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Glia, including astrocytes, are increasingly at the forefront of neurodegenerative research for their role in the modulation of neuronal
function and survival. Improved understanding of underlying disease mechanisms, including the role of the cellular environment in
neurodegeneration, is central to therapeutic development for these currently untreatable diseases. In these endeavours, experimental
models that more closely reproduce the human condition have the potential to facilitate the transition between experimental studies
in model organisms and patient trials. In this review we discuss the growing role of astrocytes in neurodegenerative diseases, and how
astrocytes generated from human pluripotent stem cells represent a useful tool for analyzing astrocytic signalling and influence on
neuronal function.

Introduction

Neurodegenerative diseases such as Alzheimer’s disease
(AD), Parkinson’s disease, amyotrophic lateral sclerosis
(ALS) and Huntington’s disease are untreatable conditions
that collectively represent a major healthcare burden.
Improved understanding of the biology of these diseases
is required in order to develop neuroprotective and ulti-
mately reparative treatments. While these disorders differ
in their symptomatology and presentation, they share
some common features: gradual clinical progression over
years, implicating ongoing degenerative processes, and
disturbance of the cellular environment play a key role in
neuronal deterioration [1]. Moreover, these disorders share
some injury mechanisms. From human pathological tissue
and rodent models of neurodegeneration, it is apparent

that oxidative stress, glutamate excitotoxicity and protein
misfolding are involved in the progression of several disor-
ders, both in the propagation of injury as well as poten-
tially induction. In the context of oxidative stress, hallmarks
of oxidative neuronal injury have been found in a range of
disorders, including AD [2–4], ALS [5] and Parkinson’s
disease [6, 7]. Despite these established links between neu-
rodegenerative disease to oxidative and nitrosative stress,
trials of small molecule antioxidants or spin traps have had
limited success [8]. There are many potential explanations
for this, including the challenge of maintaining high con-
centrations of the drug in the brain in order to neutralize
reactive oxygen species when they appear. Another con-
sideration is that the antioxidant and detoxification
systems of the brain are sophisticated and complex, and
cannot be mimicked simply by a single small molecule. As
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such, researchers are turning towards the mechanisms by
which the brain’s intrinsic antioxidant defences are con-
trolled, or how neurons regulate downstream effects of
oxidative insults, and how these may be manipulated for
therapeutic effect [9–11].

The control of a neuron’s antioxidant defences and
indeed multiple aspects of its function are highly depend-
ent on its cellular microenvironment, and in particular
interactions between microglia and macroglia, including
astrocytes [12]. Furthermore, neuronal dysfunction in
several neurodegenerative disorders may be attributable
in part to damage or dysfunction in astrocytes and other
glial cells [13]. Human stem cell based technology now
allows direct study in vitro of glial-neuronal interaction to
study mechanisms of neurotoxicity and neuroprotection
[14].

The growing role of astrocytes in
neurodegenerative diseases

While traditional thinking has been neuron-centric in
addressing the causes of neurodegenerative diseases,
there is growing evidence for the role of glia, specifically
astrocytes. It is becoming increasingly evident that the
astrocytic environment can be central to disease outcome
and, dependent on context, can be injurious or protective
[15–19].

For example, in AD, reactive astrocytes are intimately
associated with amyloid beta plaques in patient pathologi-
cal tissue. Experimental studies have demonstrated that
astrocytes undergo chemotaxis, responding to MCP-1
found in AD lesions, and internalize amyloid beta [20–22].
Astrocyte internalization of amyloid beta is potentially an
ApoE-dependent process, which further implicates astro-
cytes in the pathogenesis of heritable forms of AD charac-
terized by ApoE mutations [23]. The involvement of
astrocytes in disease lesions has been replicated in vivo.
Monitoring the migration of transplanted e-GFP positive
astrocytes in human amyloid beta-bearing transgenic
mice demonstrated that transplanted astrocytes migrated
to and internalized amyloid beta [24]. Whilst contributing
to clearance, amyloid beta internalization appears to
detrimentally alter astrocyte behaviour causing accumula-
tion of intracellular calcium, depletion of glutathione and
mitochondrial dysfunction [25, 26]. Astrocytes appear to
tolerate amyloid beta-induced metabolic changes reason-
ably well. However, co-cultured neurons die as a result.
Mechanisms implicated in neurotoxicity include NADPH
oxidase and PI3Kinase dysregulation [26, 27].

Alpha synuclein accumulation within astrocytes has
been observed in the brains of Parkinson’s disease patients
and in vitro [28], where direct transfer of alpha-synuclein
from neurons to astrocytes has been observed [29].Expres-
sion of mutant alpha-synuclein selectively in astrocytes
has been shown to result in neuronal death due to astro-

cytic dysfunction, evidenced by reactive gliosis, disruption
of the blood–brain barrier, down-regulation of astrocyte
glutamate transporters [30] and production of inflamma-
tory cytokines [29].

Studies of the SOD1 transgenic model of ALS have
provided strong evidence that astrocytes have a role in
associated neuronal injury. Expression of mutant SOD1
specifically in mouse neurons on a wild-type background
was insufficient to cause motor deficits in mice [31] and
reduction of expression of mutant SOD1 specifically in
astrocytes on a mutant background reduced disease pro-
gression [32]. In human mutant SOD1/wild-type SOD1
chimera mice, neurons bearing the mutation underwent
differential survival according to neighbouring non-
neuronal cells. If neighbouring astrocytes were wild-type,
the neurons survived, and if the neighbouring astrocytes
bore mutant SOD1, significant neuronal loss was noted.
Moreover wild-type neurons with neighbouring mutant
astrocytes also bore hallmarks of degeneration [15].
Rodent in vitro disease modelling using a ‘mix and match’
co-culture of wild-type and mutant astrocytes with motor
neurons has extended these insights to suggest contact
and soluble mediated mechanisms of mutant astrocyte-
mediated neurotoxicity [19,33].Similar insights were made
in the human in vitro system. Human embryonic stem cell
derived motor neurons were combined with rodent astro-
cytes [34] and human foetal astrocytes expressing SOD1
mutations [18], substantiating the ‘neurotoxic’ nature of
mutant astrocytes. These studies further identified candi-
date molecules as mediators of injury, such as prostaglan-
din D2, in murine astrocytes and allowed testing of
candidate therapeutic agents [34]. The recent discovery of
the role of TDP43 in sporadic [35, 36] and familial ALS [37],
and FUS in familial ALS [38, 39] will serve to accelerate
investigation into mechanisms of ALS pathogenesis and
the potential further roles of astrocytes. Both TDP43 and
FUS are nucleic acid binding proteins that play a role in
regulation of gene transcription and splicing, presenting
the possibility of common downstream pathological
mechanisms underlying these forms of ALS. The role of
astrocytes in brain function and disease is dealt with more
fully in a number of recent reviews [13, 40, 41]

Increasing the translatability of
model studies: the issue of species
specific differences

Experimental and descriptive studies in model organisms
such as rodents, non-mammalian vertebrates and inverte-
brates have contributed greatly to our understanding of
the central nervous system, both in health and disease.
Conservation of gene orthologues, functional anatomy
and development of the central nervous system facilitates
the translation of experimental findings between model
organisms and humans. As a result, insights from these
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studies have informed our understanding of disease
mechanisms and revealed new therapeutic targets.

Nevertheless, important species specific differences
have been identified at the cellular level, which have the
potential to limit inferences made from rodent data to
humans. Oberheim et al. reported that human astrocytes
differed greatly from the rodent counterpart in vivo, with
greater size, complexity of arborization, number of sub-
types, GFAP expression and speed of calcium wave propa-
gation, attesting to structural and functional differences
[42]. Molecular level evidence suggests that gene regula-
tion may differ more than expected between rodent and
humans. A significant proportion of human transcription
factor (TF) binding sites do not function in rodents [43].
Indeed, the conservation of TF occupancy in orthologous
mouse and human gene promoters can be highly variable
[44]. Of note, while interspecies differences in TF binding
were large, the location of binding sites within different
cellular human systems has been reported to be highly
conserved [44]. Consistent with this, gene promoter
sequence, as opposed to any differences in transcriptional
machinery, appears to be the dominant factor directing
species specific transcription [45], and strengthen the case
for employing human-based systems to study transcrip-
tional responses to enable the identification of interspe-
cies differences and thus home in on the most human-
relevant pathways. Beyond transcriptional differences,
species specific differences in other aspects of molecular
biology are also well-documented, including pathways
relevant to neurophysiology and pathophysiology. For
example, the developmental regulation of microtubule
associated protein tau (MAPT, implicated in a group of dis-
orders called tauopathies, which includes AD) isoforms
differs between mice and humans, favouring four repeat
tau in mouse and a combination of three and four repeat
tau in humans [46], as well as differences in splicing of the
Na+/Ca2+ transporter 1 (NCX1) [47], a class of pumps impor-
tant for neuronal Ca2+ homeostasis under ischaemic con-
ditions [48]. At the protein level, interaction partners,
subcellular distribution and enzyme-substrate profiles can
also differ. For example, the C-terminal PDZ ligand of
human somatostatin receptor 3 binds the multi-PDZ-
domain containing protein MUPP1 (a tight-junction
protein proposed to regulate intracellular cell signalling
pathways in a variety of tissues), unlike the rat receptor
[49]. There exist human vs. rodent species specific differ-
ences in the way apoptotic caspases process their targets,
and also in whether a protein is a substrate for caspases at
all [50]. Of relevance to therapeutics is the fact that certain
pharmacological compounds show species specific differ-
ences in efficacy such as those targeting the TRPV1
channel [51], the P2X2 receptor [52] and the TRPA1 recep-
tor [53].

Several conclusions can be drawn from these studies,
the most apparent being that significant differences can
exist at the molecular and cellular level in humans and

rodents, and that rodent-based studies may benefit from
complementary approaches using human cells of the
appropriate type.

Human pluripotent stem cells as
an experimental model

Rodent–human disparity increases the burden of proof
that a particular finding has inter-species relevance, neces-
sitating that certain findings be replicated in human
experimental models [54–56]. Human in vitro platforms
offer the opportunity to investigate disease processes and
potential protective mechanisms in human cells. Three
sources of human neural cells are readily identifiable,
embryonic stem cell-derived, foetal-derived and those
derived from the adult brain. For ethical and practical
reasons, including limited propagation potential, unpre-
dictable availability and inability to direct differentiation
reliably, the use of human adult brain-derived material is
limited as an expandable in vitro system. Human foetal-
derived neural precursor cells (NPCs) can be derived from
defined areas of the central nervous system (CNS) and
expanded in vitro in the presence of neuroepithelial
mitogens as non-adherent neurospheres [57, 58] or as
adherent cultures [59]. Despite being well characterized,
human foetal-derived NPCs are not ideal for long term
study on account of practical reliability of tissue procure-
ment, potentially limited differentiation ability to specific
neuronal and glial subtypes and uncontrollable variability
in sample gestation age [57].

In contrast, human embryonic stem cells (HESCs) are
particularly attractive for experimental study, due to their
predictable responsiveness to developmental cues ena-
bling controlled and scaleable directed differentiation to
neuronal and glial cell types. Following the isolation of
HESCs [60], many methodologies now exist for successful
maintenance of HESCs, generation of neural precursor cells
and subsequent differentiation to defined neuronal sub-
types [61–64], also comprising adherent and non-adherent
neurosphere based systems. Adherent systems and selec-
tive propagation appear to allow greater cell yield, culture
consistency and purity [65–67]. These systems in turn
permit in vitro modelling of human neuronal injury and,
along with recent reports of astrocyte generation from
HESCs, further allow study of glial–neuronal interaction
[54, 65]. Indeed HESC-derived motor neurons and
dopaminergic neurons have been used to model glial tox-
icity and both antioxidant and GDNF-mediated neuropro-
tection [14, 18, 34].

Furthermore, insights from HESCs based experiments
also inform and benchmark human induced pluripotent
stem cell based studies. The development of induced
pluripotent cells (iPSCs) permits the generation of defined
neural cells from readily accessible patient material such
as fibroblasts for study of hereditary disorders on the

Generating human astrocytes to study neuroprotective pathways

Br J Clin Pharmacol / 75:4 / 909



pre-existing human genetic background and as a potential
source of patient-specific cells for autologous cell-
replacement therapies. An example of in vitro adult brain
disease modelling using patient specific material is that
of Parkinson’s disease-causing LRRK2 mutation carrying
neurons having increased vulnerability to oxidative injury
as well as morphological defects [68, 69]. This and other
proof of concept studies illustrate the potential of human
iPSC lines to accelerate disease understanding and drug
development in a variety of neurological disorders [70–77].

The utilization of human embryonic stem cell lines with
a known genetic background is of tremendous benefit
with experimental reproducibility.However, it insufficiently
reflects the genetic diversity inherent in the living human
population. Similarly, genetic homogeneity within mouse
strains, while inherently useful for knock-out studies and
wild-type comparisons, insufficiently reflects natural popu-
lation heterogeneity and observations magnified in a
homogeneous genetic background may be diminished
upon translation to heterogeneous populations, an obser-
vation conceptually distinct from human-non human
model disparity as discussed earlier. Using a range of
human in vitro lines may begin to address human genetic
heterogeneity, and generate a platform observation rather
than cell line specific observation. However, the range of
cell lines required to account for human population varia-
tion completely is currently unknown, and may need to be
developed on a sub-population basis. Overall, human stem
cell-based approaches have distinct advantages and dis-
advantages compared with rodent systems (Table 1) and
studies involving both systems may offer the best way of
limiting confounds associated with any one experimental
system.

Generating functional astrocytes
from human stem cells

As outlined earlier, astrocytes perform key physiological
processes vital to combating oxidative, excitotoxic and
other forms of injury, and evidence suggests that dysfunc-
tion and impairment of these physiological processes

can significantly contribute to disease progression and
outcome. Accordingly, modulating the cellular environ-
ment and specifically astrocyte function may play a role
in slowing or even reversing neurological injury. Pre-
requisites for detailed studies of neuronal–glial interaction
in the context of human experimental models of neuro-
logical disease are characterized populations of enriched
and functional human pluripotent stem cell (HPSC)
derived neurons and astrocytes. Previous studies have
focussed predominantly on the differentiation of HPSCs
into non-specific and regionalized neurons for isolated
study of neuronal injury. A range of systems has been
described, from suspension to adherent culture methods
[61, 78], and recent advances have made it possible to
derive enriched neuron-biased neural precursor cells from
HESCs, which can be readily specified to specific neuronal
sub-types [79, 80]. In contrast, derivation of enriched func-
tional human astrocytes from HESCs has historically
received lesser attention, due to comparatively poor
understanding of astrocyte specification during develop-
ment and poor specificity of astrocyte precursor markers
[81].

Progressive developments in technologies that allow
maintenance and propagation of high quality neural pre-
cursors derived from HPSCs [61, 78, 80, 82, 83] and noting
the temporal regulation of gliogenesis have established an
experimental platform for scaleable generation of human
astrocytes. Astrocyte differentiation is determined tempo-
rally by both intrinsic temporally mediated mechanisms
and exogenous factors, including BMP4 and LIF [84]. LIF
and other members of the Il-6 cytokine family have been
shown to drive synergistically astroglial differentiation in
conjunction with BMPs, STAT3 and SMAD1 converging
upon CBP/p300 respectively [85]. Notch intracellular sig-
nalling also appears to have a contributory role [86].
However, while BMP and LIF signalling can drive astrocyte
differentiation in glial-competent NPCs, their limited
capacity to do so in early NPCs suggests that other intrinsic
factors govern glial competence. The glial competence of
NPCs increases over time, with early precursors being pre-
dominantly neuronal in fate and later precursors generat-
ing glia. This gliogenic switch appears to be regulated by

Table 1
A summary of the strengths and weaknesses of rodent primary culture models compared to human embryonic cell line-based systems

Cell culture based in vitro system Strengths Weaknesses

Rodent culture Comparative ease of derivation of mature cell types
Genetic manipulation
Animal models allow transplantation studies

Differences in biology may limit translation for human disease modelling

Human embryonic
stem cell (HESC)

Human genome adds relevance
Expandable in culture
Can potentially derive many/all neural cell types in

a single line

Technically difficult
Currently enriched derivation of all mature neural cell types is limited
Heterogeneity between different HESC cell lines
Functional validation necessary
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epigenetic changes resulting in chromatin remodelling
and DNA methylation around the GFAP promoter and
other astrocyte specific genes, to promote astrogliogen-
esis [87, 88]. The relevance of SMAD and STAT signalling to
astroglial differentiation of HESC-derived neural precursor
cells in vitro, however, remains unproven. The use of BMP4
in astroglial differentiation from human foetal-derived
neural precursor cells provides some evidence that com-
plementary pathways may exist [89].Therefore, we system-
atically tested the ability of combinations of BMPs and
LIF to drive astroglial conversion. Upon withdrawal of
mitogens, drawing the neural precursor cells out of the cell
cycle, application of combined Smad and Stat signalling
mediators drove efficient differentiation of neural precur-
sor cells to the astroglial lineage [65]. Other groups have
similarly used prolonged culture of neural precursor cells
and CNTF-mediated Stat signalling for astroglial conver-
sion from HESCs [90]. Critically, glial-appropriate function-
ality of these in vitro human astrocytes was further
demonstrated. Studies in rodent systems have demon-
strated the role of astrocytes in glutamate clearance,
expression of key astrocyte-specific proteins and the
ability to modulate the synaptic maturation of co-cultured
neurons. HESC-derived astrocytes accordingly demon-
strated the acquisition of functional properties including
glutamate uptake and expression of astrocyte markers
GFAP, EAAT1, AQP4 and S100b [65], calcium wave propaga-
tion and induction of neuronal synapses [90]. Critically,
demonstration of these properties,shared with their in vivo
counterparts, confirms astrocyte differentiation tech-
niques and permits the investigation of interactions
between human astrocytes and neurons. Future studies
will be required to address whether HESC astrocytes also
secrete the range of proteins expressed by murine astro-
cytes, including clusterin and thrombospondin [91–93].
Recent advances have demonstrated a panoply of astro-
cytic functions in rodent systems, including functional
gliotransmission with consequent modulation of homosy-
naptic and heterosynaptic neurotransmission in hippoc-
ampal networks by astrocytes [94], and direct control of
sleep pressure [95] and regulation of breathing in response
to acidaemia by astrocytes [96]. It remains to be seen
whether human embryonic stem cell derived astrocytes
recapitulate these and other in vivo properties and are able
to integrate functionally into these networks upon trans-
plantation, a key property ahead of potential transplanta-
tion therapies.

The neuroprotective abilities of
astrocytic Nrf2 in rodent and
human models

Given the importance of oxidative injury in neurological
diseases, understanding the mechanisms underlying neu-
ronal oxidative cell death and endogenous antioxidant

mechanisms may provide tractable therapeutic targets.
The nuclear factor erythroid-2-related factor 2 (Nrf2,
encoded by NFE2L2) pathway has been identified for its
key role in mediating the cellular antioxidant protective
response and thus as a potential candidate for targeted
therapeutics in neurodegenerative disease. Nrf2 is a
member of the cap’n’collar basic leucine zipper family of
transcription family, and is widely regarded as the master
regulator of antioxidant defences and drug metabolizing
enzymes [97]. Under normal conditions Nrf2 is bound in
the cytoplasm by Keap1 and targeted for degradation.
However inhibition of Keap1-dependent degradation
allows Nrf2 to translocate to the nucleus and activate tran-
scription of antioxidant response element (the cis-acting
promoter element, ARE) containing genes [98]. Various
mechanisms appear to underlie Nrf2 activation, both
direct and indirect. Nrf2 can be activated directly by oxida-
tive stress caused by peroxide treatment and oxygen-
glucose deprivation [54] and indirectly. Loss of p62 has
been associated with development of AD-like pathology in
rodent models; p62 knock-out mice accumulate markers of
oxidative damage with age, and age-correlated accumula-
tion of p62 promoter damage has been demonstrated in
human and murine samples [99]. p62 has been shown to
associate with Keap1 and cause disinhibition of Nrf2 [100].
As such heritable or acquired loss of p62 may cause accu-
mulation of cellular oxidative injury due to dysregulation
of Nrf2 activity.

Important ARE-containing genes include phase II
detoxifying and antioxidant enzymes, which are largely
dependent on Nrf2-mediated activation upon injury.
Critical enzymes include haem oxygenase 1, sulfiredoxin,
peroxiredoxins and those central to glutathione (GSH)
synthesis and metabolism including GCL and GST [101,
102]. Activation of Nrf2 by genetic manipulation, hypoxia/
ischemia or small chemical activators has been shown to
abate neurological injury and disease progression in
rodent systems [54, 103–109].The Nrf2 pathway is particu-
larly active in astrocytes, compared with neurons
(although activation of Nrf2 in neurons is possible [110]),
and activation of astrocytic Nrf2 is sufficient to confer neu-
roprotection on nearby neurons via a mechanism pro-
posed to involve the release of glutathione [103, 105, 111]
(Figure 1). Although driving Nrf2 expression in neurons is
strongly neuroprotective [112], astrocytic expression of
Nrf2 confers neuroprotection in models of Parkinson’s
disease, ALS and ischaemia [103, 104, 111, 113].

The use of small molecule activators of Nrf2, which act
by antagonizing Keap1-mediated Nrf2 degradation, repre-
sents a promising form of antioxidant therapy. Previous
therapeutic strategies have primarily focussed on com-
pounds that directly combat ROS, such as natural antioxi-
dants (e.g. vitamin E) and synthetic spin traps [8]. These
have enjoyed considerable efficacy in animal model
studies but have been translationally disappointing,poten-
tially due to the difficulty in getting sufficient quantities of
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antioxidants into the human brain to have an effect [8].
Rather than acting as free radical scavengers or spin traps
themselves, these molecules act by boosting Nrf2-
regulation, thus up-regulating the intrinsic antioxidant
defences of cells. Among small molecule Nrf2 inducers, the
series of synthetic oleanane triterpenoids, such as deriva-
tives of 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid
(CDDO) developed by Michael Sporn (Dartmouth Medical
School), have received much attention due to their
potency as well as low toxicity in animal studies [114, 115].
Outside of the CNS, CDDO compounds are potently pro-
tective in a variety of disorders, including inflammatory
lung disorders, cancer (prevention and treatment), renal
and hepatic toxicity, and diabetes [116]. Equally impressive
is their efficacy in models of a variety of neurodegenerative
disorders. In mouse models of Huntington’s disease
chronic administration of CDDO-ethylamide and CDDO-
trifluoroethylamide (CDDOTFEA) upregulated Nrf2 target
genes,attenuated striatal atrophy and improved the in vivo
phenotype exhibited, including motor performance by
rotorod testing and survival [107]. Three month oral
administration of CDDO reduced plaque and microglial
burden in a mutant APP transgenic mouse model of AD,
with concomitant improvement in spatial memory by
Morris water maze [117]. Moreover, CDDO compounds also
have demonstrable protective effects in in vivo models of
Huntington’s disease and Parkinson’s disease [118] as well
as the G93A SOD1 model of ALS [116].

Given that the neuroprotective effects of CDDO-
triterpenoids have been well established in rodent
systems, we sought to use CDDO-triterpenoid mediated
neuroprotection as a proof-of-concept to illustrate the
utility of our HESC-derived platform to investigate
astrocyte-mediated neuroprotection. We demonstrated
that HESC-derived astrocytes respond physiologi-
cally to CDDOTFEA-triterpenoid treatment, upregulating
glutathione-mediated antioxidant processes, and protect
HESC-derived neurons from peroxide-mediated cell death
by soluble factors secreted into astrocyte-conditioned
medium [65]. This protective effect was in addition to
the basal protection mediated by conditioned medium
from untreated astrocytes (Figure 1). Furthermore direct
CDDOTFEA-triterpenoid treatment conferred no protective
benefit to HESC-derived neurons against oxidative cell
death, demonstrating the non-cell autonomous mecha-
nisms involved in CDDOTFEA-triterpenoid mediated neuro-
protection [65]. These findings suggest that HESC-derived
neural derivatives can be used effectively to model human
neuron–astrocyte interactions, investigate neurological
injury and rescue mechanisms, and have the potential to
increase the translational hit of findings made in comple-
mentary non-human based systems. Moreover, similarly
derived HESC-derived astrocytes also respond to mild oxi-
dative stress by inducing Nrf2 target genes [54], raising the
possibility that Nrf2 forms an endogenous adaptive pro-
tective response in the CNS as well.

Astrocyte

Reactive
oxygen
species

Small molecule
activators

Nrf2 activation
ARE

GCLC

GSH

GSH

Strong astrocyte-mediated
neuroprotection:
(GSH-dependent)

Astrocyte-mediated
neuroprotection:
(GSH-independent)

Neuron

Other
target
genes

Figure 1
Humanembryonic stem cell-derived astrocytes mediate non-cell autonomous neuroprotection in part via activation of Nrf2-mediated gene expression. See
text and reference [65] for details
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Concluding remarks

Developments in HESC-based technologies permit studies
of early neuronal development, modelling neural injury in
vitro, and potentially cell-replacement therapies. Amongst
other injury mechanisms, oxidative stress is a common
theme in the aetiopathogenesis of a range of chronic neu-
rodegenerative disorders. As a result, informed antioxidant
strategies that alter redox balance effectively may contrib-
ute to novel therapies across a range of conditions, and
multi-modal therapies may be of benefit. Furthermore,
astrocytes have been proven to be principle sites of
oxidative-stress mediated neuronal injury and neuropro-
tection as well as the therapeutic target for candidate
drugs. As such, non-cell autonomous neuroprotection, as
shown in these studies, has widespread and fundamental
implications for human-based drug discovery and screen-
ing of novel neuroprotective agents. Screens focussing
solely on the direct effect of compounds on isolated
neurons may overlook potentially important neuroprotec-
tive processes that act via astrocytes or other non-
neuronal cells. Despite these advances, inferences drawn
from in vitro models to the in vivo state are limited by the
cell types included in the co-culture.Pure neuron-astrocyte
co-cultures lack the complexity that neighbouring oli-
godendrocytes and microglia would present in vivo. Fur-
thermore, the reduced culture time and as yet unclear
correlation of in vitro culture time points with in vivo devel-
opment suggest that in vitro models may encounter diffi-
culty in recapitulating aspects of long term chronic
neurodegeneration. Nevertheless, human in vitro systems
provide unparalleled access to human cell types and have
the potential to provide previously inaccessible insights in
cell–cell interaction, molecular processes and potentially
tractable clinical targets. Beyond disease modelling, the
generation of enriched human neurons and astrocytes
offers the prospect of cell replacement therapies. Many
hurdles remain, including the enriched generation of
subtype-specific cells, issues surrounding tissue rejec-
tion and functional engraftment in appropriate disease
models. Some experimental successes have been achieved
with engraftment of HESC-derived dopaminergic neurons
in rodent models of Parkinson’s disease [119, 120]. Glial
replacement therapies also offer some promise as neuro-
protective interventions. Astrocyte replacement has
already received some success in experimental rodent-
based models of age-related neurodegeneration, spinal
cord injury and ALS [17, 121].The ability to alter the behav-
iour of these cells prior to implantation, either genetically
[113, 122] or with drug treatment [65], may also enhance
their neuroprotective abilities in the injured brain. Longer
term strategies building on these insights that target
mobilization of endogenous glial populations are an area
of particularly active research.

In summary the establishment of bespoke human in
vitro platforms for neurological disease modelling and

drug discovery offers a major new resource to accelerate
successful clinical translation of novel neuroprotective
therapeutics.
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