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a b s t r a c t

Finding differentially expressed circular RNAs (circRNAs) is instrumental to understanding the molecular
basis of phenotypic variation between conditions linked to circRNA-involving mechanisms. To date, sev-
eral methods have been developed to identify circRNAs, and combining multiple tools is becoming an
established approach to improve the detection rate and robustness of results in circRNA studies.
However, when using a consensus strategy, it is unclear how circRNA expression estimates should be
considered and integrated into downstream analysis, such as differential expression assessment. This
work presents a novel solution to test circRNA differential expression using quantifications of multiple
algorithms simultaneously. Our approach analyzes multiple tools’ circRNA abundance count data within
a single framework by leveraging generalized linear mixed models (GLMM), which account for the sam-
ple correlation structure within and between the quantification tools. We compared the GLMM approach
with three widely used differential expression models, showing its higher sensitivity in detecting and
efficiently ranking significant differentially expressed circRNAs. Our strategy is the first to consider com-
bined estimates of multiple circRNA quantification methods, and we propose it as a powerful model to
improve circRNA differential expression analysis.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Circular RNAs (circRNAs) are a large class of RNA molecules in
which a downstream splice donor site is covalently closed to an
upstream acceptor site by an event called backsplicing. Several cir-
cRNAs have been proven to govern cellular processes [7], and cir-
cRNA dysregulation can drive disease and cancer mechanisms
[16]. Thus, the characterization and quantification of circRNAs
from high-throughput RNA-seq data have become the subject of
many studies. Moreover, identifying the differentially expressed
circRNAs is a prerequisite to detecting circRNAs potentially
involved in disease mechanisms and prioritizing those requiring
further functional investigation.

Most bioinformatics tools developed to detect circRNAs from
RNA-seq data quantify circRNA expression by counting the back
spliced reads at each back splicing junction [3]. Recent strategies
can improve the circRNA recall rate by concurrently applying mul-
tiple detection methods [6,4]. However, different circRNA detec-
tion methods give different expression estimates, and it is not
always straightforward to combine their outputs to obtain a single
quantification measure for each circRNA in each sample, a data
structure that is required for most of the downstream analysis.
Of note, differential circRNA expression testing performed with
traditional count-based models [10,14,9] imposes the use of single
expression estimates and cannot model quantifications from mul-
tiple algorithms. Given that single circRNA detection tools suffer
from low detection sensitivity, such an approach might artificially
limit the discovery of differentially-expressed circRNAs (DECs)
because the quantification method overlooked or was unable to
correctly estimate the abundance of some DECs. Ideally, all reliable
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circRNAs detected should be tested for differential expression, but
no method currently allows such an analysis.

In this work, taking advantage of the improved detection rate
and repeated measures given by the expression estimates of differ-
ent models, we propose a new method based on generalized linear
mixed models (GLMM) to assess circRNA differential expression.
Several metrics were used to evaluate the GLMM approach’s per-
formance, including the type I error control, power, replicability
across datasets, and internal consistency among methods.
Fig. 1. Sample correlation between and within circRNAs quantification methods.
The circRNA expression was estimated independently with four quantification
methods, and the pairwise Spearman’s correlations were calculated between
different (Inter, red boxes) or the same (Intra, blue boxes) quantification method
circRNA expression estimates in real RNA-seq datasets of three independent human
circRNA studies (x-axis). ALZ: brain tissue, Alzheimer’s disease; DM1: skeletal
muscle tissue, Myotonic Dystrophy Type 1; IPF: lung tissue, Idiopathic Pulmonary
Fibrosis. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
2. Results and discussion

2.1. A generalized linear mixed model for modeling multiple circRNA
expression estimates

We propose a novel approach for circRNA differential expres-
sion analyses that exploits multiple methods’ estimates to improve
statistical power.

In previous work, we showed that different tools might output
substantially dissimilar sets of circRNAs and quantification esti-
mates [4]. CircRNA expression quantification obtained with differ-
ent tools from the same data can be considered pseudo-repeated
measures. Under this assumption, we expect that measures quan-
tified by the same detection tool (intra-method correlation) would
be more correlated with each other than those quantified by differ-
ent tools (inter-method correlation), thus entailing a hierarchical
structure. We evaluated this assumption by comparing the distri-
bution of the pairwise correlations of the circRNA expression esti-
mated by (i) the same method (intra-method correlation), and (ii)
pairs of different methods (inter-method correlation) using three
datasets (Fig. 1) and four circRNA quantification methods. Our
results confirmed that the intra-method was higher than the
inter-method correlation supporting the use of the generalized
mixed model.

We used GLMMs to account for the correlation among samples
measured with different detection tools, including the chosen
detection tools as random effects. Since expression values are
count data, we modeled circRNA expression with a negative bino-
mial distribution (NB) embedded into the GLMM. GLMMs can
easily be adapted to assess differential expression between condi-
tions through a likelihood ratio test. Further details on GLMMs can
be found in the ‘‘Materials and Methods” section.
2.2. Comparison with commonly used differential expression tools

We compared the GLMM approach with widely-used tools for
RNA-seq differential expression analysis, namely DESeq2 [10],
edgeR [11], and Limma-Voom [9], on simulated and real circRNA
data sets. The methods were evaluated in terms of power, type I
error control, replicability across datasets, and internal consistency
(see ‘‘Materials and Methods’’).

The GLMM approach considers expression estimates of multiple
tools at once, whereas other differential expression methods
(DEMs) analyze only single-method estimates. Consequently, the
set of circRNAs analyzed with the GLMM approach might be larger
than the set considered by other DEMs. Such an unbalance in the
number of circRNAs favors the GLMM approach in terms of statis-
tical power. To overcome this bias, each DEM was applied sepa-
rately to each expression matrix (one for each detection tool),
obtaining as many lists of P-values as the number of detection
tools. For each circRNA, we selected the lowest non-null value
among the (detection tool) P-value lists, obtaining, for each DEM,
a unique P-value list that included all circRNAs considered by the
GLMM approach. Note that by choosing the lowest P-values, we
expect higher type I error and false discovery rates but higher sen-
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sitivity for the DEMs. Finally, each unique P-value list underwent
correction for multiple tests.

2.2.1. Parametric simulations
We simulated 30 circRNA expression data using a NB distribu-

tion with parameters estimated from the ALZ dataset (Supplemen-
tary Table 1). The sample size (10 samples), the proportion of DECs
(10%), and the condition effect size (1.5 fold change) were main-
tained constant. The GLMM approach and each DEM were then
applied to the 30 simulated datasets.

We assessed the algorithms’ true positive rate (TPR), their con-
trol of the false-positive calls, and the area under the ROC curve
(AUC). The performances of the methods are presented in Table 1.
The GLMM approach achieved the highest power but showed an
overly conservative control of the false discovery rate (FDR), which
was lower than the nominal level of 0.05. Limma-voom obtained
the second highest TPR but with a significantly larger FDR. DESeq2
and edgeR better used their FDR budget but showed less power.
Finally, the GLMM approach presented the highest AUC, indicating
its better ranking of DECs according to P-values.

2.2.2. Real-data benchmark
We used experimental reproducibility on independent samples

to obtain ground truth approximation, following the scheme previ-
ously presented in another benchmark study [10]. Briefly, we
repeatedly split each dataset into one evaluation and one verifica-
tion set, assigning a larger sample size to the verification set. Then,
we compared the circRNAs called as significant from the two sets,
holding the verification set as the ground truth (Supplementary
Fig. 2). We used the ALZ and IPF datasets in which we expect truly
differentially expressed circRNAs exist, whereas the DM1 dataset
did not have enough sample replicates in its groups to perform
the non-parametric simulations.

2.2.2.1. Type I error control. We evaluated each algorithm’s type I
error rate control, i.e., the probability of the statistical test calling
a feature significantly differentially expressed when it is not. We
simulated expression profiles under the null hypothesis of no dif-



Table 1
Summary of simulation results. Average Area under ROC curve (AUC), True Positive
Rate (TPR), Sensitivity and False Discovery Rate (FDR) across 30 simulated datasets
from ALZ data are reported for each Differential Expression Method (DEM).

DEM TPR FDR AUC

DESeq2 0.416 0.043 0.944
edgeR 0.591 0.066 0.785
limma-voom 0.614 0.101 0.796
GLMM 0.683 0.016 0.998
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ferential expression, randomly assigning samples to a group and
repeating this process 30 times. In this setting, the observed pro-
portion of falsely significant tests at the observed a should match
the nominal value (e.g., a = 0.05). In the context of differential
expression analysis, liberal tests will lead to many false discover-
ies, while conservative tests will control the type I error at the cost
of reduced power, potentially hindering true discoveries.

We observed that DESeq2, edgeR, and limma-voom had an
overly conservative control of the type I error, whereas the GLMM
approach obtained an observed a closer to the nominal value. The
low type I error of the other DEMs was in contrast with what we
expected from the construction of the P-value list of each DEM.
However, this could be explained by the small number of replicates
and low expression levels considered in the real-dataset simula-
tions, as observed in previous work [13]. This result suggests that
the GLMM approach benefits from the additional information pro-
vided by the multiple expression estimates.
2.2.2.2. Sensitivity and precision. To compute the sensitivity and
precision of the algorithms, we considered the recombination of
the original samples of the ALZ and IPF datasets (Supplementary
Fig. 2). Moreover, we considered as the reference truth the predic-
tions on the verification set of one algorithm at a time and com-
pared them with each method’s calls on the evaluation set to
evaluate their performance. In doing so, we could compare each
Fig. 2. Type I error control. Boxplots of the proportion of tests with P-values lower than
dashed red line indicates 0.01, 0.05, and 0.1 type I error thresholds. The y-axis was squar
this figure legend, the reader is referred to the web version of this article.)
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method against (i) itself by comparing its predictions on the veri-
fication and evaluation sets, and (ii) all other methods by compar-
ing its predictions on the verification set with other methods’
predictions on the evaluation set. We used this approach rather
than a consensus-based method, as we did not want to favor or dis-
favor any particular algorithm or group of algorithms. Sensitivity
and precision were calculated by setting an adjusted P-
value � 0.1 significance threshold (Fig. 2).

Fig. 3 displays the estimates of sensitivity and precision for each
algorithm pair using the two datasets. The ranking of algorithms
was generally consistent regardless of which algorithmwas chosen
to compose the verification set. We observed neatly different
results in the two datasets. In the ALZ data set, which comprises
more samples per group and a high sequencing depth, the median
sensitivity estimates were typically between 0 and 0.2 for all meth-
ods (Fig. 3a). In both datasets, all algorithms had a relatively low
median sensitivity that can be explained by the small sample size
of the evaluation set and the fact that increasing the sample size in
the verification set increases the power.

The precision estimates are displayed in Fig. 3b, where the high-
est median precision was often reached by GLMM. In general, we
observed a high precision in both datasets across the different
algorithms used as the gold standard. To inspect the ability of
GLMM to effectively reduce the number of false negatives (FNs),
Supplementary Fig. 3 provides an intersection plot of DECs for
one random replication of ALZ datasets. We observed, in this exam-
ple, the ability of GLMM to recognize the larger overlap of calls
within each other DEMs. In addition, the absolute number of calls
for the evaluation and verification sets can be seen in Supplemen-
tary Fig. 4, which mostly matched the order seen in the sensitivity
plot of Fig. 3, highlighting the capacity of the proposed method to
detect in both evaluation and verification sets the higher number
of calls.

Notably, sensitivity and precision analysis results on real-data
benchmark confirmed observations of the parametric simulations
(Table 1). Moreover, although the classical models were very con-
nominal as (0.05 and 0.1) in 30 mock datasets obtained from ALZ data samples. The
ed-root scaled to improve visibility. (For interpretation of the references to colour in



Fig. 3. Sensitivity and Precision of real-data benchmark. Sensitivity (a) and precision (b) of each algorithm (in the horizontal axis) when holding one algorithm’s predictions
on the verification set as the reference truths (in the facet strip labels) and comparing them with the algorithms’ predictions on the evaluation sets.

Fig. 4. Consistency and replicability of models. (a) Average between-method (non-diagonal cells) and within-method (main diagonal cells) concordance for the 100 top-
ranked calls DEMs in replicated ALZ and IPF datasets. (b) Boxplot of the within-method concordance (WMC) on ALZ and IPF data. The plot illustrates that the concordances are
different by comparing each other with the GLMM model in terms of WMC. P-value denotes the result from a pairwise t-test. CAT: concordance at the 100 top differentially
expressed circRNAs.
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servative in type I error control (Fig. 2), we demonstrate the ability
of the GLMM to reduce the rate of false positives supported by
higher precision, detecting fewer false negative DECs in compar-
ison to the classical DEMs commonly used. These results indicate
that by using the GLMM, we can gain sensitivity and, at the same
time, derive much more information from the data, even when
the sample size and the sequencing depth are limited.
Fig. 5. Ranking of the methods based on three evaluation criteria. The type I error
ranking was based on the analysis of the 30 mock comparisons from ALZ datasets;
the within method concordance (WMC) was based on the average WMC values
across the 30 random subset comparisons for each of the two datasets used (ALZ
and IPF); the power analysis ranking was based on the tumor vs. normal ALZ and IPF
dataset evaluations. The ranks range from 1 (best) to 4 (worst) with lower rank
values corresponding to better performances.
2.2.2.3. Concordance and replicability. To measure the ability of each
method to produce concordant results between methods and repli-
cable results in independent data, we used the ALZ and IPF data-
sets. Samples were split into two subsets, and each DEM was
separately applied to each subset. The process was repeated 30
times.

The concordance-at-the-top (CAT) metric was used for assess-
ing the within-method concordance (WMC) and between-
method concordance (BMC). We used the BMC to (i) group meth-
ods based on their degree of agreement and (ii) identify those
methods sharing the largest amount of discoveries with the major-
ity of the other methods. Consistency is required for method valid-
ity: methods sharing most DECs with the majority of other
methods are more likely to produce valid results.

Concordance analysis performed on the ALZ dataset showed
that the methods clustered within two groups: the first comprising
the GLMM and the second containing the classical GLM models
(Fig. 4a). A different picture emerged from the analysis of the IPF
dataset, where GLMM clustered with DESeq2, whereas voom and
edgeR had similar results as previously observed in the ALZ data-
set. In general, we note that GLMM has the potential to reach a
higher BMC in both datasets compared to other DEMs, in particular
when compared to the DESeq2 model.

Real-data benchmarks could be useful to validate differential
expression findings. To account for this, we used the CAT metric
to assess the WMC, i.e., the amount of concordance of the results
of each method on the two random evaluation and verification
sets.

The highest WMC was obtained with the GLMM method
(Fig. 4b), indicating its significantly higher consistency of predic-
tions in both datasets.

In summary, the benchmarking tests showed that GLMM effec-
tively controlled type-I errors, maintaining a median false positive
rate just below the chosen critical value in a mock comparison of
groups of samples randomly chosen from a larger pool. For both
simulation and analysis of real data, GLMM often achieved the
highest sensitivity of those algorithms that controlled the FDR.
3. Conclusions

We investigated different theoretical and practical issues
related to the analysis of circRNA data. The main objective of our
study was to improve differential circRNA expression assessment
by exploiting data from multiple circRNA quantification tools and
explore a solution to the problem of the multiple circRNA expres-
sion estimates arising from the consensus detection strategies that
are being increasingly used in circRNA studies.

In three independent RNA-seq data of circRNA studies, we
observed that the within-detection-tool correlation was larger
than between-detection tools (Fig. 1), encouraging the use of
mixed models as a way to account for pseudo-repeated observa-
tions. Overall, mixed effect models lead to the most accurate
results when analyzing data with a correlation structure [18].

The lack of real circRNA datasets with a ground truth makes the
assessment of DECs challenging. However, we implemented an
assessment strategy to obtain a reasonably good evaluation of
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methods’ performances in terms of false discoveries, replicability,
and sensitivity.

We have shown that the GLMM approach increases the DEC
detection and robustness by leveraging outputs from different cir-
cRNA quantification tools. In this study, we used four top-
performing circRNA detection and quantification methods [6,4].
However, our model is not limited to the tools we applied in our
analysis; instead, it can accept any combination of tools for esti-
mating circRNA expression according to the user’s needs and
choices, as long as expression data is provided with unprocessed
read counts. Notwithstanding this, as a general rule in circRNA
expression quantification, we recommend selecting combinations
of tools that provide reliable predictions [4].

We compared the GLMM approach to widely used DEMs in two
datasets with different features and showed its consistent higher
performance, as summarized in Fig. 5, in which the methods were
ranked according to the different performance metrics. Our power
simulations (Table 1) and type I error (Fig. 2) suggest that impor-
tant true effects could be retrieved from the combined circRNA
expression matrix. The decreased power observed is due to an
overestimation of the mean-square error relative to mixed-
effects models, particularly when the intra-methods variance is
larger than the inter-methods variance, as appears to be typical
with circRNA data (Fig. 1).

Although our focus here is on testing for differential circRNA
expression between two conditions, GLMMs are flexible enough
for considering other complex designs and allow diverse correla-
tion structures with random effects. However, similarly to any
other differential expression method applied to bulk RNA-seq data,
our GLMM approach does not prevent the potential problems asso-
ciated with performing differential gene expression analysis using
complex tissues consisting of many different cell types [8], and the
GLMM predictions should be cautiously interpreted.

In conclusion, the GLMM approach is advantageous in the iden-
tification of differentially expressed circRNAs even if the number of
samples is limited, as demonstrated in real data and simulation
benchmarks.
4. Materials and methods

4.1. Real data sets and circRNA expression quantification

All datasets are publicly available. A complete list of the data-
sets’ main characteristics is reported in Supplementary Table 1.
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Backsplice junction read counts were estimated using four among
the most used and top-performing methods [6,4]: CIRI2 v2.0.6 [5],
DCC v0.4.8 [2], findcirc v1.2 [12], and CircExplorer2 v2.3.8 [17].
These tools implement different strategies for backsplice detection
and circRNA expression quantification, overall involving three read
aligner algorithms, such as BWA, Bowtie2, and STAR (see Supple-
mentary Methods for parameters’ details).

4.2. Implementation of the generalized linear mixed model approach

Starting from circRNA count matrices obtained from different
detection tools, we constructed a combined count matrix com-
posed of the count estimates of each detection tool for each sam-
ple. Specifically, having count matrices with circRNAs in rows
and samples in columns, the combined matrix will result in as
many rows as the set of the circRNAs detected by at least two
methods and the number of columns as large as the number of
samples multiplied by the number of the quantification methods
(Supplementary Fig. 1). The circRNAs identified by only one
method are in general less reliable [6,4] and were therefore
excluded.

Let ycij (c = 1,. . .,C; i = 1,. . .,n; j = 1,. . .,m), the raw count measure-
ments of circRNA c for the ith sample, obtained by the jth detection
method, and xi a known p-dimensional vector with the covariate
information corresponding to the ith row of the n� p model matrix
Xi, known as the design matrix, which contains the values of mul-
tiple sample characteristics. In particular, in Xi both time-varying
(e.g. measurement time, environmental conditions) and time-
independent covariates (e.g. treatment group, baseline age, gender,
etc.) are allowed. We used a q dimensional vector of random
effects bi to model the serial correlation with the corresponding
design matrix Zi. For a specific circRNA c, the generalized mixed-
effects model assumes Ycijjbci�NB(lcij,/c), where /c represents
the circRNA-wise dispersion parameter that measures overdisper-
sion. Based on this parameterization, E(Yijcjbci) = lijc is modeled as
a function of the explanatory variables xij, random effects bci, and
an offset term aij. In particular, we considered, for a single circRNA
c, the following:

g lijc

� �
¼ aij þ xT ijbc þ Zibic; ð1Þ

where aij is an offset term with the logarithm of the effective library
size derived from edgeR. In this work, we used the trimmed mean
method (TMM) of Robinson et al. [15] to calculate the scaling fac-
tors to correct for sequencing depth and potentially composition
bias. The group effects b are assumed to follow a normal distribu-
tion N(b01p, r2

bIp), where 1p is the p � 1 dimensional vector whose
elements are all 1, Ip is the p � p dimensional identity matrix, b0 and
r2

b are mean and variance of the normal distribution and p is the
number of covariates. The quantification method variable Zi intro-
duces hierarchical dependence of circRNA counts and is included
in the model as a random effect design matrix. We assume that
the quantification method random effects follow a multivariate nor-
mal distribution bci�Nq(0,Wc), where Wc is a positive-definite vari-
ance–covariance matrix that determines the form and complexity
of the random effects. GLMMs under NB distributions are consid-
ered to model yij.

For inference on fixed-effects b, the null hypothesis H0:b = 0 is
tested against the alternative H1:b – 0 with a likelihood-ratio test
(LRT). The random effects b can be tested by z-statistic for differ-
ence from 0.

4.3. Intra- and inter-correlation analysis

For each dataset, we made pairwise comparisons to compute
intra- and inter-method correlations of circRNAs expression esti-
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mates. To control for the correlation structure between circRNAs,
we subsequently trimmed from the dataset the circRNAs with
Spearman’s correlation coefficient > 0.25. This step was repeated
until either no more uncorrelated circRNAs remained or a total of
500 uncorrelated circRNAs were obtained. The intra-methods
Spearman’s correlation was computed for all possible pairs of sam-
ples measured with the same quantification method. The inter-
method Spearman’s correlation was computed for all possible pairs
of samples, randomly drawing ten times two samples measured
with different detection tools.

4.4. Differential expression tools and analysis approach

We applied three widely used tools for assessing differential
expression in RNA-seq studies, namely DESeq2 (v1.34.0), edgeR
(v3.36.0), and limma-voom (v3.38.3) [9]. DESeq2 and edgeR fit
negative binomial distributions for count data with generalized
linear models, whereas limma-voom uses normalized counts in
logarithmic scale to estimate a mean–variance relationship and
compute appropriate observational-level weights with a linear
model. The linear model’s residual degrees of freedom were
adjusted before the empirical Bayes variance shrinkage and were
propagated to the moderated statistical tests. DESeq2 and limma-
voom were used with default parameters. EdgeR considered
TMM normalization, tagwise robust dispersion estimation, and
quasi-likelihood F test.

We analyzed the circRNA expression estimated by four detec-
tion tools, i.e., CIRI2, CIRCexplorer, DCC, and findcirc, using three
differential expression models (DEMs): DESeq2, edgeR, and
limma-voom. Each DEM was independently applied to the expres-
sion matrices estimated by the circRNA detection tools, obtaining
four lists of P-values per DEM. For each DEM, we merged the P-
value lists by selecting the lowest non-null P-value obtained for
each circRNA c detected by at least two DEMs:

P � valueDEM cð Þ ¼ min P � valueDEM;CIRI2 cð Þ; P � valueDEM;CIRCexp cð Þ;�

P � valueDEM;DCC cð Þ; P � valueDEM;findcirc cð Þ�

Afterward, multiple test corrections were applied to the merged
list using the Benjamini–Hochberg procedure [1].

4.5. GLMM

The glmmTBM package (v1.1.1) fits a generalized linear mixed
model using Template Model Builder (TMB), using automatic dif-
ferentiation to estimate model gradients and the Laplace approxi-
mation for handling random effects. A glmmTMB model has four
main components: a conditional model formula, a distribution
for the conditional model, and a dispersion model formula. Simple
GLMMs can be fitted using the conditional model while dispersion
formulas at their default values. The mean of the conditional model
is specified using a two-sided formula with the response variable
on the left and predictors on the right, potentially including ran-
dom effects and offsets. In our analysis, we used count � group +
(1 | detection_tool) to evaluate if circRNA counts vary by condition
(group) and vary randomly by detection tool used for their quan-
tification. We examined the NB, using family=”nbinom200. A likeli-
hood ratio test was then used to assess the significance of
circRNA differential expression between sample groups, and P-
values were corrected for multiple testing by using the Ben-
jamini–Hochberg (BH) procedure [1].

4.6. Power analysis

We used sensitivity and ‘‘1 - specificity” to evaluate the power
of DE methods. We simulated datasets of 5,000 circRNAs with neg-
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ative binomial distributed counts. To simulate data with realistic
moments, the mean and dispersions were drawn from the joint
distribution of means and gene-wise dispersion estimates, fitting
only an intercept term, from the real dataset obtained using four
detection tools (Supplementary Materials). Datasets with a total
sample size of 10 were simulated, and the samples were split into
two equal-sized groups; 90% of the simulated circRNAs had no true
differential expression, while for 10% of the circRNAs, a true fold
change of 1.5 was used to generate counts across the two groups,
with the direction of fold change chosen randomly. The simulated
differentially expressed circRNAs were chosen uniformly at ran-
dom among all the circRNAs, throughout the range of mean counts.

4.7. Real data benchmark

A random split of the original datasets into an evaluation and a
verification subset was replicated 30 times (Supplementary Fig. 2).
In particular, the ALZ dataset, which contains 9 human disease
samples compared to 8 samples of their normal counterparts,
allowed Evaluation sets of 3 vs. 3 and Verification sets of 6 vs. 5
samples.

For a given algorithm’s verification set calls, we tested the eval-
uation set call of each other algorithm included in the comparison
and of the same algorithm (each algorithm with itself). CircRNA as
‘true’ differentially expressed was defined by an adjusted P-
value < 0.1 in the larger verification set.

Note that the calls from the verification set are only an approx-
imation of the true differential state, and the approximation error
has one systematic and one stochastic component. The stochastic
error becomes small once the sample size of the verification set
is large enough. For the systematic errors, our benchmark assumes
that these affect all algorithms equally and do not markedly
change the ranking of the algorithms.

4.7.1. Type I error control
For this analysis, we used the collection of ALZ samples. We ran-

domly split the samples into two groups of 6 and 8 samples,
respectively. We repeated the random split 30 times and applied
the DEMs to each split dataset. Every method returned a p-value
for each feature. Those values were used to compare the number
of false discoveries with the common thresholds of 0.05 and 0.1.

4.7.2. Sensitivity and precision
The sensitivity was calculated as the fraction of circRNAs with

true differences between group means, with true differential
expression defined by an adjusted P-value � 0.1 in the verification
set. The precision was calculated as the fraction of circRNAs true
positives in the set of those passing the adjusted P-value threshold.
This can also be reported as 1 � FDR.

4.7.3. Replicability and consistency
We used the Concordance At the Top (CAT) measure to evaluate

the concordance of different differential expression methods. Start-
ing from two lists of ranked features by p values, the CAT statistic
was computed in the following way. For a given integer i, concor-
dance is defined as the cardinality of the intersection of the top i
elements of each list, divided by i, i.e., #{L1:i \ M1:i}i, where L
and M represent the two lists. This concordance was computed
for values of i from 1 to R.

Depending on the study, only a minority of features may be
expected to be differentially expressed between two experimental
conditions. Hence, the expected number of differentially expressed
features is a good choice as the maximum rank R. In fact, CAT dis-
plays high variability for low ranks as few features are involved,
while concordance tends to 1 as R approaches the total number
2501
of features, becoming uninformative. We set R = 100, considering
this number biologically relevant and high enough to permit an
accurate concordance evaluation.

We used CAT for Within-Method Concordance (WMC) and
Between-Method Concordance (BMC). In the first one, a method
is compared to itself in random splits of the datasets to assess
the replicability, whereas in the BMC, a method is compared to
other methods in the same dataset to evaluate consistency.

To evaluate the WMC, for each algorithm, the list of features
ordered by p-values obtained from the evaluation set was com-
pared to those obtained in the verification set; whereas to evaluate
the BMC, the list of features ordered by p-value obtained from the
evaluation set was compared to the analogous list obtained from
evaluation set by all the other DEMs. WMC and BMC were aver-
aged across the 30 replicates to obtain the final values.

4.8. Source code availability

The source code used in this work is available at https://github.
com/AFBuratin/DECMiMo.
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