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Abstract

Increasing age is associated with deficits in a wide range of cognitive domains as well as with structural brain
changes. Recent studies using diffusion tensor imaging (DTI) have shown that microstructural integrity of white
matter is associated with cognitive performance in elderly persons, especially on tests that rely on perceptual speed.
We used structural equation modeling to investigate associations between white matter microstructure and cognitive
functions in a population-based sample of elderly persons (age ≥ 60 years), free of dementia, stroke, and
neurological disorders (n = 253). Participants underwent a magnetic resonance imaging scan, from which mean
fractional anisotropy (FA) and mean diffusivity (MD) of seven white matter tracts were quantified. Cognitive
functioning was analyzed according to performance in five task domains (perceptual speed, episodic memory,
semantic memory, letter fluency, and category fluency). After controlling for age, FA and MD were exclusively related
to perceptual speed. When further stratifying the sample into two age groups, the associations were reliable in the
old-old (≥78 years) only. This relationship between white matter microstructure and perceptual speed remained
significant after excluding persons in a preclinical dementia phase. The observed pattern of results suggests that
microstructural white matter integrity may be especially important to perceptual speed among very old adults.
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Introduction

Diffusion tensor imaging (DTI) is a non-invasive magnetic
resonance imaging (MRI) technique that is sensitive to the
microstructure of white matter. DTI measures the diffusion of
water molecules in brain tissue and enables visualization of
white matter pathways and quantification of aspects of
microstructure, with measures such as fractional anisotropy
(FA) and mean diffusivity (MD). Higher FA is associated with
greater directionality of water molecules and implies higher
fiber density or coherence in a voxel. In contrast, higher MD
reflects higher rate of diffusion and implies less dense tissue.
Aging is typically associated with decreases in FA and
increases in MD, probably resulting from, for example, axonal
degeneration and loss of myelin [1]. Normal aging is also
associated with deficits in many cognitive domains, with the
largest age-related differences usually observed for perceptual

speed [2,3]. In recent years, several studies have examined
associations between indices of white matter microstructure
and cognitive performance. Lower FA and higher MD in
normal-appearing white matter in elderly persons has most
consistently been associated with worse performance on tests
tapping perceptual speed and executive functioning [4-6].

Given the association between white matter connections and
processing speed, both known to deteriorate in aging, it has
been suggested that decline in white matter integrity could be
an important biological correlate of age-related cognitive
deficits, particularly for perceptual speed [7,8]. However,
chronological age shares a substantial portion of the variance
associated with the relation between white matter and
cognition. Thus, there is still uncertainty about the extent to
which age-related changes in cognitive performance are
related to age-related changes in white matter structure, and to
what extent these processes occur in parallel [9]. Few studies
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have focused on the white matter-cognition association in very
old age (> 75 years), or examined the strength of the
association in different age groups. Increases of the strength of
the association in older age groups would be expected if
changes in white matter integrity and cognitive performance
are related [10-12], or if white matter integrity only impacts
functioning after declining below a critical threshold. Other
limitations in previous studies include small sample sizes and a
narrow selection of cognitive tests.

We have previously demonstrated age-related differences in
white matter microstructure and cognitive performance, using
data from the Swedish National Study on Aging and Care in
Kungsholmen (SNAC-K). Seven latent factors of white matter
tracts, derived by structural equation modeling (SEM), all
showed decreased FA and increased MD with increasing age
[12]. Similarly, five latent cognitive abilities all showed negative
correlations with age [13]. An advantage with performing
analyses at the latent level is that it minimizes the effects of
measurement error. Furthermore, observed associations are
less dependent on task-specific influences.

For the present study, we had access to a large population-
based sample of non-demented older adults (n = 253), who
had taken part in a DTI scan and extensive cognitive testing.
We aimed to examine possible associations between
microstructural white matter integrity and cognitive
performance at the latent level. A second aim was to examine
the strength of these associations in different age segments,
stratifying the sample into young-old (60-72 years) and old-old
(78-87 years) age groups. Finally, we examined whether
potential associations remained after excluding future dementia
cases from the sample.

Methods

Participants
Between 2001 and 2004, 3363 persons, resident in the

Kungsholmen area in central Stockholm, Sweden, participated
in the baseline assessment of SNAC-K, a population-based
study of persons aged ≥ 60 years. Participants were randomly
selected based on their date of birth and belonged to pre-
specified age cohorts (60, 66, 72, 78, 81, 84, 87, 90, 93, 96
years, and 99 years and older). The examination consisted of a
nurse interview, a medical examination, and
neuropsychological testing. In addition, a random subsample
was asked to take part in an MRI examination. The effective
sample used in this study (n = 253) included participants with
acceptable quality of the DTI images. The bulk of participants
(90%) were right-handed, 2% were left-handed, and 8% were
ambiguous. The sample was screened for dementia,
Parkinson’s disease, epilepsy, stroke, schizophrenia, and
bipolar disorder. Because very few participants were older than
87 years, we excluded these subjects in order to have more
homogenous age groups. An additional seven subjects were
excluded because they did not participate in the cognitive
testing. Selectivity with regard to educational background and
cognitive performance of the effective sample for DTI analyses
in relation to the total non-demented sample in SNAC-K was
negligible [12]. The SNAC-K project has been approved by the

ethical committee at Karolinska Institutet, Stockholm, Sweden,
and the research was conducted according to the ethical
guidelines expressed in the Declaration of Helsinki. Written
informed consent was obtained from all participants.

MRI acquisition
All MRI measurements were conducted using a 1.5T scanner

(Philips Intera, Netherlands). DTI data were acquired using a
single-shot diffusion-weighted echoplanar imaging sequence
with the following parameters: FOV=230 × 138 mm2; 128 x 77
matrix; TE = 104 ms; TR = 6838 ms; slice thickness=5 mm with
1 mm gap; b-value 600 s/mm2. For all participants, a DTI
scheme with 6 non-collinear diffusion-weighting gradient
directions was used to determine the diffusion tensor set.

A detailed description of how the DTI data were
preprocessed and how FA and MD were derived has been
provided elsewhere [12]. In short, after diffusion tensor
calculation, these parameters were derived on a voxel-by-voxel
basis using three steps: (1) estimation of eigenvalues and
eigenvectors of the diffusion tensor using the single-value
decomposition algorithm; (2) calculation of MD as the mean of
the diagonal elements; and (3) calculation of FA according to
its definition [14]. The FA data were further processed using
tract-based spatial statistics (TBSS) [15] in FSL [16]. Here, the
mean FA image was thinned to create a mean FA skeleton,
which represents the centerlines of all tracts common to the
sample. The mean skeleton was thresholded and binarized at
FA > 0.2 to reduce the likelihood of partial voluming. Each
participant’s aligned FA data were then projected onto this
skeleton, resulting in individual skeleton images. Finally, the
MD images were processed based on the results of the
processing of the FA images.

White matter SEM model
To prepare the data for SEM, we produced masks of seven

tracts of interest in each hemisphere (see Figure 1A), with the
procedures described and validated by Lövdén et al. [12]. The
masks were: the cingulate gyrus part of cingulum (CCG), the
portion of cingulum that extends to the hippocampus (CHC),
the corticospinal tract (CS), the forceps major (FMAJ), the
forceps minor (FMIN), the inferior fronto-occipital fasciculus
(IFOF), and the superior longitudinal fasciculus (SLF). These
14 masks (7 tracts x 2 hemispheres) were used to extract
mean FA and MD data from each individual’s skeleton image.
The majority of the masks were based on the JHU white-matter
tractography atlas [17,18], whereas the CS mask emanated
from the Catani tractography atlas [19,20]. Separate SEMs
were created for FA and MD. The latent factors were always
formed by the left and right versions of each tract. Thus, the
latent factors represent the common variance across
hemispheres for a given tract. This approach was based on
previous observations of high correlations between left and
right white matter indicators in homologous tracts [12,21] and
the validity of such a model was supported in previous work
[12]. Model fit was evaluated with the Comparative Fit Index
(CFI) and the Root-Mean-Square Error of Approximation
(RMSEA). Acceptable model fit was defined as a CFI above
0.95 and an RMSEA below 0.08 [22]. We obtained good fit of a
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model positing that individual differences in white matter
microstructure are organized according to tracts, both for FA
(χ2 = 131.28, df = 126, n = 260, CFI = 0.998, RMSEA = 0.013)
and MD (χ2 = 277.49, df = 126, n = 260, CFI = 0.953, RMSEA =
0.068) [12].

Cognitive SEM model
For the cognitive data, we estimated a SEM with five latent

cognitive factors (see Figure 1B): perceptual speed (PS),
episodic memory (EM), semantic memory (SM), letter fluency
(LET_FLU), and category fluency (CAT_FLU). The model was
based on the following cognitive tests: PS – digit cancellation
[23] and pattern comparison [24], EM – free recall of random
words and word recognition [13], SM – vocabulary [25] and
general knowledge [26], LET_FLU – words beginning with F
and A [27], and CAT_FLU – animal and profession fluency [27].
For a full description of the cognitive tasks, the reader may
consult Laukka et al. [13]. All models were estimated with full
maximum likelihood, where information in the complete data
set was used for estimating parameters that involved missing

values. The model showed good fit (χ2= 76.72, df = 25, n =
2694, CFI = 0.995, RMSEA = 0.028), indicating that our
categorization of the cognitive tests constitutes an adequate
representation of the data [13].

Statistical analyses
All analyses were performed with AMOS 5.0 (IBM SPSS 20).

First, we assured good model fit for a model combining the
white matter and cognitive SEM models described above: FA
(χ2 = 241.31, df = 186, CFI = 0.99, RMSEA = 0.03) and MD (χ2

= 325.01, df = 186, n = 253, CFI = 0.97, RMSEA = 0.05).
Standardized loadings on the latent factors and correlations
among the latent white matter factors and the latent cognitive
factors, respectively, are available as supporting information
(Tables S1-S3 in File S1). Next, we examined the associations
between the tract factors and the cognitive factors. All analyses
were performed in the total sample as well as in two separate
age groups, one young-old (60-72 years) and one old-old
(78-87 years) group. Chronological age was included as a
predictor of the latent white matter factors and the latent

Figure 1.  SEM models for the seven latent white matter factors (A) and the five latent cognitive factors (B).  Latent factors
are depicted with circles, observed variables with rectangles, regressions with one-headed arrows, and covariances with two-
headed arrows. FA = fractional anisotropy, MD = mean diffusivity, CCG = cingulum cingulate gyrus, CHC = cingulum hippocampus,
CS = corticospinal tract, FMAJ = forceps major, FMIN = forceps minor, IFOF = inferior fronto-occipital Fasciculus, SLF = superior
longitudinal Fasciculus, PS = perceptual speed, EM = episodic memory, SM = semantic memory, LET_FLU = letter fluency,
CAT_FLU = category fluency, L = left, R = right, e = error. Model fit for the combined models in the total sample: FA: χ2 = 241.31, df
= 186, CFI = 0.99, RMSEA = 0.03; MD: χ2 = 325.01, df = 186, n = 253, CFI = 0.97, RMSEA = 0.05.
doi: 10.1371/journal.pone.0081419.g001
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cognitive factors. Thus, the effect of age was covaried out in all
analyses. We estimated covariances (and computed the
correlations) between the residual terms (i.e., the residuals
after accounting for the influence of chronological age) for all
latent factors in the model. The significance testing of the
correlation coefficients was based on the covariances and their
associated standard errors. The threshold for statistical
significance was set to p < 0.05. As a final step, we examined
the associations between white matter microstructure and
cognition in a sample where preclinical dementia cases had
been excluded.

Results

Background information for the total sample and for the two
age groups is shown in Table 1. The mean age of the sample
was 72.29 years and the majority of the participants (64.43%)
were female. Note that educational level was relatively high
and that participants were cognitively intact, as indicated by
their MMSE scores. All variables analyzed in the combined
SEM model displayed acceptable skewness and kurtosis [22],
except for vocabulary (kurtosis = 2.52 in the total sample, 5.31
in the young-old, and 0.90 in the old-old).

Table 2 shows the correlations between the latent white
matter factors and the latent cognitive factors. Better
performance in the PS domain was related to higher FA in
FMAJ and IFOF and lower MD in CHC, CS, FMAJ, and IFOF
(marginally significant, p = 0.07). When stratifying the sample
according to age group, significant associations between the
latent white matter factors and PS were observed in the old-old
only. Expressed in terms of effect size [28], the significant
associations between the white matter indicators and PS in the
old-old showed medium effect sizes (rs = 0.25-0.34), whereas
the corresponding (non-significant) associations in the young-
old indicated small effect sizes (rs = 0.02-0.12).

Reanalyzing the data controlling for education, handedness
(right-handed vs. other), or white matter lesion load (visually
assessed using a modified Scheltens scale) did not alter the
patterns of associations between FA, MD and PS (data not
shown).

In order to examine whether the estimated correlation
coefficients differed significantly between the two age groups,
we performed additional analyses where we estimated the
model as a multiple group model with two groups (young-old
and old-old). In these analyses, we only included PS, as we
had not observed any significant associations for the other
cognitive factors. First, we certified measurement equivalence
over the two age groups by comparing a default model with
freely estimated loadings on the latent factors to a nested
model that assumed the loadings to be equal across groups.
The difference in chi-square fit statistics was used to compare
nested models. As we did not obtain a significant difference in
fit between these two models for either FA or MD (ps > 0.15),
we concluded that the loadings were equivalent across age
groups and the same model could be used to analyze the
associations in young-old and old-old persons. Second, we
compared a model where the standardized covariances
between the residual terms for PS and FMAJ had been set to

be equal between the young-old and the old-old to a default
model where the standardized covariances were not forced to
be equal for the two groups. This was repeated for all tracts

Table 1. Background information for the total sample and
for the two age groups.

 Total sample 60-72 years 78-87 years

 n = 253 n = 147 n = 106

 M SD M SD M SD
Age 72.29 8.88 65.64 4.78 81.51*** 3.11
% female 64.43 63.27 66.04
Education, years 12.22 3.96 12.97 3.64 11.17*** 4.15
MMSE 29.10 1.01 29.32 0.85 28.80*** 1.15
FA (mean of left+right)       
CCG 40.21 2.86 41.36 2.57 38.61*** 2.46
CHC 39.83 2.66 40.74 2.56 38.58*** 2.26
CS 56.14 2.29 56.80 2.21 55.21*** 2.09
FMAJ 57.30 2.94 58.33 2.55 55.88*** 2.86
FMIN 51.32 3.31 52.77 2.61 49.32*** 3.13
IFOF 46.49 2.43 47.49 2.11 45.10*** 2.15
SLF 41.70 2.43 42.34 2.23 40.79*** 2.41
MD (mean of left+right)       
CCG 82.52 4.31 80.51 3.35 85.31*** 3.93
CHC 100.36 9.31 95.91 7.38 106.53*** 8.13
CS 75.09 2.73 73.79 1.76 76.89*** 2.82
FMAJ 78.54 5.53 75.96 3.64 82.12*** 5.73
FMIN 81.86 5.72 79.18 4.31 85.57*** 5.37
IFOF 84.51 4.63 82.33 3.25 87.53*** 4.57
SLF 77.58 4.32 75.68 3.09 80.23*** 4.41
PS       
Digit cancellation 18.18 4.19 19.53 4.21 16.27*** 3.35
Pattern comparison 14.68 3.72 16.33 3.28 12.34*** 2.98
EM       
Word recall 7.17 2.41 7.80 2.27 6.29*** 2.33
Word recognition 6.89 4.28 7.50 4.34 6.04** 4.07
(remember)       
SM       
Vocabulary 23.64 4.38 24.55 3.81 22.39*** 4.81
General knowledge 7.06 1.61 7.24 1.52 6.80* 1.71
LET_FLU       
F 15.83 4.92 16.29 5.15 15.20 4.53
A 13.35 4.83 14.06 4.74 12.36** 4.79
CAT_FLU       
Animals 22.56 6.00 24.50 6.03 19.88*** 4.83
Professions 16.21 4.94 17.70 4.76 14.12*** 4.43

* p < 0.05, ** p < 0.01, *** p < 0.001, significantly different from the 60-72 years
age group
Note. FA = fractional anisotropy, MD = mean diffusivity, CCG = cingulum cingulate
gyrus, CHC = cingulum hippocampus, CS = corticospinal tract, FMAJ = forceps
major, FMIN = forceps minor, IFOF = inferior fronto-occipital Fasciculus, SLF =
superior longitudinal Fasciculus, PS = perceptual speed, EM = episodic memory,
SM = semantic memory, LET_FLU = letter fluency, CAT_FLU = category fluency.
All FA and MD variables have been multiplied with 100 to make the variances
more similar to those of the cognitive variables.
doi: 10.1371/journal.pone.0081419.t001
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Table 2. Correlations of FA and MD in the seven latent
white matter tracts to performance in the five cognitive
domains for the total sample and for the two age groups.

 FA MD

 
Total
sample

60-72
years

78-87
years

Total
sample

60-72
years

78-87
years

PS       
CCG 0.07 0.01 0.16 -0.10 -0.12 -0.10
CHC 0.10 0.05 0.21 -0.24* -0.10 -0.34*

CS 0.01 -0.12 0.16 -0.16* -0.06 -0.25*

FMAJ 0.19* 0.12 0.28* -0.19* -0.05 -0.31*

FMIN 0.11 0.05 0.19 -0.09 -0.08 -0.10
IFOF 0.18* 0.11 0.28* -0.15 -0.02 -0.25*

SLF 0.01 -0.04 0.09 -0.09 -0.02 -0.14

EM       
CCG 0.00 0.04 -0.02 0.04 0.06 -0.02
CHC 0.08 0.16 -0.05 0.03 0.14 -0.09
CS -0.03 0.06 -0.19 -0.04 0.03 -0.05
FMAJ 0.06 0.09 0.02 -0.08 0.06 -0.23
FMIN 0.01 0.02 -0.10 -0.00 0.03 -0.03
IFOF 0.04 0.03 0.08 -0.01 0.08 -0.09
SLF -0.04 0.02 -0.15 0.04 0.06 0.03

SM       
CCG 0.00 0.04 -0.04 0.00 -0.05 0.21
CHC -0.01 0.13 -0.29 -0.01 -0.10 -0.26
CS -0.04 -0.02 -0.07 -0.04 -0.06 -0.02
FMAJ 0.05 0.13 -0.06 0.05 -0.08 -0.03
FMIN -0.07 0.03 -0.14 -0.07 -0.04 0.02
IFOF 0.05 0.10 -0.04 0.05 -0.07 -0.04
SLF -0.03 0.02 -0.09 -0.03 -0.05 0.04

LET_FLU       
CCG 0.01 0.01 -0.02 0.03 0.10 -0.06
CHC 0.03 -0.06 0.16 -0.07 0.07 -0.24
CS -0.05 -0.02 -0.08 -0.07 -0.05 -0.10
FMAJ 0.09 0.08 0.10 -0.07 0.07 -0.18
FMIN -0.07 -0.07 -0.06 0.12 0.15 0.08
IFOF 0.02 -0.07 0.12 -0.01 0.10 -0.10
SLF -0.08 -0.08 -0.12 0.08 0.17 0.01

CAT_FLU       
CCG 0.08 0.12 -0.02 -0.10 -0.10 -0.11
CHC 0.12 0.24 -0.13 -0.04 -0.04 -0.04
CS 0.03 0.04 0.02 -0.05 -0.06 -0.07
FMAJ 0.04 0.16 -0.11 -0.02 -0.07 0.01
FMIN -0.00 0.05 -0.06 0.05 -0.02 0.11
IFOF 0.14 0.20 0.01 0.00 -0.03 0.03
SLF 0.06 0.13 -0.05 -0.06 -0.07 -0.05

*. p < 0.05

Note. FA = fractional anisotropy, MD = mean diffusivity, CCG = cingulum cingulate

gyrus, CHC = cingulum hippocampus, CS = corticospinal tract, FMAJ = forceps

major, FMIN = forceps minor, IFOF = inferior fronto-occipital Fasciculus, SLF =

superior longitudinal Fasciculus, PS = perceptual speed, EM = episodic memory,

SM = semantic memory, LET_FLU = letter fluency, CAT_FLU = category fluency.

All analyses were adjusted for age.

doi: 10.1371/journal.pone.0081419.t002

where we had observed significant associations of PS to FA or
MD. As the difference in model fit between the default model
and the alternative model was never significant (ps > 0.10), we
conclude that the size of the correlation coefficients were not
significantly different between the young-old and the old-old.

Of note is that the majority of the variance associated with
the relation between white matter microstructure and cognition
was shared with age. When age was entered as a covariate,
the strength of the correlations between the latent tract factors
and the latent cognitive factors was reduced by 50% or more
(zero-order correlations not shown).

Given that older age is associated with an increased
dementia risk [29], it is possible that the strong relationships of
FA and MD to PS in the old-old could be due to the presence of
preclinical dementia cases in this age group. According to
preliminary dementia diagnoses (DSM-IV criteria) available at
follow-up, 5 persons in the young-old and 12 persons in the
old-old age group developed dementia during the follow-up
period (maximum = 6 years). Hence, we repeated the analyses
before and after excluding persons in a preclinical dementia
phase. These analyses were only performed for PS, as this
was the only domain significantly associated with the white
matter indicators. The results from these analyses are shown in
Table 3. For FA, there was no effect of excluding the future
dementia cases. However, for MD the strength of the
relationships of CHC and CS to PS was attenuated and did not
remain significant in the reduced sample.

Discussion

We observed a significant association between white matter
microstructure and perceptual speed. In exploring this
association further, the link was reliable among the very old
(≥78 years), but not in the 60-72 years-old subsample. These
observations were made in a sample free from dementia and
other neurological disorders, and remained also after excluding
persons in a preclinical dementia phase.

The finding that white matter microstructure was associated
with perceptual speed is in accordance with previous research
on elderly samples [4-6]. Alterations in white matter integrity
likely lead to less efficient communication among brain
networks, and it is conceivable that this affects processing
speed to a greater extent than other cognitive functions. It has
been suggested that disconnection of cortical areas and
functional disruption of large-scale neurocognitive networks, as
a result of decline in white matter integrity, may be one
underlying mechanism for age-related deficits in cognitive
functioning [30,31]. In the present study, the strongest
associations with perceptual speed were observed for FA and
MD in FMAJ and IFOF. These are both large white matter fiber
tracts connecting the occipital lobes through the corpus
callosum (FMAJ) and to the frontal lobes (IFOF). Given that
perceptual speed requires the involvement of multiple brain
regions, associations between major association pathways and
cognitive functioning is in line with the disconnection
hypothesis of cognitive aging.

Although the participants did not have any apparent motor
problems (as noted by the test administrator), it cannot be ruled
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out that a motor component played a role in the white matter-
speed association observed, given that both speeded tasks
used in this study are dependent on motor abilities. For
example, Vernooij et al. [6] observed a relationship of FA and
MD to motor speed. That said, Sasson et al. [32] found an
association between white matter integrity and processing
speed also after controlling for motor function.

When stratifying the sample according to age, the
associations between white matter and perceptual speed were
non-significant in the young-old, but reliable in the old-old.
There are several possible explanations for this pattern of
results. First, larger effect sizes in the older age group may
indicate that individual differences in change of white matter
(i.e. decrease of FA and increase of MD) and perceptual speed
(i.e. cognitive decline) are associated. If this is the case,
between-person differences in white matter integrity and speed
at a certain point in time will be more determined by aging-
related influences, and less by initial individual differences, the
older the sample is. As a result, correlations between white
matter integrity and perceptual speed would be expected to
increase with age [10,11,33]. It should be noted, however, that
we did not find the correlation coefficients between the young-
old and old-old to be significantly different. Furthermore, this
reasoning is based on the typical assumption in cross-sectional
research, such as absence of age-differential selection effects.
Longitudinal work is needed to directly address the
developmental association between white matter
microstructure and cognition in aging.

Another possible explanation for why the associations with
perceptual speed were only observed in the older age group is
that the integrity of white matter tracts becomes more important
after declining below a certain threshold. White matter integrity
decreases across the adult life span, starting after age 40 [34].
However, it might be that it is only after a certain level of
degeneration that white matter integrity starts to affect cognitive
performance. Indeed, stronger associations between brain
structure and cognitive functioning have been observed in older
compared to younger age groups in previous studies [35,36].

Even though we only observed an association between
indices of white matter microstructure and speed in the very
old, this does not mean that there is no relationship between a
well-functioning white matter network and perceptual speed at
younger ages. For example, associations between white matter
integrity and speeded performance have been observed also in
young adults [37,38]. The reason why we did not observe a
significant association in the young-old may be that we were
only able to assess FA and MD in central parts of large white
matter tracts due to limitations in the data. With more sensitive
measures of white matter integrity (e.g. assessing white matter
integrity in smaller tracts, or in tracts closer to the cerebral
cortex), or cognitive functioning (e.g. reaction time measures),
associations to perceptual speed may be observed also at
younger ages.

Finally, the significant correlation between white matter
integrity and perceptual speed in the old-old age group may
partly reflect changes related to incipient dementia. Decreases
in white matter integrity have been reported in persons with
pre-symptomatic Alzheimer’s disease [39], amnestic mild
cognitive impairment [40], and Alzheimer’s disease [40,41].
The regional distribution of decreased white matter integrity in
these samples is widespread but often follows the pathology of
AD, with early alterations in subregions of the medial temporal
lobe [42]. To examine this issue, we repeated the analyses
after excluding all persons who received a dementia diagnosis
during the available follow-up period (maximum 6 years). For
FA, the associations between perceptual speed and FMAJ and
IFOF remained unchanged in the reduced sample. Also for
MD, the strength of the associations with these tracts remained
unchanged. However, excluding persons with impending
dementia resulted in weaker associations of MD in CHC and
CS to perceptual speed. As CHC is a tract located in the
medial temporal lobe, it is possible that these correlations were
partly associated with AD-related pathology.

Major strengths of the present study are that we assessed
the association between white matter microstructure and
cognitive functioning in a large population-based sample of

Table 3. Correlation coefficients of FA and MD to perceptual speed before and after exclusion of persons in a preclinical
dementia phase.

 FA MD

 60-72 years 78-87 years 60-72 years 78-87 years

 Before exclusion After exclusion Before exclusion After exclusion Before exclusion After exclusion Before exclusion After exclusion
CCG 0.02 0.03 0.19 0.15 -0.12 -0.13 -0.15 -0.13
CHC 0.05 0.07 0.24 0.35 -0.10 -0.15 -0.38* -0.28
CS -0.11 -0.10 0.18 0.14 -0.06 -0.07 -0.31* -0.27
FMAJ 0.11 0.14 0.34** 0.39** -0.05 -0.06 -0.34* -0.37*
FMIN 0.05 0.06 0.24 0.20 -0.08 -0.07 -0.14 -0.15
IFOF 0.11 0.10 0.30* 0.28* -0.02 -0.03 -0.28* -0.31*
SLF -0.04 -0.03 0.15 0.16 -0.02 -0.04 -0.21 -0.23

* p < 0.05, **p < 0.01
Note. FA = fractional anisotropy, MD = mean diffusivity, CCG = cingulum cingulate gyrus, CHC = cingulum hippocampus, CS = corticospinal tract, FMAJ = forceps major,
FMIN = forceps minor, IFOF = inferior fronto-occipital Fasciculus, SLF = superior longitudinal fasciculus. All analyses were adjusted for age.
doi: 10.1371/journal.pone.0081419.t003
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elderly persons, also including the very old. This made it
possible to examine the associations in different age segments
in late adulthood. Further, we examined white matter-cognition
links for a range of cognitive domains at the latent level,
thereby reducing effects related to specific cognitive measures
and at the same time removing error variance associated with
a particular task. An additional advantage is that we had
access to follow-up information on most subjects, and thus
were able to screen the sample for incipient dementia.
However, some limitations should be noted. The data collection
took place between 2001 and 2004. Thus, the DTI
measurements are not of modern quality. Though forming
latent variables attenuated the influence of error variance, large
and anisotropic voxels may have introduced partial volume
effects (grey/white mixture) that could not be completely
accounted for by the TBSS processing. Another limitation is
that the analyses are based on cross-sectional data, which
prevents us from making direct inferences about within-person
changes. Longitudinal studies within this area are greatly
needed.
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