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NF-E2-related factor 2 (NRF2) is a transcription factor that controls the expression of a
variety of antioxidant and detoxification genes. Accumulating evidence strongly suggests
that NRF2 mediates cancer cell proliferation and drug resistance, as well. Single nucleotide
polymorphism (SNP) −617C > A in the anti-oxidant response element-like loci of the human
NRF2 gene play a pivotal role in the positive feedback loop of transcriptional activation of
the NRF2 gene. Since the SNP (−617A) reportedly decreases the binding affinity to the
transcription factors of NRF2/small multiple alignment format (MafK), the homozygous
−617A/A allele may attenuate the positive feedback loop of transcriptional activation of
the NRF2 gene and reduce the NRF2 protein level. As the consequence, cancer cells
are considered to become more sensitive to therapy and less aggressive than cancer
cells harboring the −617C (WT) allele. Indeed, Japanese lung cancer patients carrying
SNP homozygous alleles (c. −617A/A) exhibited remarkable survival over 1,700 days after
surgical operation (log-rank p = 0.021).The genetic polymorphism in the human NRF2 gene
is considered as one of prognosis markers for cancer therapy.
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INTRODUCTION
HISTORICAL BACKGROUND
In the field of cancer chemotherapy, it has been well documented
that glutathione (GSH) plays a pivotal role in conferring cancer
cells resistance to anti-tumor drugs, such as cisplatin and alkylat-
ing agents. Several lines of evidence suggest that certain multi-drug
efflux pumps encoded by ATP-binding cassette (ABC) transporter
genes are up-regulated by oxidative stress and/or chemothera-
peutic agents to contribute to multi-drug resistance of cancer
cells. About two decades ago, Ishikawa and Kuo first reported
that many cytotoxic agents induced the expression of both γ-
glutamylcysteine synthetase (γ-GCS) and ABCC1 (MRP1) genes
(Ishikawa et al., 1996; Kuo et al., 1996, 1998; Gomi et al., 1997;
Yamane et al., 1998). Coordinated up-regulation of both γ-GCS
and ABCC1 genes was found in human malignant tissues. Among
32 cases of human colorectal cancer biopsies, 78% of the cases
exhibited co-elevated expression of ABCC1 and γ-GCS genes in
tumor samples as compared with their corresponding adjacent
naïve normal samples (Kuo et al., 1996). At that time, it was
speculated that a common transcriptional regulator might exist
for the coordinated expression of both γ-GCS and ABCC1 genes
(Ishikawa et al., 1996).

TRANSCRIPTION FACTOR NRF2 AS A MASTER SWITCH IN GENE
EXPRESSION
During the past two decades, evidence has accumulated to
show that one transcription factor named NF-E2-related fac-
tor 2 (NRF2) is a common redox regulator to control cellular
adaptation/protection to external stimuli by inducing antiox-
idant and detoxification genes (Motohashi and Yamamoto,

2004; Kobayashi and Yamamoto, 2006; Nguyen et al., 2009).
In fact, NRF2 is a major player in the transcriptional upreg-
ulation of many target genes in phase II drug metaboliz-
ing enzymes and certain phase III ABC transporters (ABCC2,
ABCC3, and ABCG2; Adachi et al., 2007). The 5′-flanking
region of many of phase II xenobiotic detoxifying genes
(e.g., γ-GCS) contains an antioxidant response element (ARE).
NRF2 directly binds to the ARE sequence in those target
genes (Shen and Kong, 2009; Singh et al., 2010). Further-
more, it has recently been reported NRF2 mediates can-
cer cell proliferation and drug resistance (Lau et al., 2008;
Hayes and McMahon, 2009; Homma et al., 2009; Taguchi et al.,
2011; Sporn and Liby, 2012; Yamadori et al., 2012; Shelton and
Jaiswal, 2013).

NF-E2-related factor 2 is a “cap‘n’collar” basic region-leucine
zipper (CNC-bZip) transcription factor involved in the induc-
tion of ARE-regulated genes (Moi et al., 1994; Motohashi and
Yamamoto, 2004; Kobayashi and Yamamoto, 2006; Lau et al.,
2008; Hayes and McMahon, 2009; Homma et al., 2009; Nguyen
et al., 2009; Taguchi et al., 2011; Sporn and Liby, 2012; Yamadori
et al., 2012). Under non-stressed conditions, NRF2 protein is
associated with Kelch-like ECH associating protein 1 (KEAP1;
Itoh et al., 1999) that negatively regulate NRF2 by retrieving
the NRF2 protein in the cytoplasmic compartment. However,
oxidative stress and/or electrophilic attack modifies the KEAP1
protein, which leads to dissociation of NRF2 from KEAP1.
The NRF2 protein, thus released, is subsequently translocated
into the nucleus. Coupling with small multiple alignment for-
mat (MAF) sequences, NRF2 binds to ARE sequences (Itoh
et al., 1995). Many genes encoding detoxifying and antioxidant
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FIGURE 1 | Schematic illustrations showing the effect of NRF2 SNP −617C > A and MDM2 SNP c. 309T > G on the p53-mediated suppression of

cancer cell proliferation (A) and ABCG2-mediated drug resistance to gefitinib (B). Refer to Okano et al. (2013) for more details.

enzymes have been found to be regulated by the NRF2 protein
in this manner (Itoh et al., 1995; Ishii et al., 2000; Ramos-
Gomez et al., 2001; Motohashi and Yamamoto, 2004; Cho et al.,
2005; Kobayashi and Yamamoto, 2006; Nguyen et al., 2009).
Recent studies, on the other hand, have shown that NRF2 con-
tributes to cancer cell proliferation, drug resistance, and metabolic
re-programming, as well (Kwak et al., 2002; Lau et al., 2008;
Hayes and McMahon, 2009; Homma et al., 2009; Taguchi et al.,
2011; Mitsuishi et al., 2012; Sporn and Liby, 2012; Yamadori et al.,

2012). In this context, the NRF2 gene is regarded as a “double-
edged sword,” namely, protection of normal cells and progression
of cancer malignancy.

GENETIC POLYMORPHYSMS IN THE NRF2 GENE
Yamamoto et al. (2004) first reported three single nucleotide poly-
morphisms (SNPs; −653A > G,−651G > A, and −617C > A) and
one triplet repeat polymorphism in the regulatory region of the
human NRF2 gene. The physiological significance of these SNPs
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FIGURE 2 | Kaplan-Meier plots showing the overall survival of patients harboring the WT homozygote (−617C/C), WT/SNP heterozygote (−617C/A),

or SNP homozygote (−617A/A) in the NRF2 gene (A) and genotyping of NRF2 SNP −617C > A by the rapid SNP-detection method (B, upper panels)

and DNA sequence analysis (B, lower panels). Data from Okano et al. (2013).

was not known at that time. Three years later, Marzec et al. (2007)
reported the impact of those SNPs on the regulation of NRF2 gene
expression. In fact, the −617C > A SNP significantly affected basal
NRF2 protein levels in vitro (Marzec et al., 2007). Moreover, the
SNP −617C > A was found to be associated with a higher risk of
oxidant-induced acute lung injury in humans (Marzec et al., 2007).
These findings suggest that the SNP (−617C > A) in the ARE-like
loci of the human NRF2 gene is important for self-induction of

the NRF2 gene (Okano et al., 2013); refer to schematic illustrations
in Figure 1.

SNP (– 617C > A) IN THE NRF2 GENE AS A BIOMARKER FOR
PROGNOSIS OF LUNG CANCER
NF-E2-related factor 2 plays a pivotal role in protecting nor-
mal cells from external toxic challenges and oxidative stress,
whereas it can modulate the cancer phenotype (Figure 1A)
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and also endow cancer cells resistance to anticancer drugs
(Figure 1B). NRF2 activation appears to be associated with the
emergence of cancer resistance to various anticancer drugs by
transcriptionally activating a battery of self-defense genes. Indeed,
NRF2 can induction the expression of γ-GCS and ABCC1 genes
involved cancer cell resistance to cisplatin and alkylating agents
(Ishikawa et al., 1996; Adachi et al., 2007). In addition, ABCG2
is known to mediate the efflux of gefitinib (Iressa) from can-
cer cells (Saito et al., 2006), and its expression is regulated by
NRF2 (Singh et al., 2010) and the EGFR-tyrosine kinase cas-
cade (Meyer zu Schwabedissen et al., 2006; Huang et al., 2011;
Figure 1B).

Single nucleotide polymorphism −617C > A could affect the
positive feedback loop of transcriptional activation of the NRF2
gene, and thereby it can regulate the NRF2 protein level. It
is proposed that the homozygote −617A/A significantly attenu-
ates the positive feedback loop of transcriptional activation of
the NRF2 gene. Interestingly, Asians, including Japanese, have
higher frequencies of the −617A allele as compared with African–
Americans and Caucasians (Okano et al., 2013). As demonstrated
in Figure 2A, Japanese lung cancer patients carrying SNP homozy-
gous alleles (c. −617A/A) exhibited remarkable survival over
1,700 days after surgical operation (log-rank p = 0.021). This SNP
is considered as a new biomarker for prognosis of lung cancer
in Japanese population, and a hypothetical molecular mechanism
has been proposed (Okano et al., 2013).

SOMATIC MUTATIONS IN NRF2 AND KEAP1 GENES
The genetic polymorphisms are the “intrinsic” mechanism,
whereas the mutations are the “acquired” mechanism in can-
cer cells. Hitherto, several mutations in the NRF2 and KEAP1
genes have been reported in carcinomas of the lung (Sporn
and Liby, 2012), liver (Yoo et al., 2012), stomach (Yoo et al.,
2012), and breast (Sjöblom et al., 2006). Abnormalities in NRF2
activity were correlated with poor prognosis in terms of either
recurrence-free or overall 5-year survival. Increased expression
of NRF2 protein and decreased expression of KEAP1 protein
were often observed as common abnormalities in non-small
cell lung cancer (NSCLC), being associated with poor prognosis
(Solis et al., 2010).

FUTURE PERSPECTIVES
Identification and validation of biomarkers for personalized can-
cer therapy is one of the challenges in cancer management. To
practically realize personalized medicine, development of cost-
effective methods is required. Furthermore, genetic information
in each patient’s record should be timely provided for individual-
ized cancer treatment. In this regards, we have recently developed
a rapid isothermal method to detect genetic polymorphisms in the
NRF2 gene and correlated the genotyping data with the survival
of patients who had primary lung cancer (Okano et al., 2013).
By means of the new method (Ishikawa and Hayashizaki, 2013),
we could detect the SNP −617C > A in the NRF2 gene within
30 to 45 min without DNA isolation and PCR amplification
(Figure 2B). Such genotyping methods would provide a simple
and practical tool for personalized cancer therapy and assessment
of prognosis.
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