
S U P P L E M E N T  A R T I C L E

Role of Iron and Siderophores in Infection • cid 2019:69 (Suppl 7) • S529

Clinical Infectious Diseases

 

Correspondence: M. G. P. Page, Life Sciences and Chemistry, Life Sciences and Chemistry, 
Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany (malcolm.page@
antibiotic-research.ch).

Clinical Infectious Diseases®  2019;69(S7):S529–37
© The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases 
Society of America. This is an Open Access article distributed under the terms of the Creative 
Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any 
medium, provided the original work is not altered or transformed in any way, and that the work 
is properly cited. For commercial re-use, please contact journals.permissions@oup.com
DOI: 10.1093/cid/ciz825

The Role of Iron and Siderophores in Infection, and the 
Development of Siderophore Antibiotics
Malcom G. P. Page

Life Sciences and Chemistry, Jacobs University, Bremen gGmbh, Bremen, Germany

Iron is an essential nutrient for bacterial growth, replication, and metabolism. Humans store iron bound to various proteins such as 
hemoglobin, haptoglobin, transferrin, ferritin, and lactoferrin, limiting the availability of free iron for pathogenic bacteria. However, 
bacteria have developed various mechanisms to sequester or scavenge iron from the host environment. Iron can be taken up by 
means of active transport systems that consist of bacterial small molecule siderophores, outer membrane siderophore receptors, the 
TonB-ExbBD energy-transducing proteins coupling the outer and the inner membranes, and inner membrane transporters. Some 
bacteria also express outer membrane receptors for iron-binding proteins of the host and extract iron directly from these for up-
take. Ultimately, iron is acquired and transported into the bacterial cytoplasm. The siderophores are small molecules produced and 
released by nearly all bacterial species and are classified according to the chemical nature of their iron-chelating group (ie, catechol, 
hydroxamate, α-hydroxyl-carboxylate, or mixed types). Siderophore-conjugated antibiotics that exploit such iron-transport systems 
are under development for the treatment of infections caused by gram-negative bacteria. Despite demonstrating high in vitro po-
tency against pathogenic multidrug-resistant bacteria, further development of several candidates had stopped due to apparent adap-
tive resistance during exposure, lack of consistent in vivo efficacy, or emergence of side effects in the host. However, cefiderocol, with 
an optimized structure, has advanced and has been investigated in phase 1 to 3 clinical trials. This article discusses the mechanisms 
implicated in iron uptake and the challenges associated with the design and utilization of siderophore-mimicking antibiotics.
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IRON HOMEOSTASIS IN HUMANS

Iron plays pivotal roles in metabolic pathways, oxygen transport, 
and immune function in humans, and maintaining balanced 
iron availability (homeostasis) is important for a healthy body. 
Iron deficiency leads to poor prognoses in long-term diseases 
and increased susceptibility to infection [1], as does iron over-
load [2, 3]. Iron homeostasis occurs through regulation of du-
odenal absorption and recycling of iron stores. Under normal 
physiological conditions, nearly three-quarters of body iron is 
found as hemoglobin, with the remainder stored intracellularly 
as ferritin or bound to extracellular proteins [4]. The normal 
serum level of iron is 10–30 µM, giving between 12% and 50% 
saturation of the iron-binding capacity (60–75  µM); higher 
levels are symptomatic of iron overload [5, 6].

Iron is also an essential nutrient for bacterial growth, rep-
lication, and metabolism, and the human body has numerous 

defense mechanisms that reduce the availability of iron to 
invading pathogens [7]. Tissue damage resulting from infection 
can alter local iron homeostasis by enhancing iron-scavenging 
and macrophage sequestration of iron, heme, and hemoglobin 
[8, 9]. The serum protein transferrin (also called serotransferrin) 
creates a bacteriostatic environment by sequestering free iron 
[10]. The affinity of transferrin for ferric iron is high at physi-
ological pH but decreases at lower pH [11]. This facilitates the 
release and internalization of complexed iron following interac-
tion with specific receptors on erythroid cells, lymphocytes, and 
macrophages [12–14]. The analogous lactoferrin is widely ex-
pressed in secretory fluids (milk, saliva, and tears), in secondary 
granules of polymorphonuclear cells, and in some pancreatic 
duct cells. Its affinity for iron is 300-times higher than that of 
transferrin and increases further in acidic conditions. This pro-
motes transfer of iron from transferrin to lactoferrin during in-
flammation, when the local pH is decreased by accumulation of 
organic acids [15]. Lactoferrin possesses intrinsic antimicrobial 
activity owing to both its binding to lipopolysaccharide and its 
catalyzing formation of peroxides with concomitant reduction 
of ferric iron, which together increase membrane permeability 
and trigger lysis [16–18]. Iron may also be transported around 
the body by mammalian siderophores, such as catechols or cit-
rate, bound to siderocalin [19]. Siderocalin is found in neutro-
phil granules, uterine secretions, and, at particularly high levels, 
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in serum during bacterial infection, where it contributes to the 
host defense [19–22]. Iron uptake in the small intestine is regu-
lated by hepcidin, an oligopeptide hormone synthesized in the 
liver [23, 24]. Hepcidin production is greatly increased during 
infection and inflammation, and it has been reported to have 
direct antimicrobial activity [25, 26]. Iron bound to hepcidin 
is transported into cells by ferroportin, enabling macrophages, 
hepatocytes, and enterocytes to retain iron that would other-
wise be released into the bloodstream.

BACTERIAL IRON ACQUISITION

Bacteria use a number of strategies to acquire the iron essential 
for growth [27]. The most important mechanisms (Figure 1) 
mobilize ferric iron (Fe3+), the dominant iron form in oxygen-
rich environments, but bacteria also take up aqueous ferrous 
iron (Fe2+) [28] or readily utilize ferrous iron bound in heme 
[29–31]. Most bacteria secrete powerful ferric iron–chelating 
molecules called siderophores to scavenge iron from their en-
vironment [32]. Siderophores have very high ferric-ion as-
sociation constants (1020 to 1030 M− 1), and they effectively 
remove iron from the host’s iron–protein complexes [33]. 
The iron–siderophore complexes are recognized by uptake 

systems in bacteria [34]. In gram-negative bacteria, the first 
step is binding to specific outer membrane receptors (Figure 1), 
which facilitate their passage across the outer membrane. The 
translocation is driven by proteins of the TonB family and the 
energy-transducing complex ExbB/ExbD in the cytoplasmic 
membrane [35–39]. The iron–siderophore complexes are re-
leased into the periplasm, where they may be bound by further 
components of the transport systems for onward translocation 
to the cytoplasm or be catabolized to release the iron for uptake 
by alternative transport mechanisms.

The siderophore strategy is disrupted by the human protein 
siderocalin, which can also sequester bacterial siderophores 
and prevent their uptake by bacteria [40–43]. However, bacteria 
often display redundancy in their deployment of siderophores 
and can utilize alternatives, such as the fungal ferrichrome, 
in order to escape siderocalins [44, 45]. Some gram-negative 
bacteria, especially Neisseria spp., can acquire ferric iron di-
rectly from lactoferrin and serum transferrin [46], and many 
bacteria can exploit the ferrous iron bound in heme as a nu-
tritional source. The heme or heme proteins are bound by cell 
surface receptors and transported into the cytoplasm, where 
the tetrapyrrole ring is cleaved in order to release the iron [47]. 
Gram-negative bacteria also secrete extracellular heme-binding 

Figure 1. Iron transporters in gram-negative bacteria and metal availability in the host during infection. In a healthy individual, ferric iron (Fe3+; red circles) circulates bound 
by transferrin in the blood, and ferrous iron (Fe2+; green circles) is complexed in heme, which is bound by hemoglobin within red blood cells but can be released by hemolysis 
during infection. Free Fe2+ is uncommon; however, when available, it enters through the general porin pathway. Free heme is scavenged by hemopexin. Secreted bacterial 
siderophores remove iron from transferrins and ferritin, and the siderophore–iron complexes are bound by cognate receptors at the bacterial surface. Similarly, secreted 
hemophores such as HasA and HxuC can remove heme from hemoglobin and hemopexin. Enterobacteria also possess outer membrane receptors for heme. In Neisseria, iron 
transferrins are bound by outer membrane receptors comprising 2 subunits (eg, LbpA and LbpB for lactoferrin) and forced to release 1 of the bound iron ions. Catecholate-
mediated iron acquisition (eg, by enterobactin) can be inhibited by the innate immune protein lipocalin-2 (siderocalin or neutrophil gelatinase-associated lipocalin), which 
binds and sequesters catechols.
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proteins (hemophores), such as hemopexin, which sequester 
heme and deliver it to active uptake systems [48–50].

Bacteria use a wide variety of ligands in their siderophores 
[32], the principal ligands being α-hydroxy acids (eg, citrate, 
vibrioferrin, staphyloferrin A), catechols (eg, enterobactin, 
bacillibactin), and hydroxamates (eg, ferrichrome, 
deferoxamine, ornibactin). Some species produce siderophores 
that combine different ligands (eg, azotobactin, pyoverdine) 
[41]. The ligands are typically bidentate and, together with 
other ligands, form pseudo-octahedral, hexadentate coordi-
nation complexes with ferric iron [51]. Siderophores such as 
enterobactin or ferrichrome are optimized for binding, as each 
molecule carries 3 bidentate ligands.

ILLICIT TRANSPORT BY IRON UPTAKE SYSTEMS

The iron–siderophore uptake systems provide access to the 
periplasm across the otherwise poorly permeable outer mem-
brane. It is therefore not surprising that bacteria have evolved 
ways to exploit these systems to deliver toxic compounds that 
hinder the growth of competing species. The natural anti-
biotics, known as sideromycins, mimic hydroxamate sidero-
phores [52]. This small group of antibiotics includes albomycin, 
produced by Actinomyces subtropicus; ferrimycin A1, produced 
by Streptomyces griseoflavus; and salmycins A–D, produced 
by Streptomyces violaceus [53–55]. No new members of this 
structurally diverse group have been identified, although a 
genome-mining approach has paved the way for structural var-
iation around albomycin [56]. Many Enterobacteriaceae secrete 
microcins that are conjugated post-translationally with endoge-
nous catecholate siderophores [57–59]. Genome mining, using 
the readily identified genes responsible for conjugating the sid-
erophore and peptide [60], has yielded many new variants [61].

SYNTHETIC SIDEROPHORE–DRUG CONJUGATES

Research efforts exploiting a “Trojan horse” strategy started in 
the 1980s, with the aim of developing agents that would facil-
itate the uptake of antibiotics into gram-negative bacteria in a 
way similar to albomycin [32, 62, 63]. For the most part, the 
activity of these model compounds was not greater than that of 
the parent antibiotic [32], and additional challenges emerged 
including solubility issues, inadequate passage across the cyto-
plasmic membrane, and a lack of release of the active antibiotic 
[64]. The β-lactam antibiotics, whose targets (the penicillin-
binding proteins [PBPs] essential for cell wall biosynthesis) are 
located in the periplasmic space, have been the antibiotic class 
where this strategy has been most successfully used, with 4 com-
pounds, cefetecol, BAL30072, GSK3342830, and cefiderocol, 
reaching clinical trials [32, 65].

BAL30072 (Figure 2) is a monocyclic β-lactam, an an-
alog of the monosulfactam tigemonam, conjugated 
with the catechol isostere, hydroxypyridone [66]. Other 

hydroxypyridone-conjugated monocyclic β-lactams that 
have recently received experimental investigation include a 
monobactam MB-1 [67] and 2 monocarbams MC-1 and SMC-
3176 [68, 69]. These 4 compounds (Figure 2) exhibited potent 
activity against β-lactamase–producing Enterobacteriaceae, 
Pseudomonas aeruginosa, and Stenotrophomonas maltophilia, 
but the activities of MB-1, MC-1, and SMC-3176 against 
Acinetobacter spp. were limited. Monocyclic β-lactams are 
not readily hydrolyzed by the class B metallo-β-lactamases 
and class  C serine-β-lactamases [68, 69]. MB-1, MC-1, and 
SMC-3176 carry bulky substituents that improve stability to-
ward class A, C, and D extended-spectrum β-lactamases and 
carbapenemases, but the bulk of these substituents prevents 
binding to the active site of the target PBP3 in Acinetobacter 
spp. [70, 71]. Of these 4 molecules, only BAL30072 en-
tered into clinical trials, but its development by Basilea 
Pharmaceutica was suspended in phase 1.

Catechol-conjugated cephalosporins have been investigated 
experimentally by many research groups [32, 72]. Of the early 
conjugates, cefetecol (Figure 3, compound 1)  entered into 
human clinical trials, but its development was terminated in 
phase 1. The potent in vitro activity of these early compounds 
did not translate into good in vivo efficacy, largely because 
mammalian catechol O-methyltransferase (COMT) methy-
lates 1 phenol group of the catechol [72], leading to loss of ac-
tivity as the metabolized compound is no longer a substrate for 
the uptake systems. Decreasing the pKa of the catechol moiety 
by the introduction of an electron-withdrawing halogen atom 
(eg, Figure 3, compound 2)  led to compounds that retained 
excellent potency, were more stable toward COMT, and had 
extended pharmacokinetic half-lives [73]. However, none of 
these compounds reached the market owing to a lack of sta-
bility against β-lactamase–mediated hydrolysis, unwanted 
side effects, and, in some cases, simple economics. More re-
cently, Shionogi and GlaxoSmithKline (GSK) ran a joint dis-
covery program around such conjugated cephalosporins. 
GSK registered a phase 1 trial to evaluate safety, tolerability, 
and pharmacokinetics of an ascending intravenous single-
dose and repeat dose of GSK3342830 (NCT02751424) [74]; 
however, the trial was suspended, and no details of activity 
or structure of the compound are available. Shionogi pursued 
S-649266 (previously also known as GSK2696266), now called 
cefiderocol (Figure 3, compound 6), which has progressed sat-
isfactorily through clinical trials (see below).

Hydroxypyridone, the catechol isostere, has also been 
investigated with cephalosporins [32], and GT-1 (LCB10-
0200) is a new hydroxypyridone-conjugated cephalosporin 
in development by Geom Therapeutics and LegoChem 
Biosciences, alone and in combination with a β-lactamase 
inhibitor (GT055, LCB18-055). GT-1 (Figure 3, compound 
3)  is active against many gram-negative pathogens, in-
cluding P. aeruginosa and Acinetobacter baumannii. Addition 
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of the new β-lactamase inhibitor improves activity against 
Enterobacteriaceae [75].

RESISTANCE TO SIDEROPHORE-CONJUGATED 
Β-LACTAMS

Resistance to any of the conjugates with a catechol ligand, or 
catechol isosteres, can be acquired in Escherichia coli (and 
other Enterobacteriaceae) through loss of the TonB energy-
transducing protein or the catecholate receptors Cir and Fiu, 
which preferentially transport monomeric catecholate sid-
erophores [76–78]. Similarly, loss of the putative catecholate 
receptors PiuA, PiuD, and PirA or TonB in P. aeruginosa and 

A. baumannii results in elevated minimum inhibitory concen-
trations (MICs) for the conjugated monocyclic β-lactams and 
cefiderocol [77, 79–83].

In addition, MB-1 and SMC-3176 may be vulnerable to adap-
tive resistance (ie, reversible resistance observed only in the pres-
ence of the antibiotic) in P. aeruginosa [81, 84], a phenomenon 
that has previously been observed for this organism exposed 
to aminoglycosides and polymyxins [85–89]. The mechanisms 
underlying adaptive resistance are unclear and the net effect 
probably depends on specific combinations of environmental 
conditions, strains, and antibiotics. Adaptive resistance has 
been attributed to decreased outer membrane permeability and 

Figure 2. Structures of the monocyclic β-lactam-siderophore conjugates that have been evaluated for clinical development—BAL30072 (terminated in phase 1), MB-1 
(preclinical investigation only), MC-1 (preclinical investigation only), and SMC-3176 (preclinical investigation only).
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action of efflux pumps [85, 90, 91]. Indeed, MB-1 was potenti-
ated by combination with an efflux pump inhibitor [92]. It was 
also suggested that, for MB-1, competition between the natural 
siderophores and the synthetic conjugate may contribute to the 
effect [92]. However, activity of BAL30072 against Burkholderia 
pseudomallei is independent of the ability of the bacteria to 
take up malleobactin and pyochelin, the siderophores utilized 
by this organism [93], and activity against P.  aeruginosa was 
not affected by competition with endogenous siderophores at 
physiological expression levels [94]. Furthermore, extensive in 
vivo testing did not suggest a propensity for adaptive resistance 

during exposure to BAL30072 [95–100]. Similarly, cefiderocol 
has demonstrated good in vivo efficacy in rat models of res-
piratory infection [101] and the neutropenic mouse thigh in-
fection model [102–104]. In a recent study comparing the in 
vivo efficacies of cefiderocol, MB-1, and SMC-3167 against 
P.  aeruginosa strains that exhibited variable susceptibility to-
ward MB-1 and SMC-3167 in previous investigations [81, 84], 
the attenuated efficacies of MB-1 and SMC-3167 were con-
firmed, whereas cefiderocol showed sustained inhibitory ef-
fects consistent with expectation from the MICs determined in 
iron-depleted medium [103]. It remains to be proven that the 

Figure 3. Structures of the siderophore-conjugated cephalosporins that have been evaluated for clinical development. Compound 1: cefetecol (terminated in phase 1). 
Compound 2 (preclinical investigation only [73]): the halogen-substituted catechol moiety (highlighted in green), optimized for in vivo stability. Compound 3: GT-1 (currently 
in preclinical investigation). Compound 6: cefiderocol (phase 1 to phase 3 clinical development), which shares the halogen-substituted catechol moiety shown in compound 
2. For comparison, structures are also shown for ceftazidime (compound 4), with which cefiderocol shares the bulky 7-acylamino side chain (highlighted in red) that confers 
β-lactamase stability, and cefepime (compound 5), with which cefiderocol shares the 3’ side chain with a quaternary ammonium function (highlighted in blue) that confers 
β-lactamase stability and good penetration into gram-negative bacteria.
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discrepancy between observed activity of some of the sidero-
phore conjugates in vitro and their efficacy in animal models 
of infection in vivo is caused by a resistance phenomenon. It is 
possible that the inconsistency is simply attributable to differ-
ences in expression of the multiple iron uptake pathways be-
tween the in vitro test medium and the infection site in vivo.

Normal growth media recommended for susceptibility testing 
contain iron at concentrations that are many times higher than 
the normal free iron concentration in blood. These concentra-
tions are sufficient to repress the expression of siderophores and 
most iron-uptake pathways. These media are clearly inappro-
priate for determination of the activity of the siderophore com-
pounds and it has been customary to add a chelating agent, such 
as ovotransferrin (conalbumin) [105] or 2,2’ bipyridyl [66] or 
to remove iron using ion-exchange resins [81]. This results in 
increased siderophore production, induction of the iron-uptake 
systems, and, consequently, increased susceptibility toward the 
siderophore-conjugated antibiotics. However, P.  aeruginosa is 
well known to adapt its iron homeostasis to local conditions of 
infection [106, 107]. Without information about the actual ex-
pression levels under the various in vitro susceptibility testing 
conditions, it is unclear whether any of the proposed in vitro 
tests is appropriate for prediction of in vivo efficacy and, there-
fore, for properly identifying adaptive resistance for this species.

SIDEROPHORE CONJUGATES CURRENTLY IN 
DEVELOPMENT

Cefiderocol is an advanced-generation cephalosporin that 
combines the optimized chloro-catechol iron-binding moiety, 
similar to earlier siderophore cephalosporins (Figure 3, com-
pounds 1, 2), with features conferring β-lactamase stability, 
such as the quaternary ammonium function in the 3’ side 
chain, similar to cefepime (Figure 3, compound 5), and a bulky 
7-acylamino side chain, similar to ceftazidime (Figure 3, com-
pound 4). Cefiderocol therefore shows potent activity against 
a wide range of gram-negative bacteria that produce serine-β-
lactamases [108–115] because it is poorly hydrolyzed by these 
enzymes, including the Klebsiella pneumoniae carbapenemases 
[116]. It is not clear which structural features lead to the re-
markable stability of cefiderocol toward metallo-β-lactamases, 
where unexpectedly low catalytic efficiencies (kcat/KM) were 
reported for imipenemase metallo-β-lactamase-1 (IMP-1), 
Verona integron-encoded metallo-β-lactamase (VIM-2), L1, 
and New Delhi metallo-β-lactamase-1 (NDM-1) [116].

The molar ratio of cefiderocol to ferric iron in the equilib-
rium complex was found to be 1:1 [108], lower than the ex-
pected 3:1 reported for monocarbams [117]. It seems likely that, 
as observed with BAL30072 [118], other parts of the molecule 
provide secondary ligands to fulfill the coordination require-
ments of the ferric ion. The example of BAL30072 strongly sug-
gests that a lower stoichiometry might be the one recognized by 
the receptor, so that to focus only on the highest stoichiometry 

might be misleading for siderophores with fewer than 6 donors. 
The possibly unique iron-chelating modality of cefiderocol may 
allow it to escape the mechanisms that underlie the putative 
adaptive resistance observed with MB-1, MC-1, and SMC-3167. 
The clinical development of cefiderocol is continuing, with the 
recent completion of a phase 2 trial to study efficacy and safety of 
intravenous cefiderocol vs imipenem/cilastatin in complicated 
urinary tract infections (APEKS-cUTI) [119] and an ongoing 
phase 3 trial studying the efficacy of cefiderocol in the treatment 
of adult patients with serious infections caused by carbapenem-
resistant gram-negative pathogens (CREDIBLE-CR) [120].

CONCLUSIONS

Cefiderocol is the first siderophore-conjugated antibiotic to prog-
ress beyond phase 1 human safety trials. Its unique combination 
of structural features has helped to avoid problems earlier con-
jugated cephalosporins encountered. Developing a standardized 
in vitro testing method should be feasible based on the apparent 
robust correlation between in vitro and in vivo models. The fur-
ther development and use of cefiderocol in clinical practice for 
the treatment of infection will be watched with interest.
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