wu 
et al.,  2017). They can integrate disparate and often limited data 
and capture uncertainties and complexities inherent in natural sys-
tems (Marcot & Penman, 2019). DBNs are temporal extensions of 
Bayesian networks (BN), which are probabilistic graphical models 
that use a set of nodes (variables of interest) to represent a system. 
Nodes can be deterministic or stochastic, with the later represented 
by continuous probability distributions. The structure of a BN is de-
fined graphically, where each variable within the DBN network is 
presented as a node with directed links forming arcs that express 
hypothesized causal or directed associative relationships conditional 
probabilities tables (CPTs; Koski & Noble, 2011).

Marcot et al. (2006) describe guidelines for developing and up-
dating BNs in the context of ecological assessment, with steps to 
create, test, calibrate, and update BN models at three levels: alpha, 
beta, and gamma. The alpha-level BN models are developed by 
building influence diagrams depicting the hypothesized “causal web” 
of key elements that impact a species or ecological outcome of in-
terest. The beta-level model is produced following a formal revision 
of the model structure and CPT values by species experts who were 
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not engaged in the development of the model. The gamma-level or 
final application model is created by further testing, calibrating, val-
idating and updating the beta-level model.

However, to our knowledge, context-specific guidelines and ex-
amples for transferring an ecological DBN have not yet been explored 
in the literature (Table S2). The ecological context of interest in this 
paper is seagrass. Seagrass ecosystems are widely recognized as cru-
cial ecosystems in the coastal zone, with essential functions contrib-
uting to multiple marine ecosystems (Hemminga & Duarte,  2000; 
Pachauri et al.,  2014). As plants living in shallow coastal waters, 
seagrass are typically subjected to anthropogenic stressors, such 
as water quality degradation and coastal development (Cambridge 
& McComb, 1984; Orth et al., 2006). Consequently, understanding 
the risks posed to these systems and how they respond to succes-
sive disturbances is essential for improved management (McCann 
et al., 2006).

Wu et al.  (2018) developed a DBN model to predict seagrass 
meadow resilience to dredging disturbances. The model focuses on 
three genera and locations: Amphibolis in Jurien Bay, Halophila in 
Hay Point, and Zostera in Pelican Banks, Gladstone. Overall system 
interactions were evaluated, such as light loss due to dredging (the 
hazard), as well as ecosystem characteristics such as lifehistory char-
acteristics exhibited by genera and local environmental variables. 
The general DBN model was also used to predict how dredging af-
fects the resilience of seagrasses from 28 locations throughout the 
globe (Wu et al., 2017). However, species-specific modifications and 
the overall model's applicability to particular areas have yet to be 
studied. Therefore, we attempted to assess the model transferability 
from global to local scale and from genera to seagrass species.

In the following, we use the terms model adaptation and model 
transfer interchangeably. We consider a structured approach for the 
model adaptation. General guidelines are introduced to adapt an ex-
isting DBN to a new context and validate the new model with limited 
data. The proposed guidelines and lessons acquired from this re-
search may also be extended to other contexts and serve as a guide 
for the reuse and modification of different models, particularly for 
locations with limited data.

2  |  MATERIAL S AND METHODS

2.1  |  Overview of the guidelines

Our proposed guidelines have three main stages: revision and design 
phase, knowledge acquisition, and site application (Figure  1). The 
first phase encompasses a single step (Step 1) in which the following 
tasks are performed: Identifying and collaborating with experts to 
assess the transferability of the chosen model. Thus, once an agree-
ment has been reached, the structure of the model is revised. For 
example, how nodes are linked and which states should be assigned 
to each node. Key elements in the functioning of the environmental 
system are also identified in this stage. The second stage focuses 
on identifying available information for the study (Step 2). This may 

include experimental or observational data, models published, gray 
literature, and expert knowledge for the study area. The third stage 
is subdivided into three steps (Steps 3, 4, and 5) that are iterated 
through until an appropriate local model is obtained, given the avail-
able information. In the first part, information acquired in stage 2 
is used to update the CPTs in the model (Step 3). The second part 
involves a general evaluation of the model through sensitivity and 
scenario assessment (Step 4). Finally, the proposed model is evalu-
ated against observed data when possible and appropriate (Step 5).

Note that the steps shown in Figure  1 can be performed in a 
different order depending on the context. for example, step 2 may 
occur before or concurrently with step 1. Furthermore, it is essential 
to note that, unless there is a significant change in system processes, 
it is typically recommended to preserve as much of the model struc-
ture as possible (Grzegorczyk & Husmeier, 2009). When adapting a 
DBN model to a new context, it is thus most preferable to change the 
CPTs, redefine the node(s) and/or change the states of the node(s) 
rather than redesign the model structure (Figure 2).

2.1.1  |  Step 1: Identify and partner with 
experts to confirm choice of model and review the 
graph structure

The task of the experts in this step is to use their own knowledge 
and other relevant information, such as peer-reviewed literature, to 
confirm the choice of a DBN for the problem at hand and to review 
the model structure (Koski & Noble, 2011). The review procedure 
should consider the model's objectives, choice of relevant variables 
and response(s) (nodes), causal links (directed arrows), spatial and 
temporal scales, and other key elements. The model should be de-
tailed enough to reflect the relevant ecological structure and pro-
cesses of the system under consideration.

The research team has three main tasks to facilitate this step 
(Figure S1). The first task is to identify experts with relevant knowl-
edge. Where possible, it is helpful to convene a pool of experts with 
both overlapping and complementary expertise about the system of 
interest (Drescher et al., 2013; Martin et al., 2012). Knol et al. (2010) 
and Caley et al. (2014) provide a variety of formal processes that can 
be used to identify experts.

The second task is to define the elicitation tool. An important 
design choice is between individual or group elicitation of informa-
tion from experts. Individual elicitations may allow for more tar-
geted questioning, explanation and feedback (Knol et al., 2010; Page 
et al., 2012), while groups may produce better predictions than in-
dividual assessments in certain situations (Surowiecki, 2004). When 
using multiple experts, separate opinions may be sought and aggre-
gated, or group agreement may be pursued (Martin et al.,  2012). 
Elicitation may take place in various forms, including via interviews, 
questionnaires or the use of specialized software (Cooke,  1994; 
O'Leary et al.,  2009; Steinert,  2009). An alternative group ap-
proach is the Delphi method, in which experts provide information 
separately, then discuss the collective results and reconsider their 
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responses in light of the responses of others. This approach has been 
widely used in ecology (Delbecq et al., 1975; Kuhnert et al., 2010; 
MacMillan & Marshall, 2006).

The second task also involves designing the elicitation questions. 
The first question is to confirm that a DBN model is indeed appropri-
ate for the problem at hand, and that the particular DBN model from 
the source location is appropriate to consider transferring to the 
target location. The subsequent questions will focus on what adjust-
ments are required in the DBN nodes and directed links, as well as 
the number and definition of the states of the nodes. An important 
parallel consideration is what information may be available to inform 
the corresponding changes in the CPTs (to support step 3). This may 
be sourced from observation data, literature or experts. Examples 

of questions regarding the model structure are given in Figure S1. 
It should be kept in mind that the DBN should maintain a balance 
between detail and robustness, in that it should include sufficient 
detail to adequately describe the target system while ensuring that 
the DBN can be adequately quantified.

The third task is to carry out the elicitation procedure. A vital 
part of this process is the preparation of the experts. The experts 
should be advised in advance about the aim of the elicitation and 
the elicitation tool. In many cases, it is helpful to provide background 
reading to ensure a common baseline understanding, as well as some 
training in probability to ensure appropriate calibration of responses. 
See Burgman et al. (2006) for a comprehensive review of techniques 
for eliciting expert judgment.

F I G U R E  1 Stepwise methodology flowchart for adapting an existing model using information from data, literature, and expert knowledge
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2.1.2  |  Step 2: Collect information

Given confirmation of the suitability of the DBN and the model's 
structure, the next step is to collect information required to quantify 
the CPTs underpinning nodes in the model. This involves determin-
ing what experimental or observational data are available, collecting 
it to fill the gaps, assessing the degree of understanding of key ele-
ments of the system, identifying information sources such as litera-
ture, model outputs, and expert knowledge.

A significant strength of a DBN is its capacity to combine di-
verse data sources in a dynamic, whole-of-system model (Caley 
et al.,  2014; Uusitalo,  2007).The relative merit of these different 
sources has been well argued in the literature, with some authors 
preferring sitespecific empirical relations and site-specific data (e.g., 
Cain, 2001; Tari, 1996), others advocating the advantages of expert 
knowledge (e.g., Smith et al., 2007) and some proposing both (Pollino 
et al., 2007). In the latter paper, the authors suggested using expert 
elicitation to offer a first estimate of the probability and observed 
data to revise this estimate.

It is common for Step 2 to occur concurrently with Step 1 and 
Step 3 since these steps are closely connected. Therefore, depend-
ing on the availability of information, adjustments to the model 
structure may be required at this point, thus requiring returning to 
step 1 (Figure 1).

2.1.3  |  Step 3: Review the CPTs

After reviewing the model's structure, the CPTs for those nodes in-
dicated by experts as requiring adjustments must be assessed and, 
modified using the information acquired in Step 2. A CPT underlies 
every node in a DBN, in which the data (expressed as probabilities) 
used to fill the CPTs must describe how a node changes in response 
to changes in its parents. As the DBN is a network, the effect of 
changing any variable is transmitted right through the network in 
congruence with the relationships expressed by the CPTs. The dy-
namic component allows the model to capture these interactions 
between variables and changes over time (Friedman et al., 2013).

The CPTs can be completed directly by the research team in con-
junction with the experts if applicable or calculated using algorithms 
chosen based on the available data. Several methods are used to 
update CPTs, such as the Lauritzen–Spiegelhalter algorithm (a basic 
representation of Bayes'theorem), Gibbs sampling, Expectation 
Maximization (EM) or Gradient Descent, which are built into most 
BN software (Chen & Pollino, 2012). A popular choice is the EM al-
gorithm, which can estimate conditional probabilities from data with 
missing values (Uusitalo, 2007; Watanabe & Yamaguchi, 2003). The 
algorithm works by iteratively imputing missing data (expectation) 
and estimating CPT values (maximization), terminating when a local 
maximum is found.

2.1.4  |  Step 4: Scenario assessment

This stage aims to examine the behavior of the DBN model to ensure 
that the key variables and their connections are accurately repre-
sented. The particular focus is on whether adjusted CPTs or revised 
structural changes in the DBN behave as anticipated with respect 
to inferred probabilistic outcomes. This stage is particularly impor-
tant for studies with limited or scant data. A popular approach is 
scenario assessment, a form of evaluation in which a range of plau-
sible scenarios are assessed against the model's aims and objectives 
and compared to one another. The scenarios allow the DBN to be 
evaluated in the studied ecosystem given certain biological, envi-
ronmental, and ecological conditions. Expertise, existing literature, 
and analogous studies may be used to build the scenarios and both 
the research team and experts should be involved in evaluating the 
results.

This stage may also involve a global sensitivity analysis to eval-
uate the network's response to the different scenarios employed. A 
sensitivity analysis may help determine which variables and states 
of variables influence the outcome, highlighting priority risks or im-
portant knowledge gaps (Pollino et al., 2007).

Based on the findings of these assessments; Steps 1, 2, and 
3 should be critically reviewed to assess each component of the 
model, including the overall structure, node discretization, and 

F I G U R E  2 Order of preference for 
components to be adjusted in a DBN 
model. The pyramid suggests that it is 
most preferable to update only the CPTs, 
while the pointed top indicates it is least 
preferable to change the model structure.
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CPT quantification. If the model shows unrealistic behavior, the 
research team in collaboration with the experts should consider 
modifying the CPTs, by either combining, splitting, or redefining 
the nodes and/or states of the nodes or readjusting the overall 
structure of the model until it provides a reasonable response 
(Marcot, 2012). The approach applied in this step will return a mu-
tually agreed model.

2.1.5  |  Step 5: Validate model performance

This step builds on the previous step by evaluating in more detail 
the agreed DBN after scenario assessment. There are a variety of 
model validation approaches; selecting the most appropriate one 
will rely on available data and the modeling objective. Where pos-
sible, data-based validation is preferred, although if data are sparse 
then a qualitative evaluation of model outputs using experts may be 
used to validate model predictions (Chen & Pollino, 2012).

For the former case of data-based validation, when sufficient 
data are available, cross-validation is preferable where the data 
set is randomly split into training (building the DBN) and testing 
sets (validating the DBN). The model outputs are compared to the 
test data and evaluated using a metric such as logarithmic prob-
ability; root mean squared error, or prediction accuracy (Aguilera 
et al., 2011). If data are insufficient to do this, goodness-of-fit mea-
sures can be used as the same data is used to train and test the 
DBN. In either case, predicted state probabilities are compared to 
the observed state probabilities obtained from the data. Finally, if 
there are little or no data, qualitative evaluation procedures can 
be applied, such as using expert knowledge (Chen & Pollino, 2012). 
Here, an independent expert reviewer may verify whether the 
model's behavior is consistent with the current understanding of 
the system.

2.2  |  Guidelines in the context of the case study

In accordance with the general guidelines, the methodology used to 
adapt the model to our case study is presented below, broken down 
into the three stages depicted in (Figure 1) with the steps presented 
in detail.

2.2.1  |  Arcachon Bay case study

Our case study includes two Zostera seagrass species located in 
Arcachon Bay, France: Z. marina and Z. noltei. Arcachon Bay is a 
tidal ecosystem, sheltering Europe's largest seagrass bed of dwarf 
grass (Z. noltei; Auby & Labourg, 1996). This species colonizes soft 
sandy to muddy sediments of shallow sheltered bays, often in inter-
tidal areas. In the shallow subtidal sector around the channel edges, 
another species, Z. marina (eelgrass) grows forming smaller beds 
(Cognat et al.,  2018). Seagrass mapping between 1989 and 2007 
showed a severe decline of Zostera spp. from 2005, an estimated 

33% reduction for Z. noltei (from 68.5 to 45.7 km2) and 74% (from 3.7 
to 1.0 km2) for Z. marina meadows (Plus et al., 2010).

Although studies have suggested that factors such as climate 
change, eutrophication, increased geese grazing, wasting disease, 
herbicide contamination, or dredging activities may explain this de-
cline, the exact reason for the loss of seagrass in Arcachon Bay is 
still unclear (Cognat et al., 2018; Plus et al., 2010). Therefore, trans-
ferring a whole-of-system DBN model, which integrates analysis 
of interactions and feedbacks across different components of the 
system to Arcachon Bay, provides a way to understand the ongoing 
seagrass dynamics and allow projections to support future decision 
making. Furthermore, such a model could be used to simulate and 
assess different management scenarios to support decision makers.

2.2.2  |  Revision and design phase

Step 1: Identify and partner with experts to confirm choice of model 
and review the graph structure
The general DBN that was adapted in this study has a network struc-
ture comprised of 34 nodes organized into four themes, resistance 
(e.g., physiology), recovery (e.g., growth), site conditions (e.g., genera 
present), and environmental factors (e.g., light; Figures 3 and S2a,b). 
The current framework uses hybrid and dynamic BNs containing dis-
crete variables over multiple time stages. The temporal frequency of 
this DBN model is monthly time steps and the spatial extend is at the 
local level of the seagrass meadow.

The existing model was designed in such a way that it could 
be expanded to a wide range of ecological domains by capturing 
ecosystem dynamics and effects in a probabilistic risk framework. 
In transferring this model to Arcachon Bay, the modeling context 
was identified, in consultation with local experts, to center on the 
conservation of two particular seagrass species under the Zostera 
genera captured in the general model. They were sufficiently dif-
ferent that the conditional probabilities needed to be reviewed and 
adapted for factors relating to seasonal growth, reproductive cycle, 
baseline conditions and environmental input factors such as light.

A group of eight experts with good local knowledge of seagrass 
and marine ecology were identified and invited to participate in 
the evaluation of the merit of the proposed DBN for the target site 
(Table S1). Following a critical approval review of the DBN structure, 
experts were also invited to participate in the knowledge elicitation 
process. Local ecological knowledge, such as information regarding 
the target species' seasonal growth and reproduction dynamics, 
was therefore crucial for adapting the general DBN to the given 
ecosystem.

2.2.3  |  Knowledge acquisition

Step 2: Collect information
The research team was responsible for guiding the experts 
through the tasks, encouraging discussion, and presenting results 
and analysis back to the experts. In addition, modelers worked 
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collaboratively with domain experts in establishing relevant litera-
ture, data, and key biological and environmental processes that 
needed to be adapted for the case study. Communication with all 
experts was carried out entirely online, via Zoom and e-mail, since 
face-to-face meetings were not feasible due to global pandemic 
travel restrictions.

In the first meeting with the experts, training was conducted for 
those unfamiliar with DBN and probabilistic quantification of CPTs. 
The case study was then presented with the overall aim to transfer 
the Wu et al.  (2017) model to new sites in Arcachon Bay, focusing 
on two species of seagrasses (Z. marina and Z. noltei). Interviews 
were then held with the experts to assess the DBN nodes (and/or 
states) directed linkages and confirm that the particular DBN model 
was appropriate for transferring to the target location. Since most 
experts already had experience in the BN CPT elicitation process, 
we reviewed and quantified the CPTs in parallel (See details in 
Section 2.2.4, Step 3).

The empirical data used here was provided by IFREMER (the 
French Institute for Research and Sea Exploitation) collected from 
nine sampling sites distributed over the whole of the Bay selected for 
their different depths, environmental conditions, and seagrass den-
sity (Cognat et al., 2018). Although we have data for nine sites, only 
four sites, FONT, GAIL, ILE, and ROCH, were considered for tuning 
model parameters (light thresholds) and validation analysis because 
these sites were considered to be in good physiological condition and 
historically had not declined (Florian Ganthy, pers. comm.).

Seagrass shoot density, benthic light, and temperature data from 
a 1-year field survey (December 2015–December 2016) were used 
to test and validate the model. For each site, measurements of shoot 
density were collected monthly, while light intensity (μmols m−2 s−1) 
and temperature (°C) were measured continuously at high frequency 
(10 min sampling rate). Unfortunately, no shoot density and biomass 

records were available for Z. marina, making it impracticable to vali-
date the model for this species. To incorporate light data in DBN in-
ference, we discretised light into states. The probability of light being 
in one of these states is based on simultaneous requirements of light 
intensity (mols m−2 day−1) and light duration per day (number of hours 
of saturation and compensation irradiance per day). Therefore, site-
specific information was required when establishing critical thresh-
olds for water quality based on the responses of seagrass plants to 
light availability and minimum light levels. As this information was not 
available for our study area, we employed expert elicitation based on 
studies from similar sites in France and peer-reviewed literature to 
estimate light thresholds and estimate baseline light patterns.

Like other plants, the light regime is the primary environmen-
tal factor influencing photosynthesis and the growth of seagrass 
(Dennison, 1987). The light required for growth and survival varies 
by species, location, and temperature (Kirk,  1994). The maximum 
photosynthetic rate which promotes plant growth occurs at saturat-
ing light conditions (above the light half-saturation point Ik). At lower 
light values, the compensation irradiance (Ic) level captures when 
photosynthesis exactly balances respiration and primary metabo-
lism is maintained but not growth. If light falls below Ic, respiration is 
greater than photosynthesis, and there is not enough light for plant 
survival (Lee et al., 2007). In the existing DBN model, the probability 
of above or below saturation light is used to capture the optimal and 
suboptimal light conditions that support seagrass growth. Here, ex-
perts proposed to test two distinct ways to discretise the light factor 
to obtain evidence to support the use of a 2-state (based only on Ik) 
or a 3-state (Ik and Ic) light model. The thresholds used to discretise 
the light factor into those states are described below.

As light intensity thresholds were not well understood in our 
study area, we used a K-nearest neighbors algorithm (k-NN; Fix 
& Hodges, 1989) based on published data to apply to our area of 

F I G U R E  3 The overall DBN structure. 
Nodes are ovals and arrows denote 
causal parent–child relationships in 
the direction of the arc where a parent 
node (e.g., meadow type) influences 
a child node (e.g., location type); 
conversely, an absence of a link implies 
conditional independence. Rounded 
rectangles denote subnetworks. Nodes 
are colored as follows: White for site 
condition nodes, purple for recovery 
nodes, green for resistance nodes, blue 
for environmental nodes, yellow for 
population (shoot density) nodes, and 
pink for all other nodes. From “Timing 
anthropogenic stressors to mitigate their 
impact on marine ecosystem resilience 
Supplementary Information” by Wu 
et al. (2017), nature communications 
8:1263, Figure S7.
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study (See Supporting Information  S1, and Table  S3). For this ap-
proach, since photosynthetic parameters are related to temperature 
and show seasonal trends, we used the monthly temperature of 
Arcachon Bay to predict seasonal Ik and Ic thresholds. The satura-
tion and compensation irradiance (Ik and Ic, respectively) obtained 
from the k-NN algorithm are summarized for Z. noltei in Table 1 (See 
Tables S3 and S4 for more information on Ik and Ic, estimated for Z. 
marina and Z. noltei at the nine sampling sites). Both Ik and Ic were 
used to assess the number of hours of saturation and compensa-
tion light. From that, thresholds for light duration (Hsat and Hcomp) 
were required to determine the number of hours of saturation and 
compensation light per day was necessary to classify the daily light 
as above, below and/or below limitation state. Because this infor-
mation was unknown for Z. noltei located at Arcachon Bay, we em-
ployed expert elicitation based on recorded data to set different 
combinations of Hsat and Hcomp values (Table 2).

After establishing the light intensity and duration thresholds, it was 
possible to estimate the number of days of light being in one of those 
states per month. The proportion of days of above saturation light in 
a month was represented by δ(xlight

abovesat
, t), and the probability of above 

saturation light was encoded as δ(xlight
abovesat

, t), t = {Jan, Feb,…, Dec}. The 
same equation was applied to model the probability of light being 
below saturation or below limitation. These probabilities were input 
as evidence to the DBN in simulating scenarios. Finally, we estimated 
the light conditions for all sites and used it as evidence for our model.

2.2.4  |  Site application

Step 3: Review the CPTs
The process of reviewing the CPTs was undertaken with the expert 
team and took the form of scenarios, an intuitive way for experts to 
make sense of the evidence (Pennington & Hastie, 1993), and lin-
guistic labels of certainty, extremely likely, very likely, likely, 50/50, 

unlikely, very unlikely, extremely unlikely and impossible. An itera-
tive approach was adopted to maximize cognitive compatibility, as 
people find it challenging to think of probabilities with several condi-
tioning factors to quantify the DBN (Uusitalo, 2007).

As stated above, based on expert agreement it was unnecessary 
to change the definition of nodes and the core model dynamics for 
our case study, so the overall structure of the DBN was retained. The 
focus was then on changes in the designation of probabilities and cor-
respondents CPTs for these components that reflect the local system 
of interest (Step 3, Figure 1). The CPTs were used to capture the un-
certainty and variation of multiple associations between species and 
their environment. To elicit the conditional probabilities for each node 
of interest from the experts, questions were phrased as follows “If 
seagrasses were under good conditions of light but show poor physi-
ological status, what is the probability of the plants growing?”

Table 3 is an excerpt from expert-elicited rules used to quantify 
the CPT of Baseline Shoot Density, and Figure 4 shows graphically 
the parent–child relationships between baseline shoot density and 
its parents (time of year, species presence, location type, and phys-
iological status of plants). Note that this is just an excerpt from the 
full network, focusing on baseline shoot density. The baseline shoot 
density has four parent nodes. Each row in the table represents a 
unique scenario, which was formulated as questions that were posed 
to experts. Not applicable (NAs) are used to simplify notation by in-
dicating when a scenario is independent of a given parent node.

During elicitations, we focused on updating the CPTs for nodes 
to capture the local growth dynamics of Zostera spp. meadows lo-
cated in Arcachon Bay and seasonal variations in their population 
and life histories. Local knowledge of seagrass growth rates and 
reproductive success was required to express and calculate the 
relationships between nodes related to the main drivers of the fit-
ness of seagrass. Temporal variations of growth rates and sexual 
reproduction (e.g., flowering shoots, seed production, and seed 
quality and density) between species and location were considered 

TA B L E  1 Average monthly water temperature (temp, °C), saturation and compensation irradiance (Ik and Ic, μmols photons m
−2 s−1) 

estimated for Z. noltei located at FONT, GAIL, ILE and ROCH

FONT GAIL ILE ROCH

Temp Ik Ic Temp Ik Ic Temp Ik Ic Temp Ik Ic

Jan 11 174 19 11 174 19 12 174 19 12 174 19

Feb 11 174 19 11 174 19 12 174 19 11 174 19

Mar 13 174 19 13 174 19 14 174 19 13 174 19

Apr 16 305 35 16 305 35 16 305 35 16 305 35

May 20 305 35 19 305 35 19 305 35 19 305 35

Jun 23 254 33 22 254 33 23 254 33 23 254 33

Jul 26 254 33 25 254 33 25 254 33 25 254 33

Aug 27 254 33 25 254 33 25 254 33 26 254 33

Sep 24 254 33 23 254 33 24 254 33 24 254 33

Oct 17 305 35 18 305 35 19 305 35 18 305 35

Nov 14 174 19 14 174 19 15 305 35 14 174 19

Dec 12 174 19 12 174 19 13 174 19 12 174 19
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when updating the relevant conditional probability tables so that 
the interactions nodes and interactions between nodes captured 
the local conditions.

Step 4: Scenario assessment
The behavior of the structure was tested by the application of two 
light models, in which different numbers of states for the light node 
were used. Furthermore, for each light model, combinations of light 
thresholds were also considered to assess the posterior marginal prob-
abilities for the shoot density node. Specifically, we were interested 
in a key outcome node which was shoot density and its change over 

TA B L E  2 The combination of the lengths of daily light periods 
thresholds (Hsat and Hcomp, hours) for Z. noltei

Model Threshold ID Hsat Hcomp

2-state Thdl-1 4 –

Thdl-2 5 –

Thdl-3 5.5 –

Thdl-4 6 –

Thdl-5 7 –

Thdl-6 7.5 –

Thdl-7 8 –

Thdl-8 8.5 –

Thdl-9 9 –

3-state Thdl-1 6 8.5

Thdl-2 6 9

Thdl-3 6 10

Thdl-4 6 11

Thdl-5 6 12

Thdl-6 7 8.5

Thdl-7 7 9

Thdl-8 7 10

Thdl-9 7 11

Thdl-10 7 12

Thdl-11 8 8.5

Thdl-12 8 9

Thdl-13 8 10

Thdl-14 8 11

Thdl-15 8 12

Thdl-16 8.5 8.5

Thdl-17 8.5 9

Thdl-18 8.5 10

Thdl-19 8.5 11

Thdl-20 8.5 12

Thdl-21 9 8.5

Thdl-22 9 9

Thdl-23 9 10

Thdl-24 9 11

Thdl-25 9 12

Note: The thresholds are separated for the 2-state model.
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time. Thus, it is possible to verify if the predictions obtained from the 
model are consistent with the current understanding of the system 
(Bogaert & Fasbender, 2007; Chen & Pollino, 2012; Uusitalo, 2007). 
Therefore, we simulated different light threshold scenarios for both 
2- and 3-state light formulations, and validated model predicted shoot 
density against observed shoot density. The simulations were con-
ducted for each of the four sites in the Bay. The system response can 
be subdivided into two periods, the initialization period to establish 
the baseline pattern and the response period. A weighted mean ap-
proach was used as a comparative method in which multiple state 
probability trajectories are aggregated into a single trajectory. The 
weighted mean follows the approach of Wu et al. (2017).

Step 5: Validate model performance
The MSE was used as a distance metric to compute distances be-
tween simulated posterior marginal distribution for shoot den-
sity (probabilities for high, moderate, low and zero shoot density) 
against observed distributions of shoot density. Shoot density 
data collected in Arcachon Bay (Cognat et al.,  2018) were used 
to validate the prediction of the model (See Table S4). We used a 
hierarchical ordinal regression analysis to transform the observed 
data into state probabilities of high, moderate, low and zero shoot 
density as follows:

Here, we use a Generalized Linear Mixed Model (GLMM), and g−1(yi,t) 
represents the probability of state i (high, moderate, low and zero) of 
shoot density at time t (month of year). The regression has coefficients 

β0 and β1, which are the global intercept and the slope for the sea-
sonal effect from months t, respectively, and coefficient β2, which is 
the random effect used to capture the differences between sites. The 
model was formulated with the Bayesian framework (Wu et al., 2015) 
and fitted with Hamiltonian Monte Carlo using the R package brms 
(Bürkner, 2018) using default, flat priors (i.e., uninformed priors).

3  |  RESULTS

3.1  |  Application of guidelines to case study

In this section, the results from the application of the guidelines for 
adapting a model to a case study are outlined. The results are bro-
ken down into three stages that include sub-elements that can be 
viewed as a step-by-step process.

3.1.1  |  Revision and design phase

Step 1: Identify and partner with experts to confirm choice of model 
and review the graph structure
Given the importance of local ecological knowledge, we obtained 
the participation of eight experts in seagrass and marine ecol-
ogy. Among them, six experts came from the Ifremer, France, one 
from Edith Cowan University, Australia, and one from James Cook 
University, Australia. The panel of experts confirmed that the model 
could be transferred to the target location.

It was agreed that the model did not capture differences be-
tween species at local scales. Therefore, adjustments on factors 
used to capture the general health and growth of the two Zostera 
spp. were needed; these are summarized in Table  4. For example, 
although both species are perennial (persistent) in the Bay, Zostera 
beds display significant seasonal variations in density and biomass 
(Auby & Labourg,  1996). Tolerance and ability to acclimate to dif-
ferent environmental conditions, such as turbidity, salinity regimes 
and light availability, is also known to vary between species (Cognat 
et al., 2018; Peralta et al., 2000). For instance, to offer better resis-
tance to desiccation during low tide, Z. noltei has a narrower leaf than 
Z. marina, as Z. noltei covers the large intertidal flats of Arcachon Bay 
while Z. marina only grows in submerged channels (Plus et al., 2010).

3.1.2  |  Knowledge acquisition

Step 2: Collect information
Our study had access to both seagrass data, but only limited data, 
and environmental experts with local knowledge. Therefore, since 
data was limited and insufficient to “learn” the DBN model struc-
ture, the effort to harness the expert knowledge to adapt the model 
became critical.

Overall, the main inputs for the model included the state prob-
ability for light (environmental), the genera and location-specific 

g
(
yi ,t

)
= �0,i + �1,i sin(t|6�) + �2.i,Site

F I G U R E  4 Simple model structure representing the relationship 
between a child node (baseline shoot density node) and all 
its parents (time of year, specie presence, location type, and 
physiological status of plants). Nodes are colored as follows: White 
for input nodes, yellow for population (shoot density) nodes, and 
pink for all other nodes.
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parameters relating to climate (tropical or temperate), depth and 
tidal exposure (subtidal or intertidal), and transitory or enduring 
(persistent) type of meadow (site conditions). The key metric of in-
terest to management was shoot density (number of shoots m2). The 
light impact on seagrass ecosystems was considered in terms of eco-
logical baselines and as a key stressor to modeling risk.

3.1.3  |  Site application

Step 3: Review the CPTs
The nodes that required modification for the case study included 
those that characterized the seasonal growth and reproduction dy-
namics of the Zostera spp. The CPTs of the following nodes were up-
dated: physiological status of plants, nodes used to capture seagrass 
growth dynamics (baseline shoot density, loss in shoot density), and 
seasonal variation in seagrass reproduction (seed density, and re-
cruitment rate from seeds; Table 4). The seagrass growth captured 
via shoot density factor had the CPTs estimated separately for Z. ma-
rina and Z. noltei to capture the different growth strategies between 
the species. In contrast, the conditional probabilities of the elements 
used to represent the reproductive cycle of the seagrass, such as the 
seed density and seed recruitment rate factors, were also adjusted, 
but the CPTs computed for these parameters were the same for both 
species. That is because the seasonal variation in reproduction does 
not differ between the two species of Zostera. Furthermore, while 

assessing their CPTs for the 3-state of light model, nodes utilized 
to reflect the influence of different light conditions on the seagrass 
population, including loss in shoot density, physiological status of 
plants, and seed recruitment rate, were modified (Table 4). This is 
because a third state was added to the light node.

Step 4: Scenario assessment
In our case study, the model infers predicted-state probabilities for 
shoot density based on scenarios of different species (Z. marina or 
Z. noltei), the light conditions (2-  or 3-state) and site-specific pa-
rameters relating to depth and tidal exposure (subtidal or intertidal; 
Figure  5). In the absence of light thresholds data, we considered 
ranges of values based on expert judgments as evidence of light con-
ditions. This process of varying the value of uncertainty one at a time 
while keeping all other factors fixed helped us to draw conclusions 
about whether it should have further adjustments.

Each subfigure comprises two panels, where the top panel shows 
the state probability trajectories over time for the states indicated, 
while the bottom panel shows the weighted mean response (assum-
ing a uniform distribution) of the expected value and the interquar-
tile range. As can be seen from Figure 5, a light saturation threshold 
Ik that is higher than available light leads to significant decline in 
shoot density but the level of impact differs by site. For example, 
when comparing FONT with ILE for Hsat = 8 h, the meadow is driven 
to zero shoot density for seagrasses located at FONT, while this pat-
tern is not observed at ILE.

TA B L E  4 This table shows the nodes that have undergone adjustment when transferring the existing DBN to the Arcachon Bay case 
study

Node Definition What has changed?

Accumulated Light Probability of meeting light requirements for the 
normal function of the plant representing 
accumulated variations and effects in that month

The addition of a third state. The 2-state and 3-
state models are compared

Genera Presence Categorical, proportion of meadow of that genera. The current model adds two specific Zostera 
species: Z. marina and Z. noltei

Physiological Status of Plants The physiological status captures the degree to which 
the plant can function normally

Node modeled as a function of light factor—CPTs 
are adjusted when considering a 3-state light 
model

Baseline Shoot Density Best case expected shoot density for a given month 
given the physiological status of the meadow. Used 
to explicitly capture large seasonal variations

The CPTs are estimated for each species 
separately to capture the different growth 
strategies between species

Loss in Shoot Density Loss in shoot density for that month Node modeled as a function of light factor—CPTs 
are adjusted when considering a 3-state light 
model

Seed Density Density of seeds per m2. States capture the dynamic 
range in growth rates from fast colonizing species 
to slow persistent species

The CPTs are adjusted to capture the 
reproduction cycle for the two species

Recruitment Rate from Seeds Rate of recruitment into the adult population from 
seeds

The CPTs are adjusted to capture the 
reproduction cycle for the two species. Node 
modeled as a function of light factor CPTs 
adjusted when considering a 3-state light 
model

Note: In addition, a definition of the nodes is provided and where the change took place in each node. Definition of the nodes is obtained from 
“Timing anthropogenic stressors to mitigate their impact on marine ecosystem resilience Supplementary Information” by Wu et al. (2017), nature 
communications 8:1263, Table S3.
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Step 5: Validate model performance
The model was validated by comparing simulated scenarios corre-
sponding to unobserved parameters (i.e. light thresholds) with ob-
served data (shoot density and light over time). When considering 
the Hsat of 6 h in the 2-state model, the MSE in the predicted-state 
probabilities compared to observed values was found to be of the 
order of 0.01 to 0.04 across the four sites (Table  5), demonstrat-
ing an acceptable fit of the model to the data. Furthermore, the 
ability of the model to predict seagrass shoot density trends was 
also validated for the 3-state of light, in which the MSE values are 
on the order of 0.01 for GAIL and ILE for Hsat of 6 h and Hcomp of 
8.5 (Table 6). For the other two sites, FONT and ROCH, the lowest 
MSE estimated are 0.02 and 0.01, respectively, is observed when 
the highest light thresholds are considered. Thus, the 2- and 3-state 
models demonstrated a similar ability to predict the trends for the Z. 

noltei at Arcachon Bay; nevertheless, because of parsimony and data 
limitations in a model transferability context, we decided to go with 
a 2-states light model and Hsat of 6 h for Arcachon Bay.

4  |  DISCUSSION

Model transferability and adaptation can be highly beneficial, since 
methods to enable reusing and adapting models can help with wide-
spread model uptake to support managers and decision makers, es-
pecially for sites with limited data. In general, transferring a model 
to a new context can shorten the time and effort to develop a new 
model by adapting an existing model. Although not a replacement 
for comprehensive data and studies, model transferability helps to 
provide predictive evidence on potential future scenarios to support 

F I G U R E  5 The model predicted-state probabilities for shoot density for Z. noltei located at FONT and ILE. The initial 24 months are used 
for initialisation to allow the system to enter the baseline pattern. Top plots are the probability of each shoot density state, and the bottom 
plots show the weighted mean of the expected value and the interquartile range. Shoot density state probabilities for seagrass located at (a) 
FONT and (b) ILE, when considered Hsat of 6 h as light thresholds to estimate the light conditions used as input to the model. shoot density 
state probabilities for seagrass located at (c) FONT and (d) ILE, when considered Hsat of 8 h as light thresholds to estimate the light conditions 
used as input to the model.

(a)

(c) (d)

(b)
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proactive management, such as in the management of resilience. 
This paper has demonstrated the transferability of an existing 
general seagrass ecosystem DBN model to new sites and offered 

guidelines on model transferability that could be applicable across 
different contexts and scales around the world.

In the future, substantial losses of seagrass meadows are ex-
pected in response to human impact, both through direct proximal 
impacts affecting seagrass meadows locally and indirect impacts, 
which may affect seagrass meadows far away from the sources of 
the disturbance (Duarte, 2002). Thus, the ability to transfer a global 
model and concepts and apply them to a local case study can help 
protect and sustainably manage these valuable marine resources 
such as the seagrass meadows located in Arcachon Bay.

One of the challenges we faced in the study arose in defining the 
light thresholds to characterize the regional light regime and the lack 
of extensive empirical data available to validate our model. Although 
we have shown that applying such a range of different light thresholds 
provides valuable insights into the effects of light intensity and dura-
tion variability on seagrass ecosystems, determining an appropriate 
light threshold for seagrasses involves several challenges. For example, 
light requirements are unknown for many seagrass species, particu-
larly locally-specific thresholds. The light levels can differ over multi-
ple timescales; seagrass light requirements may vary by season and a 
range of environmental parameters, including water temperature and 
sediment chemistry (Koch, 2001; Lee et al., 2007). Furthermore, the 
levels of adaptability of the plants to respond to changing environmen-
tal conditions can differ among species (Collier et al., 2012).

Bayesian inference necessitates the use of certain prior distribu-
tions. Hence, approaches concerned with choosing a proper prior for 
a statistical analysis have been developed (Kass & Wasserman, 1996; 
Sarma & Kay, 2020). Expert informed priors have been used in BN 
models to help ecologists go from conceptual models to statistical 
models that are calibrated to observed data (O'Leary et al., 2009). 
Generally, experienced experts translate what is known about an 
application into choosing a probability distribution by reflecting 
beliefs about the unknown values of certain quantities. For exam-
ple, expert knowledge was utilized to fill in data gaps for a model of 
distribution of the brush-tailed rock-wallaby (Petrogale penicillatus) 
(Murray et al., 2009). Prior probability distributions expressing what 
is known about a particular model parameter are easily included in 
Bayesian approaches (Gelman, 2003) because they may be obtained 
from earlier studies or built on expert knowledge (Garthwaite & 
O'Hagan,  2000; Gelman,  2003; Kuhnert et al.,  2010). Substantial 
research on the conservation science and ecological literature de-
tails the application of these methods (Kuhnert et al., 2005; Martin 
et al., 2005).

Wang et al. (2018) developed effective numerical methods in which 
history matching specifies a prior distribution from expert-elicited in-
formation. As a result, a set of appropriate prior choices can be used 
as a basis for making a unique prior choice less arbitrary in a sensitivity 
analysis (Wang et al., 2018). Based on that, an alternative model updat-
ing approach is also outlined here (see Supporting Information S2) to 
apply the calibration of light thresholds, and identify which best light 
model and threshold fit the empirical data. Although discretization 
thresholds can be drawn from experts and literature when there is lim-
ited or no data available, finding high-scoring discretization is difficult 
or impractical due to a large number of possibilities that need to be 

TA B L E  5 MSE for the 2-state model per site (FONT, GAIL, ILE 
and ROCH) and considering different lengths of daily light periods 
thresholds (Hsat, hours) for Z. noltei

Hsat FONT GAIL ILE ROCH

4 0.0417 0.0401 0.0405 0.0424

5 0.0399 0.0392 0.0395 0.0409

5.5 0.0390 0.0387 0.0392 0.0403

6 0.0362 0.0145 0.0121 0.0183

7 0.0586 0.0176 0.0434 0.0490

7.5 0.1446 0.0923 0.0785 0.0712

8 0.1977 0.1158 0.0930 0.1327

8.5 0.2848 0.1965 0.1764 0.2553

9 0.2939 0.2904 0.2605 0.2855

Note: The warmer colours indicate higher values of MSE, and green 
colours indicate lower values of MSE.

TA B L E  6 MSE for the 3-state model per site (FONT, GAIL, ILE 
and ROCH) and considering different lengths of daily light periods 
thresholds (Hsat and Hcomp, hours) for Z. noltei

Hsat Hcomp FONT GAIL ILE ROCH

6 8.5 0.0254 0.0122 0.0108 0.0164

6 9 0.0295 0.0128 0.0113 0.0175

6 10 0.0336 0.0137 0.0116 0.0175

6 11 0.0363 0.0140 0.0117 0.0187

6 12 0.0363 0.0140 0.0117 0.0175

7 8.5 0.0230 0.0185 0.0168 0.0150

7 9 0.0269 0.0332 0.0287 0.0194

7 10 0.0416 0.0155 0.0423 0.0130

7 11 0.0543 0.0460 0.0425 0.0484

7 12 0.0561 0.0457 0.0427 0.0130

8 8.5 0.0822 0.0471 0.0348 0.0246

8 9 0.0875 0.0409 0.0365 0.0522

8 10 0.1495 0.0738 0.0775 0.0130

8 11 0.1976 0.1032 0.0846 0.1013

8 12 0.2021 0.1239 0.0910 0.0130

8.5 8.5 0.1258 0.0442 0.0418 0.0380

8.5 9 0.1241 0.0504 0.0450 0.0845

8.5 10 0.1887 0.1071 0.0938 0.0130

8.5 11 0.2669 0.1748 0.1263 0.2028

8.5 12 0.2758 0.1869 0.1782 0.0130

9 8.5 0.1247 0.0507 0.0455 0.0604

9 9 0.1356 0.0835 0.1020 0.0990

9 10 0.2045 0.1279 0.1160 0.0130

9 11 0.2798 0.2204 0.1717 0.2348

9 12 0.2911 0.2421 0.2072 0.0130

Note:  The warmer colours indicate higher values of MSE, and green 
colours indicate lower values of MSE.
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verified, which makes this approach beneficial. This methodology has 
the potential to be particularly valuable to select optimum DBN inputs 
(e.g., light thresholds) in data-scarce regions.

Another challenge faced in this project was the scarce data to 
validate the model and the balance between a more detailed model 
and a practical model that is supported by available data and expert 
knowledge. For example, discretising the light parameter into three 
states instead of two did not show better estimates for shoot den-
sity values when compared to the data. Furthermore, as there was 
only data for one species, steps 1–5 were only achievable for Z. noltei, 
whereas for Z. marina, it was only possible to complete steps 1–3 due 
to data limitations (Figure 1). Such a systematic set of guidelines can 
additionally help modelers and experts to identify potential limita-
tions in the scope of the developed models, and where more study 
and data is needed. Although we focused on transfer of a general 
DBN to a local site and species, it could also include transfers to other 
stressors. For example, stressors from new environmental hazards or 
climate stress, such as heat stress caused by marine heatwaves, can 
be included in the model to explore changes in seagrass response.

5  |  CONCLUSIONS

Model users are increasingly transferring models to alternative sites 
where data can be scarce. When transferring a model from one con-
text to a new application context, the effort in developing a model 
is reduced, and data collection can be less demanding. In this regard, 
models transferred to novel conditions could provide predictions in 
data-poor scenarios, contributing to more informed management 
decisions. In this study, we have demonstrated the transferability 
of an existing general seagrass ecosystem DBN model to new sites 
and offered general guidelines capturing the lessons learned here. 
Moreover, the DBN adapted for the Arcachon Bay case study can 
also be applied to various other domains in ecology. For example, 
other stressors can be incorporated into the model, such as effects 
caused by climate events, to explore changes in seagrass response.
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