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Abstract

The vertebrate skull evolved to protect the brain and sense organs, but with the appearance of jaws and associated forces
there was a remarkable structural diversification. This suggests that the evolution of skull form may be linked to these
forces, but an important area of debate is whether bone in the skull is minimised with respect to these forces, or whether
skulls are mechanically ‘‘over-designed’’ and constrained by phylogeny and development. Mechanical analysis of diapsid
reptile skulls could shed light on this longstanding debate. Compared to those of mammals, the skulls of many extant and
extinct diapsids comprise an open framework of fenestrae (window-like openings) separated by bony struts (e.g., lizards,
tuatara, dinosaurs and crocodiles), a cranial form thought to be strongly linked to feeding forces. We investigated this link
by utilising the powerful engineering approach of multibody dynamics analysis to predict the physiological forces acting on
the skull of the diapsid reptile Sphenodon. We then ran a series of structural finite element analyses to assess the correlation
between bone strain and skull form. With comprehensive loading we found that the distribution of peak von Mises strains
was particularly uniform throughout the skull, although specific regions were dominated by tensile strains while others
were dominated by compressive strains. Our analyses suggest that the frame-like skulls of diapsid reptiles are probably
optimally formed (mechanically ideal: sufficient strength with the minimal amount of bone) with respect to functional
forces; they are efficient in terms of having minimal bone volume, minimal weight, and also minimal energy demands in
maintenance.
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Introduction

There is a longstanding debate as to whether bone in the skull is

minimised in relation physiological loading [1,2], or whether skulls

are ‘over-designed’ and constrained by phylogeny, development,

and the need to accommodate functions in addition to normal

loading [3–5]. The skull provides a structure for jaw and neck

muscle attachment and should be rigid enough to withstand the

forces these muscles apply, along with accompanying feeding and

other forces [6–8]. Exactly how the skull responds to these forces

in tandem with accommodating the brain and sense organs is not

fully understood. Adaptation to loads consistent with Wolff’s law

[9] would result in minimisation of bony material with respect to

functional loading, and following a long held theory [10] the term

bone functional adaptation [11–13] is often used to describe the

mechanism by which bone is modelled and remodelled. Briefly, it

is proposed that bone strain is the stimulus for bone modelling/

remodelling [14,15], and there is an equilibrium window of strain,

above which bone is deposited and below which bone is removed

[16–18]. The rules regulating bone adaptation and the exact levels

at which bone is remodelled are however likely more complex,

being dependent on more than just pure strain magnitudes. Strain

rate, load history, bone age, disease, initial bone shape, bone

developmental history, hormonal environment, diet, and genetic

factors have all been highlighted as potential factors that could

impact bone form [15–25].

The skull of Sphenodon, a New Zealand reptile, is not dominated

by a large vaulted braincase like mammals, but instead comprises

an open arrangement of fenestrae (windows or openings) and bony

rods or struts [26,27]. Without the constraint of a large brain and

associated forces [28–31], the dominant loads applied to the

frame-like skull of Sphenodon are most likely linked to feeding (i.e.

muscle forces, bite forces, and jaw joint forces). This is probably

also true for other diapsids that lack large brains, such as lizards,

crocodiles, and theropod dinosaurs, which share comparable skull

morphologies (Figure 1). Without the effect of neurocranial

expansion, these frame-like skulls may be useful for investigating

the correlation between skull form and bone strain under loading.

Some insight into this relationship would provide new perspectives

towards understanding skull form in other amniotes.

Finite element analysis (FEA) is a virtual technique that is used

to predict how a structure will deform when forces and constraints

are applied to it, and has been used previously to predict stress and

strain distribution within skulls [4,27–29,31–33,35,36]. However,

such studies tend to apply limited loading data and are used to

investigate particular aspects of skull morphology or the impact of
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single bites. To fully evaluate skull form it is important to take into

account several different load cases, because skull form is most

likely to be related to the range of physiological loads experienced

by an animal rather than a single load case. We investigated the

relationship between skull form and bone strain in Sphenodon by

carrying out a series of static finite element analyses (FEAs),

applying bite forces at several different bite positions. We combine

the powerful computational techniques of multibody dynamics

analysis (MDA) [32–34] and FEA, to first predict the forces acting

on the skull of Sphenodon, and in turn analyse the strains within the

skull under these forces. This enables us to evaluate the degree of

correlation between skull form and three strain modes: tensile (also

known as maximum and 1st principal), compressive (also know as

minimum and 3rd principal) and von Mises (also known as

equivalent and mean). Multibody dynamics analysis has recently

been applied to study skull biomechanics [32–38], and was used

here to predict muscle forces, joint forces, and bite forces in

Sphenodon during fifteen separate biting simulations. These

simulations covered a range of biting types and locations. They

include four bilateral and eight unilateral bites at different tooth

positions, a bite on the anterior-most chisel-like teeth, and two

ripping bites that incorporate neck muscles (MDA model shown in

Figure 2 and a summary of all biting simulations is given in

Table 1). A corresponding set of fifteen separate FEAs was carried

out to investigate the total mechanical performance of the skull

under these predicted forces. Each separate FEA applied a peak

static bite force and corresponding muscle and joint forces.

Results

MDA
Total bite and quadrate-articular joint forces (i.e. working and

balancing sides combined) are similar whether the animal is biting

unilaterally or bilaterally. However, the bite force on each side of

the skull during bilateral biting is half that of unilateral biting (i.e.

the total bite force is shared over both sides of the skull). Also,

forces located at the balancing side joint during unilateral biting

are always in excess of those at working side joint (Table 2). Bite

force at the most posterior bite location (location 5 – Figure 2B) is

almost 80% greater than on the chisel-like teeth at the front of the

skull (location 1), whereas during unilateral biting the balancing

side joint force is approximately 50% greater than the working side

joint force at the most posterior bite location (location 5). Total

muscle forces applied during the MDA are presented in Table 3.

FEA
Bite location has a considerable effect on the way the skull

deforms. During individual bites, strain gradients (or heteroge-

neous strain magnitudes) are apparent over the skull, with some

regions subject to high strains and others subject to low strains

Figure 1. The diapsid skull form. Simplified schematic lateral and
dorsal skull views of A. Sphenodon (redrawn [87]), B. Crocodylus
siamensis (original drawing), C. Allosaurus fragilis (redrawn [92]). All
skulls are scaled to the same length. af – antorbital fenestra; ltf – lower
temporal fenestra; n – nasal opening; orb – orbital opening; utf – upper
temporal fenestra.
doi:10.1371/journal.pone.0029804.g001

Figure 2. MDA model. A. Multibody computer model used to
calculate the muscle, joint and biting forces for a series of biting
simulations. Black arrows represent the location and direction of the
fascial force vectors applied to the finite element model over one
temporal opening. B. Bite locations. Bilateral (biting on both sides
simultaneously) and unilateral biting (biting on one side only) at
locations 2–5; bilateral biting only at location 1; ripping bites at location
2 only. Skull measures approximately 68 mm long from the tip of the
premaxilla to the posterior end of the quadrate condyles.
doi:10.1371/journal.pone.0029804.g002

Biomechanical Analysis of Skull Form
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(example von Mises strain plots are presented in Figure 3). As the

skull deforms it experiences both compressive and tensile strains

(dominant strains over all bites at specific skull locations is

presented in Figure 4), and during unilateral biting these strains

tend to reach their peak magnitudes (Figure 5A). In addition to the

peak strains generated during unilateral bites, high strain also

occurs in the nasal bone when biting on the large anterior-most

chisel-like teeth, a distinctive feature of Sphenodon ([39]; Figure 5B,

bilateral location 1). Ripping bites in which the neck muscles are

highly active also strain the posterior aspects of the skull and

braincase more than non-ripping bites (Figure 5B, ripping location

2). Across all simulations unilateral bites account for approxi-

mately 79% of the peak strains generated across the skull, with the

posterior-most unilateral bite accounting for 60% of peak strains.

Biting on the anterior-most chisel-like teeth generates approxi-

mately 9% of the peak strains in the skull, while the ripping bites

were attributable for 10%. Bilateral bites (excluding biting on the

anterior-most teeth) accounted for less than 2% of peak strains

across the skull when all biting simulations were assessed. Strains

vary over the skull at any one bite location (including those

yielding the highest strains), with approximately 30% of the skull at

low levels of strain below 200 microstrain, and 65% of the skull at

strains of below 500 microstrain during separate bites (Figure 6).

When the individual peak element strains (i.e. the highest strain

any one element ever experienced) are extracted from all fifteen

individual biting analyses to generate a combined loading peak

strain map, the obvious strain gradients (or heterogeneous strain

magnitudes) noted during separate bites are considerably reduced

(Figure 7). During combined loading 94.6%, 96.7%, and 98.0% of

the skull experiences tensile, compressive, and von Mises strains of

above 200 microstrain respectively when the peak element strains

over all bites are considered (Figure 6). This compares to an

average of approximately 70% during separate bites for all strain

modes. Moreover, during combined loading 85.3%, 87.9%, and

91.1% of the skull in our model is at strains of between 400 and

2500 microstrain for tensile, compressive, and von Mises strain

Table 1. The 15 load cases simulated during the MDA and applied in the FEA.

Load case Type of bite Side of skull Bite location Bite Location

1 unilateral right anterior 2

2 unilateral right middle 3

3 unilateral right posterior 4

4 unilateral right posterior-most 5

5 unilateral left anterior 2

6 unilateral left middle 3

7 unilateral left posterior 4

8 unilateral left posterior-most 5

9 bilateral both anterior 2

10 bilateral both middle 3

11 bilateral both posterior 4

12 bilateral both posterior-most 5

13 bilateral both chisel-like tooth 1

14 neck ripping bite (left) both anterior 2

15 neck ripping bite (right) both anterior 2

See Figure 2 for explanation of bite locations.
doi:10.1371/journal.pone.0029804.t001

Table 2. Bite forces and jaw joint forces predicted by the MDA.

Bite Type Bite Location Bite Force (N) Working Joint Force (N) Balancing Joint Force (N)

bilateral 1 121 540 -

bilateral 2 150 524 -

bilateral 3 165 510 -

bilateral 4 185 490 -

bilateral 5 214 462 -

unilateral 2 150 249 276

unilateral 3 166 232 276

unilateral 4 187 212 277

unilateral 5 216 183 278

Total forces are shown for bilateral bites, therefore the force on each side of the skull is approximately half that presented. Working refers to the force on the same side
as the bite occurs, while balancing refers to the opposite side to which biting occurs. See Figure 2 for explanation of bite locations.
doi:10.1371/journal.pone.0029804.t002

Biomechanical Analysis of Skull Form

PLoS ONE | www.plosone.org 3 December 2011 | Volume 6 | Issue 12 | e29804



respectively, implying that the majority of the skull is shaped

(remodelled) to keep strains within a specific tolerance range

(Figure 6). Mean tensile, compressive, and von Mises strain over

the entire skull (average strain across all individual finite elements

in the model) is 784 microstrain, 887 microstrain, and 1140

microstrain when peak strains over all load cases are assessed. This

value is typically only 500 microstrain during separate bites.

Overall strain distributions over the skull remain largely

unchanged with the addition of a fascial sheet over the upper

temporal fenestra, but there were some striking reductions in

localised peak strains, as highlighted in Figure 8. In particular,

there is a reduction of peak strain on the lateral aspect of the

postorbital bar where the jugal and postorbital meet, but the most

obvious reductions in peak strains are on the posterior surface of

the quadrate (encircled in Figure 8B), the temporal bar (squamosal

and parietal, encircled in Figure 8B) and the posterior edges of the

parietals where they meet in the midline (also encircled in

Figure 8B). Localised peak strain areas around the perimeter of the

upper fenestra were unaffected, with the exception of a small

region on the posterior part of the postorbital.

Discussion

The results of our comprehensive analysis implies that the form

of the diapsid skull of Sphenodon is strongly linked to feeding forces.

We show that both tensile and compressive peak strains are

relatively evenly distributed throughout the skull when several

loading cases are analysed (Figure 7). Although tensile strains are

dominant in some regions of the skull, compressive strains are

dominant in others (Figure 4). However, when analysing von

Mises strain, which takes into account all principal strains, the

distribution of strain is even more uniform when compared to

tensile and compressive strains alone (Figure 7).

Our analyses show that over 91% of the skull is at von Mises

strains of between 400 and 2500 microstrain when peak biting

forces were analysed (Figure 6). While von Mises strain does not

show which principal strain mode is dominant, making it difficult

to interpret the exact response of the structure (e.g. whether or not

it might fracture under tensile forces), von Mises strain does appear

to be a good indicator of bone adaptation. In vivo studies

predominantly on long bones have shown that both tensile and

compressive strains are frequently experienced by bones during

normal use, with peak strain during forceful loading ranging from

900 to 5200 microstrain [40–52]. In our analyses we find both

high compressive and tensile strains over the skull, comparable in

magnitude to those recorded experimentally in other animals

(Figure 7), where compressive strains are dominant in approxi-

mately 60% of the skull (Figure 4). Focusing specifically on skulls,

Herring et al. [53,54] recorded strains of 2000–3000 microstrain

when the masseter muscle was maximally contacted in a pig skull,

peak values very similar to those predicted in our study.

Most literature on bone adaptation only refers to strain without

inferring a particular mode, or even magnitude to this regard.

What we do know is that bone adapts to mechanical loading, for

example in experimental studies on adult rats, Robling et al. [55]

showed bone to be deposited on both the tensile and compressive

sides of artificially loaded forearms. Also under ‘normal’ loading

situations, Haapassalo et al. [56] used peripheral quantitative

computed tomography to show mean bilateral asymmetries

(between the racket holding arm and non-racket holding arm) in

second moments of area of the humeral midshaft in male tennis

players. Although such studies show bone adaptation to functional

loading, it is difficult to infer the exact strain magnitudes that

initiate a particular bone remodelling effect. A figure published in

Martin [57] does provide some suggestion into the approximate

strain magnitudes that could cause bone adaptation. In this case,

strains of below 50 microstrain are thought to represent disuse and

thus bone resorption, whereas strains of between 1500 and 3000

Table 3. Total muscle forces applied to each side of the skull
during the MDA.

Muscle Total Muscle Force (N)

Depressors (defined as 2 groups) 40

Adductors (defined as 14 groups) 448

Neck (defined as 11 groups) 158

The depressor muscles were represented by two muscle groups, the adductor
muscles were represented by fourteen muscle groups, and the neck muscles
were represented by eleven muscle groups. This arrangement of muscles
accurately depicts the anatomy of Sphenodon. Muscle sections are visually
presented in Figure 3A, while detailed descriptions of all muscle groups are
published elsewhere [18,39].
doi:10.1371/journal.pone.0029804.t003

Figure 3. von Mises FEA plots during two single bites. Deformation and von Mises strain plots of the skull of Sphenodon during A. right
unilateral biting and B. during bilateral biting on the anterior-most chisel-like teeth; (note the displacements are scaled by a factor of 50).
doi:10.1371/journal.pone.0029804.g003
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cause some bone formation. Levels above 3000 microstrain are

recognised as pathological overload and strains of between 50 and

1500 microstrain would generate equal bone resorption and

formation rates (i.e. homeostasis). These values are only specula-

tive and the strain mode or frequency is not specified, but our

predicted von Mises strains in the skull of Sphenodon are

comparable.

We simulated peak bite forces in our study (i.e. ,140 N at an

anterior bite position [36,58]), and although bone needs to be able

to withstand such forces without risk of failure, the majority of

feeding forces will be significantly lower than these applied peak

bite forces. For example, Aguirre et al. [59] showed that the

approximate force needed to crush a beetle was 34 N, while

Herrel et al. [60] recorded a value of 27 N to crush an egg.

Sphenodon has a varied diet but it frequently includes beetles and

occasionally sea bird eggs [61–63]. Thus, the force required to

crush these foods is over four times lower than the peak bite force

in Sphenodon. Scaling skull strains by a factor of four (i.e. in line with

bite forces being four times lower) we show that over 91% of the

skull is at strains of between 100 and 625 microstrain, well within

the equilibrium window (i.e. equal bone resorption and deposition)

as inferred by Martin [57].

The findings of this study imply that the skull of Sphenodon is

adapted to feeding forces, with some regions adapted to tensile

forces and others to compressive forces. Tendons and ligaments

provide little resistance to compressive strains, and bone is

necessary to provide compressive stability. We show that all

regions of the skull experience compressive strain when all biting

load cases are analysed, suggesting that it is mechanically

necessary. However, while bone is necessary to resist compression,

it must also be strong enough not to fail under tension. Therefore,

once formed, bone must also adapt to tensile strains, and our

results support this. Previous analyses, which include in vivo

experimentation and FEAs suggest different functions for different

regions of the skull based on stress and strain recordings/

predictions [5,64–69] (i.e. specific regions seem better suited to

biting forces, bending strains, impact loads etc.). While our

findings agree with this to some extent (e.g. a specific area of the

skull may be linked to a specific bite point, or the forces generated

at the jaw joints), they are not consistent with the conclusion that

some regions of the skull are formed in relation to factors unrelated

to functional strains (e.g. the idea that bone is formed to protect

the brain and/or sensory organs from potential impact forces that

have not yet occurred [5]). Previous studies did not take into

Figure 4. Plot of dominant strain regions. Cumulative map of peak dominant strains over all bites. Red represents regions of the skull where
tensile strains are in excess of compressive strains (i.e. tensile strains are dominant), and blue represents regions where compressive strains are in
excess of tensile strains (i.e. compressive strains are dominant).
doi:10.1371/journal.pone.0029804.g004
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account the full range of possible and potential loadings, a point

made by Mikic and Carter [70] ‘‘one difficulty that is encountered

when using bone strain data in studies of functional adaptation is

the reported data are often far from a complete record of strain

over an experimental period’’. In relation to in vivo strain data,

these authors further note that ‘‘reported results generally consist

of a few average cyclic strain parameters that are extracted from a

short period of recordings while an animal performs a very

restricted task. Most investigators agree, however, that a much

more complete record of strain history is required to relate bone

biology and morphology to strain’’.

In our study of skull function we found that strains resulting

from a single bite do provide a limited view of overall skull

performance (Figure 3 and Figure 6). When we considered a more

complete range of physiological loads we showed strains to be

more uniform over the entire skull (Figure 7). This finding suggests

that the skull is well adapted to a range of functional strains.

Although some regions appear to be adapted to tensile strains and

others to compressive strains, all regions of the skull seem to be

equally important with respect to overall feeding forces. We have

shown that unilateral bites, in particular the more posterior

unilateral bites, generate the highest strains across the skull. This

suggests that such bites are more important to the morphology of

the skull of Sphenodon than the bilateral ones.

The extent to which general skull form is determined by

selection or growth remains uncertain, but our findings show that

the skull of Sphenodon is optimally suited (mechanically ideal - or at

least very well suited) to deal with the full range of loadings applied

here. The term ‘optimally’ refers to the minimum amount of

material (i.e. bone) necessary to ensure sufficient skull strength. An

optimally formed skull as defined here will be more efficient than a

sub-optimal, e.g. heavier skull form, in ensuring minimal bone

volume, minimal weight, and also minimal energy demands in

maintenance. For clarity, we would predict a non-optimised skull

to display one of two contrasting conditions. It would either appear

weak in relation to the normal forces applied to it, and experience

very high and potentially damaging stresses and strains during

normal loading, or, conversely, it might appear overly robust, with

very low stresses and strains during normal loading and with

excess bone mass that is not mechanically necessary. Since our

findings infer that the skull of Sphenodon is well formed to resist the

everyday forces applied to it, it is not unreasonable to suggest this

may also be true for other diapsids with a frame-like skull.

Within our analyses a few small regions of high and low strain

are present even when all fifteen biting load cases were accounted

for. However, although the muscle representation is detailed in our

models, some additional soft tissue structures, such as fascia and

ligaments, were not included. At first consideration these

Figure 5. Models showing which bite location generated the highest strains in particular areas of the skull. Results based on von Mises
strains. A. Unilateral bites and B. bilateral bites. (For example, in A. unilateral biting at location 2 was responsible for the highest strains in those areas
coloured blue).
doi:10.1371/journal.pone.0029804.g005
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structures may appear unimportant, but a recent study investigat-

ing the influence of the temporal fascia in primates has revealed

that it might play a major role in the function of the skull [71]. Our

analyses indicate that the fascial sheet stretched over the upper

temporal fenestra in Sphenodon may also be significant (Figure 8).

This fascial sheet is apparently tensed by upward bulging of the

jaw adductor muscles (notably pseudotemporalis superficialis and

adductor mandibulae externus medialis) as Sphenodon bites down

on food (personal observations at Chester Zoo, UK; Dallas Zoo,

USA). In this case the fascia serves to reduce peak strains (Figure 8),

creating a more uniform strain distribution throughout the skull.

The finding that the muscles (including the neck muscles), other

soft tissue structures (e.g. upper temporal fascia), bite location, and

joint forces all influence the strains within the skull suggests that

modifications to any of these anatomical structures has the

potential to affect skull form. This may even be somewhat

applicable to the formation of unusual skull features, such as crests

in chameleons, ceratopsians, and theropod dinosaurs [72–75].

The skull of Sphenodon, and probably other non-avian diapsid

reptiles without a vaulted braincase (both extant and extinct), is

adapted (in the sense of bone adaptation, rather than evolutionary

development) to resist a range of load cases, not just single biting

loads. The lower temporal bar, secondarily acquired in Sphenodon

[66,76–80] as well as in the common ancestor of archosaurs like

crocodiles [66,80,81], is under compressive strain during all bites.

This is consistent with previous suggestions that it provides a brace

[66,79,82] that contributes to skull robusticity, and in large

theropods such as Tyrannosaurus rex Osborn, 1905 and Allosaurus

fragilis Marsh, 1877 this would be important as they would likely

generate extremely large biting forces and experience heavy

cranial loading [4,83]. The corollary is that reptiles that lack a

lower bar do not need a brace in this location. Early relatives of

Sphenodon lack a lower temporal bar, the primitive condition for the

group [76–79], but the dorsal position of the jaw joint in these

small reptiles suggests that reaction forces would not have been

directed along the lower temporal bar, had one existed [78,84].

To conclude, our analysis of the skull of Sphenodon indicates that

the bone has adapted to tensile and compressive strains generated

during normal feeding activities. The combined peak von Mises

strain distribution over the skull is relatively uniform, showing that all

regions are strong enough mechanically to withstand normal

everyday forces, while no region is overly robust and ‘over-designed’.

Based purely on this finding, the skull form of Sphenodon can be

considered optimal (mechanically ideal) in the sense that it comprises

the minimal amount of bone material for the required skull strength.

This optimal form is more efficient in terms of minimal bone volume,

minimal weight, and minimal energy demands in maintenance over

a sub-optimal, heavier skull form. While this study has not

investigated potential forces associated with the brain, sense organs,

and non-biting activities such as swallowing and tongue movements,

its results are relevant to a broader understanding of skull form and

not just to the skulls of diapsid reptiles. However, to test whether all

skulls are optimally formed (sufficient strength with the minimal

amount of material) with respect to bone strains (both tensile and

compressive) would require the application of similar methods to

other animal groups. Preliminary findings in macaques are

encouraging in this regard (personal observations) but skulls with

large vaulted braincases may be subject to additional quasi-static or

high frequency low loads (e.g. associated with the brain) that could

impact on skull form [28–30,85].

Figure 6. von Mises element strain distribution plots. Plot represents the number of elements within the finite element model that experience
a specific strain magnitude. The plot shows the element strains from all fifteen biting simulations (labelled individual bites) and the combined loading
model.
doi:10.1371/journal.pone.0029804.g006
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Materials and Methods

MDA
Detailed descriptions of the MDA model development have

been presented elsewhere [33,36,86]. Briefly, the skull and lower

jaws (left and right parts) of a Sphenodon specimen (specimen

LDUCZ x036; Grant Museum of Zoology, UCL, London, UK)

were scanned in-house by micro-computed tomography (micro-

CT), from which three-dimensional (3D) geometries were

constructed using AMIRA image segmentation software (AMIRA

4.1, Mercury Computer Systems Inc., USA). Neck vertebral

geometries were generated from additional micro-CT scans

(specimen YPM 9194; Yale Peabody Museum of Natural History,

New Haven, USA). These 3D geometries were imported into

ADAMS multibody analysis software (version 2007 r1, MSC

Software Corp., USA) in preparation for an MDA. Within

ADAMS detailed muscle anatomy was incorporated onto the

geometries, and accurate jaw joint and tooth contact surfaces were

specified. Where the neck meets the skull a spherical joint was

assigned that permitted the skull to rotate freely about all axes

while constraining translational movements. The major adductor

(jaw closing), depressor (jaw opening), and neck musculature were

included, with each muscle group split into several sections and

defined over the anatomical origin and insertions areas on the skull

and lower jaws respectively [33,86,87] (Figure 2A). To permit

biting, a food bolus was modelled that could be located at any

position along the jaw, and a specially developed motion

technique, named dynamic geometric optimisation (DGO), was

utilised to open the jaw and to simulate peak biting. This motion

technique, along with the muscle forces and biting performance,

has been described and validated elsewhere [33,36] (in reference

to work carried out in vivo [58,88]).

The biting simulations covered a range of biting types and

locations, including four bilateral and eight unilateral bites at

different tooth positions, a bite on the anterior-most chisel-like

teeth, and two ripping bites that incorporate neck muscles (MDA

model shown in Figure 2 and a summary of the simulations is

shown in Table 1). During the ripping bites the jaws closed on a

fixed food bolus, upon which and neck muscles were activated to

lift (or try to lift) the head up and to the left, and up and to the

right. These two ripping simulations ensured full activation of the

neck muscles. During each simulation peak bite force, quadrate-

articular joint forces, and muscle forces were predicted.

FEA
The same 3D geometry constructed for the MDA skull was

converted into a tetrahedral mesh consisting of 640,000 elements.

The model was constructed from solid (ten node) higher order

elements, which were specified with a Young’s modulus of

17 GPa and a Poisson’s ratio of 0.3 (consistent with direct

Figure 7. Combined loading tensile, compressive, and von Mises strain plots. Peak combined loading A. tensile, B. compressive, and C.
von Mises strain plots.
doi:10.1371/journal.pone.0029804.g007

Biomechanical Analysis of Skull Form

PLoS ONE | www.plosone.org 8 December 2011 | Volume 6 | Issue 12 | e29804



measurements and within the ranges applied by others [1,89–91].

Using the MDA predicted forces, a series of fifteen FEAs were

carried out. Although theoretically all forces within the system

should be in equilibrium, due to the large number of individual

forces even small variations from the exact MDA locations of

these applied forces causes instability within the FEAs (i.e. there

would be unconstrained full body motion of the model). To

ensure a stable FE solution, fixed constraints were included at the

joint and bite contacts as defined by the MDA (i.e. neck joint, jaw

joints, and bite point). One node at the neck location was

constrained in the medial-lateral and anterior-posterior directions

(x and z axes), one node at each jaw joint and bite point was

constrained in the vertical direction (y axis).These constraints

were considered minimal, and restricted rigid body motion but

not deformations of the skull. For example, the neck, bite, and

joint contact locations could all deform with respect to each

other, and both jaw joint contact locations could deform relative

to each other. After the FE solutions were complete, tensile (also

known as maximum and 1st principal), compressive (also known

as minimum and 3rd principal), and von Mises (also known as

equivalent and mean) element strains of all 640,000 elements in

the model were stored in element tables. In addition, the peak

strain recorded in any one particular element during the fifteen

separate simulations was extracted and combined to map the

peak strains across the skull. This is referred to as a combined

loading model.

An additional investigation was carried out to understand the

influence of other non-bone structures. To this end we simulated an

upper temporal fascial sheet, which is likely tensioned by large

superior bulging of the jaw adductor muscles during biting

(personal observations from animals at Chester Zoo, UK; Dallas

Zoo, USA). Here we applied a total force of 133 N around the

perimeter of each upper temporal fenestra (7 N over 19 force

vectors – see Figure 2A). This magnitude was based on an

unrelated investigation [71], where the total fascial force was

found to be approximately 85% of the muscle force applied by an

associated muscle group(s). In this case the associated muscles were

pseudotemporalis superficialis and adductor mandibulae externus

medialis [36,87].
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