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ABSTRACT Cross-species complementation can be used to generate humanized yeast, which is a valuable resource with which to
model and study human biology. Humanized yeast can be used as an in vivo platform to screen for chemical inhibition of human
protein drug targets. To this end, we report the systematic complementation of nonessential yeast genes implicated in chromosome
instability (CIN) with their human homologs. We identified 20 human–yeast complementation pairs that are replaceable in 44 assays
that test rescue of chemical sensitivity and/or CIN defects. We selected a human–yeast pair (hFEN1/yRAD27), which is frequently
overexpressed in cancer and is an anticancer therapeutic target, to perform in vivo inhibitor assays using a humanized yeast cell-based
platform. In agreement with published in vitro assays, we demonstrate that HU-based PTPD is a species-specific hFEN1 inhibitor. In
contrast, another reported hFEN1 inhibitor, the arylstibonic acid derivative NSC-13755, was determined to have off-target effects
resulting in a synthetic lethal phenotype with yRAD27-deficient strains. Our study expands the list of human–yeast complementation
pairs to nonessential genes by defining novel cell-based assays that can be utilized as a broad resource to study human drug targets.
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OFF-TARGET effects are a major cause of clinical trial
failures for cancer therapeutics (Lin et al. 2019). As

such, establishing additional preclinical models can contrib-
ute to the translation of more effective clinical outcomes. One
such model is the humanized yeast system, which has been
used as an in vivo platform for studying chemical inhibition of
human protein targets [reviewed in Simon and Bedalov
(2004), Mager and Winderickx (2005), and Zimmermann
et al. (2018)]. Yeast can be humanized using two different
approaches: heterologous expression in which a human gene
is expressed ectopically in yeast or cross-species complemen-
tation in which the human gene complements a mutation in
the cognate yeast gene [reviewed in Dunham and Fowler
(2013) and Laurent et al. (2016)]. Irrespective of orthology,

heterologous expression of human genes that induce a phe-
notypic readout in wild-type yeast cells (such as growth in-
hibition) can be leveraged to elucidate the pathological
functions of disease genes (Cooper et al. 2006), identify drug
targets (Jo et al. 2017), and screen for chemical inhibitors
that rescue the growth defect (Perkins et al. 2001;
Tugendreich et al. 2001; Sekigawa et al. 2010). In cases
where a yeast homolog can be identified for a human gene,
cross-species complementation of yeast mutations by human
genes can be utilized to elucidate the functional homology
between human and yeast proteins (Lee and Nurse 1987),
characterize human disease variants (Marini et al. 2008;
Trevisson et al. 2009; Mayfield et al. 2012; Sun et al. 2016;
Yang et al. 2017), evaluate tumor-specific mutations (Shaag
et al. 2005; Hamza et al. 2015), and screen for chemical
inhibitors (Marjanovic et al. 2010). Several large-scale stud-
ies have systematically tested the ability of single human
genes to replace their yeast orthologs (Zhang et al. 2003;
Hamza et al. 2015; Kachroo et al. 2015; Sun et al. 2016)
and paralogs (Hamza et al. 2015; Yang et al. 2017; Garge
et al. 2019; Laurent et al. 2019). However, the focus of these
complementation screens was restricted to essential yeast
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genes whose mutation allowed for testing the rescue of lethal
growth defects. In contrast, nonessential yeast genes, the
majority of which cause minimal growth defects when dis-
rupted, can only be screened for complementation of visible
phenotypes or in conditional assays that induce measurable
growth phenotypes. Conditional assays could involve grow-
ing the nonessential gene mutants in restrictive media con-
ditions [e.g., alternate sugar sources (Guimier et al. 2016) or
a limiting metabolite (Agmon et al. 2019)], adding chemicals
to sensitize the yeast strain, or converting the nonessential
yeast gene to an essential gene by disrupting a synthetic
lethal partner (Greene et al. 1999).

Chromosome instability (CIN) mutants are of particular
interest for human complementation in yeast. CIN is an
enabling characteristic of cancer development and progres-
sion, and is a major contributor to the heterogeneity of tu-
mors (Negrini et al. 2010; Hanahan and Weinberg 2011).
The simplicity and genetic tractability of the budding yeast,
Saccharomyces cerevisiae, make it a model experimental sys-
tem to delineate conserved biological pathways and processes
such as those involved in CIN (Measday and Stirling 2016).
Large-scale yeast screens have generated a comprehensive
list of genes whose mutation (Myung et al. 2001; Smith
et al. 2004; Kanellis et al. 2007; Yuen et al. 2007; Andersen
et al. 2008; Stirling et al. 2011) or overexpression (Zhu et al.
2015; Ang et al. 2016; Duffy et al. 2016; Frumkin et al. 2016;
Tutaj et al. 2019) contribute to CIN. Yeast can also be utilized
to identify chemical sensitivities to cytotoxic agents caused by
CIN gene mutations that may be exploited to selectively tar-
get tumor cells (O’Neil et al. 2017). For instance, genotoxic
agents that act by alkylation are common cancer chemother-
apy drugs and yeast mutants that are sensitive to these agents
identify candidate human genes required for the DNA dam-
age response (Svensson et al. 2012).

Proteins required for chromosome stability are also attrac-
tive targets for therapeutic inhibition in cancer cells (Tanaka
and Hirota 2016). Indeed, the yeast CIN gene list identifies
candidate human CIN genes whose mutation or overexpres-
sion may contribute to tumorigenesis (Barber et al. 2008;
Stirling et al. 2011; Duffy et al. 2016). One such attractive
target is the human DNA flap endonuclease 1 (hFEN1). Yeast
assays have demonstrated that deletion or overexpression of
yRAD27 (ortholog of hFEN1) causes CIN and DNA damage in
yeast (Greene et al. 1999; Yuen et al. 2007; Duffy et al. 2016),
while studies using human cells have confirmed that deple-
tion or overexpression of hFEN1 causes DNA damage
(Jimeno et al. 2017; Becker et al. 2018; Mengwasser et al.
2019). FEN1 functions in DNA replication and repair, and is
required for Okazaki fragment maturation through removal
of 59 flaps during lagging-strand synthesis (Balakrishnan and
Bambara 2013). Due to its key role in DNA replication, hFEN1
has been shown to support rapid proliferation of cancer cells
and is overexpressed in breast (Singh et al. 2008; Abdel-
Fatah et al. 2014; He et al. 2016), lung (Nikolova et al.
2009; He et al. 2017), prostate (Lam et al. 2006), gastric
(Wang et al. 2014), brain (Krause et al. 2005), and pancreatic

(Iacobuzio-Donahue et al. 2003) cancer. Further, based on
synthetic lethal genetic interaction relationships, hFEN1 is a
second-site target for the selective killing of homologous re-
combination (HR)-defective and cohesin-mutated cancer
cells (McManus et al. 2009; van Pel et al. 2013). As such,
many studies have reported the screening and development
of hFEN1 inhibitors as potential anticancer therapeutics
(Tumey et al. 2005; Dorjsuren et al. 2011; McWhirter et al.
2013; van Pel et al. 2013; Exell et al. 2016; He et al. 2016;
Deshmukh et al. 2017).

A humanized yeast system based on cross-species comple-
mentation can be utilized as an in vivo platform for inhibitor
screening. Human complementation of essential yeast gene
mutants has been used as a phenotypic readout to screen for
inhibitors of human proteins that induce growth inhibition in
yeast (Meczes et al. 1997; Wider et al. 2009; Marjanovic et al.
2010; Mayi et al. 2015). To expand the list of yeast cell-based
platforms beyond those discovered for essential yeast genes,
we screened a subset of 112 nonessential yeast CIN genes for
complementation by candidate human homologs. We then
demonstrated that complementation of nonessential yeast
genes in conditional assays that induce measurable growth
phenotypes is a viable strategy to test inhibitors of hFEN1.

Materials and Methods

Complementation assays

Generating expression vectors and yeast strains for com-
plementation assays: A list of human homologs of nonessen-
tial yeast CIN genes (Yuen et al. 2007; Stirling et al. 2011)was
generated from Yeastmine (Balakrishnan et al. 2012). Human
complementary DNAs (cDNAs) in Gateway-compatible entry
clones (Yang et al. 2011) were shuttled into the yeast destina-
tion vector pAG416GPD-ccdB+6Stop (URA3, CEN, constitu-
tive GPD promoter, and 6-amino acid C-terminal extension)
(Alberti et al. 2007; Kachroo et al. 2015) using LR Clonase II
(Invitrogen, Carlsbad, CA) to generate expression clones. Ex-
pression vectors and the vector control pRS416 (URA3)
(Sikorski and Hieter 1989) were transformed into the corre-
sponding MATa yeast haploid knockout strain (Giaever et al.
2002), and wild-type strain MATa BY4742 (Brachmann et al.
1998) and transformants were selected on SC-Ura media.

To create yeast strains with integrated human cDNAs,
donor DNA generated by PCR was cotransformed into
BY4742 along with linear fragments encoding Cas9 and a
single guide RNA targeted to the coding region of either
yRAD1, yRAD10, yMMS4, or yMUS81 (Supplemental Mate-
rial, Table S1), following the protocol described by William
Shaw (see https://benchling.com/pub/ellis-crispr-tools).
Donor DNA for hMUS81was obtained by PCR using the entry
clone from hORFeome V8.1 (Yang et al. 2011) as template
and primers were designed to include a stop codon. Donor
DNA for hERCC4 and hEME1 was obtained by PCR using
clones from the Mammalian Gene Collection (Dharmacon)
as template. Donor DNA for hERCC1 was generated using
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pAG416GPD-hERCC1+6Stop as template in the PCR result-
ing in a PCR product that also contained the CYC1 terminator.
The double-deletion strainsmus81D mms4D and rad1D rad10D
were made by clustered regularly interspaced short palindromic
repeats (CRISPR)-mediated deletion (Table S1) of MMS4 and
RAD10 in the mus81D::kanMX and rad1D::kanMX MATa dele-
tion strains, respectively. For the deletions, donor DNAwas con-
structed by annealing two complimentary oligos composed of
flanking homology to the left and right of the deletion site. To
confirm CRISPR-mediated insertions or deletions, yeast trans-
formants were screened by PCR using primers that flank the re-
gion of homology on the donor DNA and verified by sequencing.

Sequence identity (%) in relation to the yeast gene was
determined for all human–yeast pairs using NWalign (Y.
Zhang, http://zhanglab.ccmb.med.umich.edu/NW-align),
and significance between the % sequence identity of com-
plementation pairs and % sequence identity of tested human–
yeast pairs was calculated using aMann–WhitneyU-test. Yeast
gene size was obtained from Yeastmine and significant differ-
ences were calculated using the hypergeometric distribution.

Growth assays to assess rescue of chemical sensitivities:
Chemical sensitivity complementation assays for yeast strains
with URA3-marked vectors were carried out in SC-Ura media
(6 chemical) at 30�, while assays for yeast strains with
integrated human cDNAs were carried out in SC media
(6 chemical) at 30�. For spot assays, wild-type and mutant
strains from saturated cultures were serially diluted in
10-fold increments, and plated onto media without or with
chemicals at the following concentrations: 0.01% MMS,
200 mM HU, 15 mg/ml benomyl, 8% ethanol, 100 ng/ml
cycloheximide, 5 mg/ml camptothecin (CPT), and 10 mg/ml
bleomycin. For growth curve validations, cultures were
grown to midlog phase then diluted to OD600 = 0.1 in
200 ml media 6 chemical at the indicated concentrations.
OD600 readings were measured every 30 min over a period
of 24–48 hr in a TECAN M200 plate reader and plates were
shaken for 10 min before each reading. Strains were tested in
three replicates per plate per condition and the area under
the curve (AUC) was calculated for each replicate. Strain
fitness was defined as the AUC of each yeast strain relative
to the AUC of the control strain (BY4742 6 pRS416) grown
on the same plate in the same media condition.

A-like faker assays: Following the method of Yuen et al.
(2007), isolates of wild-type MATa BY4742 and MATa de-
letion strains containing URA3-marked vectors were patched
on each plate in 1-cm2 squares on SC-Ura, and incubated at
30� for 2 days. Patches were mated to a MATa his1 tester
lawn by replica plating on YPD followed by incubation at
30� for 24 hr. The mated lawn was replica-plated to SC-6
(2Ura, 2Lys, 2Ade, 2His, 2Trp, and 2Leu) media and in-
cubated for 2 days at 30� to select for His+ products.
Complementation of the a-like faker (ALF) phenotype was
assessed by comparing the number of colonies per patch to
the wild-type control patch on the same plate.

Testing inhibitors of hFEN1

Yeast strains: All strains used for testing inhibitors were
pdr1D pdr3D, and were constructed by CRISPR-mediated
deletion of yeast PDR1 and PDR3 in MATa wild-type and
rad27D::kanMX strains as described previously in the
Materials and Methods. The hFEN1 ORF was integrated by
CRISPR into the yRAD27 locus using donor DNA obtained
from pAG416GPD-hFEN1+6Stop as template in a PCR. The
resultant integrated hFEN1 ORF was flanked by the endoge-
nous yRAD27 promoter and terminator. Yeast RAD52 was
then deleted in the following two strains: pdr1D pdr3D and
pdr1D pdr3D rad27D::hFEN1 by CRISPR, as previously de-
scribed in the Materials and Methods (Table S1).

Growth assays to test hFEN1 inhibitors: PTPD (catalog
number: AOB3872) and NSC-13755 (catalog number:
AOB3879) were obtained from AOBIOUS INC. For liquid
growth curve assays, yeast strains frommidlog phase cultures
were diluted to OD600 = 0.1 in 200 ml media 6 0.01% MMS
and the inhibitors were added at the indicated concentrations
(or a 0.5%DMSO control). All growth assays were performed
in SC media at 30�. OD600 readings were measured every
30 min over a period of 24 hr in a TECAN M200 plate reader
and plates were shaken for 10 min before each reading.
Strains were tested in three replicates per plate per condition
and the AUC was calculated for each replicate. Strain fitness
was defined as the AUC of each yeast strain relative to the
AUC of the control strain (pdr1D pdr3D + 0.5% DMSO con-
trol) grown on the same plate 6 MMS treatment.

Overexpression of hFEN1: Human FEN1 in an entry clone
was shuttled into the yeast destination vector pAG425GAL-
ccdB+6Stop (LEU2, 2m, inducible GAL promoter, and
6-amino acid C-terminal extension) (Alberti et al. 2007;
Kachroo et al. 2015) as previously described in the
Materials and Methods. The overexpression vector and the
vector control pRS425 (Christianson et al. 1992) were trans-
formed into BY4742, and transformants were selected on
SC-Leu media. Generated strains were grown to midlog
phase in both dextrose or galactose SC-Leu media before di-
lution to OD600 = 0.1 in the same media for growth curve
analysis as previously described in theMaterials andMethods.

Data availability

Strains and plasmids are available upon request. Figure S1
contains complementation assays for the nonessential CIN
genes. Figure S2 contains complementation assays of two-
subunit yeast complexes. Figure S3 contains growth curve
assays for testing hFEN1 inhibitors in MMS. Figure S4 con-
tains growth curve assays for testing hFEN1 inhibitors in
HR-deficient strains. Figure S5 contains growth curve assays
assessing overexpression of hFEN1 in yeast. Table S1 lists
primers used for CRISPR-mediated insertion and deletion.
Table S2 lists plasmids and strains used in study. Table S3
lists all candidate complementation pairs tested in study.
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Table S4 compares our list of complementation pairs to liter-
ature sources. Supplemental material available at figshare:
https://doi.org/10.25386/genetics.11573229.

Results

Identification of human–yeast complementation pairs
for the nonessential yeast CIN genes

A comprehensive list of yeast CIN genes revealed that of the
�1100 essential yeast genes, 323 are mutable to a CIN phe-
notype (Stirling et al. 2011). Likewise, of the �4800 nones-
sential yeast genes, 369 are mutable to a CIN phenotype as
deletion alleles (Yuen et al. 2007; Stirling et al. 2011). Pre-
viously, we screened the essential yeast CIN genes for com-
plementation by corresponding human cDNAs by assaying
rescue-of-lethality of the haploid yeast null allele derived
from sporulation of heterozygous diploid strains (Hamza

et al. 2015). In this study, we identified human–yeast com-
plementation pairs for the nonessential yeast CIN genes. In
contrast to essential genes, most haploid deletion strains for
nonessential genes display no growth defects when grown
under standard laboratory conditions (Giaever et al. 2002).
To establish our complementation assays, we tested the abil-
ity of human gene expression to rescue the chemical sensitiv-
ity and/or CIN defects of the nonessential yeast deletion
mutant. The chemicals utilized to induce growth defects in-
cluded MMS (alkylating agent) (Beranek 1990), benomyl
(destabilizes microtubules) (Gupta et al. 2004), HU (impedes
DNA replication) (Koç et al. 2004), CPT (topoisomerase in-
hibitor) (Hsiang et al. 1989), bleomycin (induces DNA strand
breaks) (Chen et al. 2008), cycloheximide (protein synthesis
inhibitor) (Schneider-Poetsch et al. 2010), and ethanol (impacts
many cellular pathways including the cell cycle and morpho-
genesis) (Stanley et al. 2010). To test rescue of CIN defects, we

Figure 1 Overview of the complementation screen
for the nonessential yeast genes. (A) Pipeline out-
lining which human–yeast pairs were included in
the complementation screen. (B) Human cDNAs
cloned in the indicated yeast expression vector or
a vector control were transformed into the corre-
sponding haploid yeast knockout mutant (ykoD),
and maintained on 2Ura media. (C) Yeast strains
were spotted in 10-fold dilution on media 6 chem-
ical based on the reported sensitivity of the yeast
mutant to the seven chemicals. Complementation
was scored based on the ability of human cDNA
expression to rescue fitness defects of the yeast
knockout strain. In the presented example, hFEN1
expression rescues rad27D sensitivity to MMS.
Growth curve validations for identified hits are
shown in Figure S1. For ALFs, a-type mutant strains
containing URA3-marked vectors were mated to a
MATa tester strain and growth of diploid progeny
was assessed on selective media. Loss, deletion, or
inactivation of theMATa locus allowsMATa cells to
mate as a-type cells. Complementation was scored
based on the ability of human cDNA expression to
decrease the ALF frequency of the yeast knockout
strain. In the presented example (two independent
isolates per strain), hFEN1 expression decreases the
elevated frequency of ALF cells that results from
deletion of yRAD27. (D) Liquid growth curve assays
were used to validate complementation observed in
spot assays. In the presented example, hTBCC ex-
pression rescues cin2D sensitivity to benomyl. Each
represented curve is the average of three replicates
per media condition. Fitness of each strain was
quantified by calculating the AUC of each replicate
independently. Strain fitness was defined as the
AUC of each yeast strain relative to the AUC of
the wild-type strain containing the vector control
and grown in the same media condition (mean 6
SD). Student’s t-test. **** P , 0.0001. ALF, a-like
faker; AUC, area under the curve; cDNA, comple-
mentary DNA; Chr, chromosome; CIN, chromosome
instability.
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used the ALF assay, which measures loss of the MATa locus
leading to dedifferentiation to an a-mating phenotype and sub-
sequent mating to a MATa tester strain (Yuen et al. 2007;
Stirling et al. 2011). In this assay, the ability of haploid cells to
mate with a tester strain of the same mating type and form
diploids reflects loss, deletion, or inactivation of theMATa locus.

To set up the complementation assays, we generated a list
of human sequence homologs of nonessential yeast CIN genes
using the Yeastmine database (Balakrishnan et al. 2012)
(Figure 1A). This included orthologs, which are genes that
diverged by speciation and typically perform the same bio-
logical function across species, and paralogs, which diverged
by duplication and generally perform biologically distinct
yet mechanistically related functions (Koonin 2005). Each
human ORF was shuttled via Gateway cloning into a yeast
expression vector (single-copy centromeric plasmid and con-
stitutive GPD promoter) (Alberti et al. 2007; Kachroo et al.
2015) (Figure 1B). For each yeast strain, we queried the
Saccharomyces Genome Database (SGD) to determine if the
yeast deletion mutant has fitness defects in the presence of at
least one of the indicated chemicals. We also searched pre-
viously published reports (Yuen et al. 2007; Stirling et al.
2011) to identify mutants that display increased diploid mat-
ing products in ALF assays compared to the wild-type strain.

Overall, this established assayable phenotypes to test 112
nonessential yeast CIN deletion mutants for complementa-
tion by 117 human cDNAs (121 candidate complementa-
tion pairs tested across 317 complementation assays) (Figure
1C and Table S3). Our screens identified 20 human cDNAs
that rescue the chemical sensitivity and/or CIN defects of
20 nonessential yeast mutants (Table 1). Successful comple-
mentation pairs were validated by growth curves and encom-
passed 44 assays that ranged from one to four assays per pair
(Figures S1 and S2). For instance, we demonstrated that
hTBCC expression rescues cin2D sensitivity to benomyl (Fig-
ure 1D), and that hFEN1 expression rescues rad27D sensitiv-
ity to MMS, ethanol, and cycloheximide, as well as rescuing
CIN defects of rad27D strains in the ALF assay (Figure S1).
Based on a curated list of complementation pairs available
from the Yeastmine database, our work identified 13 novel
complementation pairs (Table S4).

We assessed features that predict complementation of
nonessential yeast gene deletion mutants. Previous screens
that tested complementation of essential yeast genes deter-
mined that the strongest predictive feature of complementa-
tion is that genes in the same pathway, process, or complex
tended to be similarly replaceable or nonreplaceable (Hamza
et al. 2015; Kachroo et al. 2015, 2017; Sun et al. 2016).

Table 1 Human genes that complement nonessential yeast deletion mutants

Yeast
systematic
name

Yeast
standard
name

Human
Entrez gene
identifier

Human
standard
name

Complementation
assaya Yeast gene brief descriptionb

YAL016W TPD3 5518 PPP2R1A MMS, HU, ALF Regulatory subunit A of the heterotrimeric
PP2A complex

YBR026C ETR1 51102 MECR Ethanol, cycloheximide 2-enoyl thioester reductase
YDR226W ADK1 204 AK2 Ethanol Adenylate kinase, required for purine

metabolism
YDR363W-A SEM1 7979 SHFM1 HU, ethanol, ALF 19S proteasome regulatory particle lid

subcomplex component
YEL003W GIM4 5202 PFDN2 Benomyl, ethanol Subunit of the heterohexameric cochaperone

prefoldin complex
YEL029C BUD16 8566 PDXK Ethanol Putative pyridoxal kinase
YGL058W RAD6 7320 UBE2B MMS, HU, bleomycin, ALF Ubiquitin-conjugating enzyme (E2)
YGR078C PAC10 7411 VBP1 Ethanol, cycloheximide, ALF Part of the heteromeric cochaperone GimC/

prefoldin complex
YGR180C RNR4 6241 RRM2 MMS, HU, bleomycin Ribonucleotide-diphosphate reductase (RNR)

small subunit
YIL052C RPL34B 6164 RPL34 Ethanol Ribosomal 60S subunit protein L34B
YJL115W ASF1 55723 ASF1B MMS, CPT, ALF Nucleosome assembly factor
YJL140W RPB4 5433 POLR2D HU, MMS RNA polymerase II subunit B32
YKL113C RAD27 2237 FEN1 MMS, ethanol, cycloheximide, ALF 59 to 39 exonuclease, 59 flap endonuclease
YLR418C CDC73 79577 CDC73 HU Component of the Paf1p complex
YML094W GIM5 5204 PFDN5 Ethanol, cycloheximide Subunit of the heterohexameric cochaperone

prefoldin complex
YML095C RAD10 2067 ERCC1 MMS, HU Single-stranded DNA endonuclease (with

Rad1p)
YOL012C HTZ1 3015 H2AFZ MMS, HU, ethanol Histone variant H2AZ
YOR002W ALG6 29929 ALG6 Ethanol a 1,3 glucosyltransferase
YPL022W RAD1 2072 ERCC4 MMS, HU Single-stranded DNA endonuclease (with

Rad10p)
YPL241C CIN2 6903 TBCC Benomyl GTPase-activating protein (GAP) for Cin4p

ALF, a-like faker.
a Complementation assays are shown in Figure S1.
b Brief description obtained from Yeastmine.
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Human genes were more likely to complement if they had a
higher proportion of interacting partners that also comple-
mented and vice versa. We observed that this property also
applies to the nonessential yeast genes. For example, we de-
termined that each member of the yRAD1/yRAD10 endonu-
clease complex was replaceable by their respective human
orthologs, hERCC4/hERCC1, individually. Conversely, for an-
other endonuclease complex composed of yMUS81/yMMS4,
neither subunit was replaceable by either hMUS81 or hEME1
individually. To examine if both members of the complex
were required for a successful complementation, we used
CRISPR/Cas9-based genomic engineering to replace both
members of the yeast complex with the human orthologs.
This generated yeast strains in which the human gene ORFs
are integrated in the genome and under control of the na-
tive yeast gene regulation. A CRISPR/Cas9-mediated ORF
replacement strategy ensures stable and endogenously
regulated human gene expression that accounts for
stoichiometric balance of complex subunits (Ryan et al.
2014), while addressing the limitations on the number of
yeast selection markers needed for inactivation of multiple
yeast genes and simultaneous expression of multiple human
genes in yeast. Unlike hERCC4/hERCC1, which could be suc-
cessfully replaced as a complex (Figure 2A), the combined
hMUS81/hEME1 complex failed to complement its yeast het-
erodimer counterpart (Figure 2B). Other prominent features
that were determined to be in common between replaceable
essential and nonessential yeast genes are yeast gene size and
human/yeast protein sequence similarity. Replaceable non-
essential yeast genes were more likely to be shorter in length
(Figure 3A), while human/yeast protein sequence identity
was found to be a poor predictor of replaceability (Figure
3B). Even though complementation pairs tend to have higher
than average sequence similarity, sequence features alone
cannot predict a successful complementation. Overall, our
results indicate that features that predict complementation
of nonessential yeast genes are similar to those observed for
essential yeast genes.

Cross-species complementation as a platform for testing
hFEN1 inhibitors

Our human–yeast complementation screen demonstrated
that hFEN1 can replace yRAD27, thereby presenting an
in vivo yeast cell-based platform to test chemical inhibition
of the human protein. We selected two commercially avail-
able compounds reported to inhibit enzymatic activity of
hFEN1 in vitro to test in our complementation assays: the
N-hydroxyurea-based PTPD and the arylstibonic acid deriva-
tive NSC-13755 (Dorjsuren et al. 2011). To increase mem-
brane permeability, CRISPR/Cas9-based genomic engineering
was utilized to construct yeast strains deficient in yPDR1 and
yPDR3, which regulate the multidrug resistance pathway
(Balzi and Goffeau 1995). Rather than expressing hFEN1 from
a plasmid with the GPD promoter, the CRISPR system was
used to replace the genomic yRAD27 ORF with the hFEN1
ORF so that hFEN1was expressed from the yRAD27 promoter.

In the absence of added hFEN1 inhibitor, the yeast rad27D null
mutant displays a nearwild-type growth rate but is sensitive to
treatment with 0.01%MMS (Figure 4, black bars). Expression
of hFEN1 (rad27D::hFEN1) fully rescues the MMS sensitivity
(Figure 4). We tested the ability of the two candidate hFEN1
inhibitors to cause growth inhibition of the rad27D::hFEN1
yeast strain in the presence of MMS.

PTPD elicited concentration-dependent inhibition of
hFEN1 as measured by fitness of the rad27D::hFEN1 yeast

Figure 2 Testing complementation of two-subunit yeast complexes. (A)
hERCC4/hERCC1 expression (separately or together) rescues
rad1D/rad10D sensitivity to MMS (0.01%) and HU (150 mM). Student’s
t-test. ** P , 0.01; *** P , 0.001; and **** P , 0.0001. (B) hMUS81/
hEME1 expression (separately or together) does not rescue
mus81D/mms4D sensitivity to MMS and HU. Each strain was tested in
three replicates per condition and the AUC value was calculated for each
replicate independently. Strain fitness was defined as the AUC of each
yeast strain relative to the AUC of the wild-type (BY4742) strain grown in
the same media condition (mean 6 SD). Corresponding growth curves
are shown in Figure S2. AUC, area under the curve.
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strain in MMS (Figure 4A). PTPD did not have an effect on
the fitness of the yRAD27 strain in MMS, indicating that this
inhibitor is species-specific to the hFEN1 protein. However,
even in the absence of MMS, we did observe a minor concen-
tration-dependent growth inhibition of the rad27D mutant,
which may indicate inhibition of additional off-target yeast
protein(s) resulting in negative genetic interactions that im-
pact rad27D strain fitness. In contrast, NSC-13755 elicited
phenotypes inconsistent with hFEN1 inhibition. NSC-13755
did not elicit concentration-dependent inhibition of growth
as measured by fitness of the rad27D::hFEN1 yeast strain in
MMS (Figure 4B). At the highest concentration of NSC-
13755 tested (1 mM), rescue of rad27D sensitivity to MMS
was observed to the same extent by either yRAD27 or hFEN1.
Furthermore, in the absence of MMS, NSC-13755 caused
severe fitness defects in the rad27D mutant (at the highest
concentration tested, 1 mM), and these defects were rescued
to the same extent by either yRAD27 or hFEN1, indicating
NSC-13755 inhibition of off-target yeast protein(s) that ex-
hibit synthetic lethality with the rad27Dmutant (Figure 4B).
To confirm these results, we generated HR-deficient strains
by CRISPR-mediated deletion of yRAD52 in yRAD27 and
rad27D::hFEN1 yeast strains. Given that the yeast rad27D
rad52D double mutant shows a synthetic lethal phenotype
(Symington 1998), hFEN1 inhibition can be assessed by in-
hibition of growth in the absence of MMS. While PTPD
caused mild fitness defects in the yRAD27 rad52D strain,
PTPD caused severe concentration-dependent growth defects
in the rad27D::hFEN1 rad52D strain (Figure 5A), confirming
that PTPD inhibits hFEN1 in vivo. In contrast, NSC-13755
did not impact fitness of the rad27D::hFEN1 rad52D strain
relative to the yRAD27 rad52D strain (Figure 5B). Notably,
the differential sensitivity of the rad27D mutant (relative to
yRAD27 wild-type) caused by NSC-13755 (Figure 4B) was
not observed for the rad52D mutant (relative to yRAD52
wild-type), suggesting that the off-target effects of this com-
pound may be restricted to yeast protein(s) that are synthetic

lethal with the rad27D null allele. Overall, these results dem-
onstrate the utility and feasibility of using complementation
in conditional assays to test chemical inhibition of human
protein targets in a cell-based platform.

Discussion

The development of high-throughput and large-scale tech-
nologies have expanded the screening capacity for human–
yeast complementation pairs. As a result, several systematic
screens have reported testing the essential yeast genes for
replaceability (Zhang et al. 2003; Hamza et al. 2015;
Kachroo et al. 2015; Sun et al. 2016; Yang et al. 2017;
Garge et al. 2019; Laurent et al. 2019). These studies gener-
ated overlapping lists of human–yeast complementation
pairs and arrived at similar conclusions regarding features
that predict the replaceability of essential yeast genes. How-
ever, compared to the essential yeast genes, the nonessential
genes are a much larger set and have a variety of different
phenotypic readouts, making them more difficult to screen
systematically for complementation. In this study, we have
started this process by focusing on a subset of the nonessen-
tial yeast genes, specifically those required for chromosome
maintenance. We identified 20 complementation pairs that
are replaceable in 44 assays that test rescue of chemical sen-
sitivity and/or CIN defects. For some human–yeast pairs, we
demonstrated that the human gene can complement the
yeast gene in multiple complementation assays. Although
we did not identify any in this study, there are reported cases
of complementation pairs that complement some but not all
mutant phenotypes (Yamagata et al. 1998; Tamburini et al.
2005; Davey et al. 2011). For instance, hWRN (homolog of
ySGS1) suppressed the increased rate of illegitimate recom-
bination of sgs1D but could not rescue sgs1D sensitivity to HU
(Yamagata et al. 1998). Our study defines 44 complementa-
tion assays that provide yeast cell-based platforms to eluci-
date human protein function, characterize human gene
variants, and study conserved protein domains based on
human–yeast complementation relationships. The utility of
these yeast cell-based platforms (Dunham and Fowler 2013;
Laurent et al. 2016) and the accelerated pace of discovery
for human–yeast complementation pairs has led the SGD to
curate complementation data in their Yeastmine database
(Balakrishnan et al. 2012).

Our analysis of complementing/noncomplementing
human–yeast gene pairs found that features predicting the
replaceability of nonessential yeast genes were similar to those
observed for essential yeast genes. In general, amajor limitation
to cross-species complementation involving multiprotein com-
plexes is the potential for interactions of the human protein
subunits with the cognate yeast interaction partners. We pre-
sented the example of humanizing two related endonucleases
that each form heterodimers and function in similar DNA repair
processes with some functional overlap (Kikuchi et al. 2013;
Dehé and Gaillard 2017). In one case, each subunit of the
yRad1/yRad10 endonuclease was replaceable, indicating that

Figure 3 Analyzing features of nonessential yeast genes that predict
replaceability. (A) Replaceable nonessential yeast genes are more likely
to be shorter in length. Yeast genes were binned by gene length (base
pair) and represented as a proportion of the total number of genes input
for each set. (B) Amino acid sequence identity is not a strong predictive
feature of complementation. The box plot highlights the medians and
ranges of sequence identity for each set of human–yeast gene pairs.
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each human ortholog was able to form a heterodimer with the
other yeast subunit. In contrast, yMus81/yMms4 was nonrep-
laceable even when combining both human subunits in the
yeast strain. While these results are consistent with previous
findings that showed that genes in the same complex tend to be
similarly replaceable or nonreplaceable (Hamza et al. 2015;
Kachroo et al. 2015, 2017; Sun et al. 2016), there are reported
cases of two-subunit yeast complexes that are only replaceable
when both human protein orthologs are expressed (Katahira
et al. 1999; Gao et al. 2005; Ozanick et al. 2005; Arnesen et al.
2009; Davey et al. 2011; Paul et al. 2015). In another study, the
four-subunit yeast nucleosome was shown to be replaceable by
the human nucleosome only after a rare event that allowed
yeast cells to adapt and acquire suppressor mutations
(Truong and Boeke 2017). A more robust complementation
was observed after converting five human histone amino acid
residues to the amino acids found in their yeast counterparts,
thus revealing the importance of interactions in the success of a
human complementation experiment. Overall, our results sug-
gest that the major limitation to predicting the ability of some
yeast complexes to be humanized is the lack of information
on the minimum complex/pathway members that need to
be replaced simultaneously. While replacing one subunit of
yRad1/yRad10 was sufficient for complementation, humaniza-
tion of yMus81/yMms4 may require the replacement of addi-
tional yeast genes by human proteins to regulate the functions
of the humanized endonuclease (Dehé and Gaillard 2017).
Thus, attempts to discover and test the minimum requirements
for humanization can provide new avenues to study important
properties of human proteins.

We demonstrated an application of humanized yeast in
which cross-species complementation of chemical sensitivity
facilitated testing candidate inhibitors of hFEN1. Generally,
there are two main approaches to screen for inhibitors of
human targets in a humanized yeast system: (i) inhibitors that
rescue yeast growth defects caused by ectopic heterologous
expression of the human gene in yeast and (ii) inhibitors that
are screened against the ability of human gene expression to
rescue growth defects of the yeast mutant. As a platform for
inhibitor screening, human complementation of the yeast null
mutant has several benefits over ectopic heterologous expres-
sion of human genes in yeast. Human proteins that comple-
ment yeast mutants are functional in a cellular system and in
the context of other biological pathways, and inhibitors that
prevent complementation may better reflect inhibition of the
humanproteinactivity ina cellular context. Screening inanull
mutant background further eliminates the potential of non-
specific inhibition of the cognate yeast protein and further
facilitates the identification of inhibitors that are species-
specific (Wider et al. 2009; Bilsland et al. 2016). Moreover,
severe growth defects caused by ectopic heterologous expres-
sion of human genes in yeast may be reversed by suppressor
mutations that bypass the fitness defects and, as such, large-
scale screens for inhibitors that rescue growth defects may
have high backgrounds due to false positives. Cross-species
complementationmay also provide an alternative phenotypic
readout for human proteins that do not induce severe toxic-
ity in yeast. For example, overexpression of hFEN1 in wild-
type yeast causes a minimal growth defect (�15%) (Figure
S5), which is not enough of a differential sensitivity for a

Figure 4 Utilizing complementation in yeast as an
in vivo platform to test hFEN1 inhibitors. (A) PTPD
inhibits hFEN1. (B) NSC-13755 is not a potent
hFEN1 inhibitor. All strains in this figure are in a
pdr1D pdr3D background. Each strain was tested
in three replicates per condition and the AUC value
was calculated for each replicate independently.
Strain fitness was defined as the AUC of each yeast
strain relative to the AUC of the control strain (pdr1D
pdr3D + 0.5% DMSO) grown in the same media
condition (mean 6 SD). “No MMS” refers to SC
media. “MMS” refers to SC + 0.01% MMS media.
Corresponding growth curves are shown in Figure
S3. Student’s t-test. **** P , 0.0001. AUC, area
under the curve.
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restoration-of-growth screening strategy. However, comple-
mentation of growth inhibition of the yeast rad27D null allele
in MMSmedia by hFEN1 results in an�60% rescue of growth
as measured by liquid growth assays. In the case of essential
yeast genes or nonessential yeast genes disrupted in conjunc-
tion with a synthetic lethal partner, inhibition of the comple-
menting human proteinmay result in lethality. Of course, one
of the main limitations to cross-species human gene comple-
mentation using S. cerevisiae as the host is that not all human
genes can complement a yeast loss-of-function mutant. For
such cases, heterologous expression of human genes in yeast
is advantageous if experiments can be designed based on an
ability to induce a phenotypic readout.

Our results underscore the necessity of coupling in vitro
enzymatic assays with in vivo assays when assessing inhibitor
target activity and specificity. The in vitro assays identified

PTPD as a more potent inhibitor of hFEN1 than NSC-13755
(Dorjsuren et al. 2011). This result may be reflected in our
in vivo growth assays that determined that NSC-13755 is not
potent enough to inhibit hFEN1 activity to a level that causes
growth inhibition comparable to the rad27Dmutant. Instead,
NSC-13755 seemed to be a potent inhibitor of other yeast
protein(s) that are synthetic lethal with the rad27D mutant.
Consistent with this observation, in vitro assays have classi-
fied NSC-13755 and other arylstibonic acid derivatives as
enzymatic inhibitors of the human apurinic/apyrimidinic en-
donuclease hAPE1 (Seiple et al. 2008; Simeonov et al. 2009),
the regulatory phosphatases hPTEN and hCDC25 (Mak et al.
2012), and topoisomerase IB (hTOP1) (Kim et al. 2008), in
addition to hFEN1. Based on the in vivo assays presented in
our study, we cannot deduce which yeast homolog(s) of these
human protein in vitro targets, or other potential yeast
protein(s), are the in vivo target(s) of NSC-13755. However,
a humanized yeast system in which ectopic expression of
these human proteins in yeast results in measurable pheno-
typic readouts may prove to be a suitable in vivo platform to
determine the target most sensitive to the inhibitory activity
of NSC-13755. The effectiveness of such a system is reflected
in our in vivo assays for the HU-based PTPD. While this in-
hibitor did display somemild off-target effects, it appeared to
be a potent hFEN1 inhibitor. In support of our results, other
HU-based derivatives have been shown to increase human
cell line sensitivity to MMS treatment (Tumey et al. 2005;
Exell et al. 2016) and selectively impair the proliferation of
HR-defective cancer cell lines (Exell et al. 2016; He et al.
2016; Ward et al. 2017). Further, in vitro assays have dem-
onstrated that some HU-based compounds are able to enzy-
matically inhibit the related endonucleases hXPG (Tumey
et al. 2005) and hEXO1 (Exell et al. 2016), but showed spe-
cies specificity upon testing with bacteriophage T5 FEN and
Kluyveromyces lactis XRN1 (Exell et al. 2016). These results
may explain the mild off-target effects observed for the
rad27D and rad52D mutants in our in vivo assays. PTPD ap-
pears to be a species-specific hFEN1 inhibitor, but it may
exhibit weak inhibition of other related yeast endonucleases
that in turn causes negative genetic interactions in the
rad27D and rad52D mutant strains. Accordingly, a human-
ized yeast system may be utilized to study the off-target ef-
fects of the HU-based compounds to filter those inhibitors
that are most potent and specific to the desired target in an
in vivo setting. The yeast cell-based assays presented in this
study can be utilized to screen inhibitors of other cancer-
relevant human targets such as the hERCC1/hERRC4 endo-
nuclease complex (Elmenoufy et al. 2019), the ribonucleo-
tide reductase hRRM2 (Zhou et al. 2013), the histone
chaperone hASF1B (Seol et al. 2015), and the ubiquitin-
conjugating enzyme hUBE2B (Sanders et al. 2013). Overall,
these results highlight the utility of humanized yeast as a
surrogate system and promote the necessity to complete test-
ing of remaining yeast genes for complementation.

Figure 5 Utilizing complementation to test hFEN1 inhibitors in homolo-
gous recombination-deficient yeast. (A) PTPD reduces fitness of a hFEN1-
integrated strain deficient in yRAD52. (B) NSC-13755 does not impact
fitness of yRAD52-deficient yeast. All strains in this figure are in a pdr1D
pdr3D background. Each strain was tested in three replicates per condi-
tion and the AUC value was calculated for each replicate independently.
Strain fitness was defined as the AUC of each yeast strain relative to the
AUC of the control strain (pdr1D pdr3D + 0.5% DMSO) grown in the
same media condition (mean 6 SD). The control strains presented in this
figure are the same as in Figure 4 since the experiments were performed
in the same plate. “No MMS” refers to SC media. Corresponding growth
curves are shown in Figure S4. Student’s t-test. **** P , 0.0001. AUC,
area under the curve.
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