
BioMed CentralAlgorithms for Molecular Biology

ss
Open AcceResearch
SMOTIF: efficient structured pattern and profile motif search
Yongqiang Zhang and Mohammed J Zaki*

Address: Department of Computer Science, Rensselaer Polytechnic Institute, Troy, New York 12180, USA

Email: Yongqiang Zhang - zhangy0@cs.rpi.edu; Mohammed J Zaki* - zaki@cs.rpi.edu

* Corresponding author

Abstract
Background: A structured motif allows variable length gaps between several components, where
each component is a simple motif, which allows either no gaps or only fixed length gaps. The motif
can either be represented as a pattern or a profile (also called positional weight matrix). We propose
an efficient algorithm, called SMOTIF, to solve the structured motif search problem, i.e., given one
or more sequences and a structured motif, SMOTIF searches the sequences for all occurrences of
the motif. Potential applications include searching for long terminal repeat (LTR) retrotransposons and
composite regulatory binding sites in DNA sequences.

Results: SMOTIF can search for both pattern and profile motifs, and it is efficient in terms of both
time and space; it outperforms SMARTFINDER, a state-of-the-art algorithm for structured motif
search. Experimental results show that SMOTIF is about 7 times faster and consumes 100 times
less memory than SMARTFINDER. It can effectively search for LTR retrotransposons and is well
suited to searching for motifs with long range gaps. It is also successful in finding potential
composite transcription factor binding sites.

Conclusion: SMOTIF is a useful and efficient tool in searching for structured pattern and profile
motifs. The algorithm is available as open-source at: http://www.cs.rpi.edu/~zaki/software/sMotif/.

Background
Searching biological sequence(s) for motifs is a funda-
mental task in bioinformatics. Motifs can be represented
as either patterns over a specific alphabet, or profiles (also
called positional weight matrix (PWM)), which give the
probability of observing each symbol in each position.
Motifs can be classified into two main types. If no variable
gaps are allowed in the motif, it is called a simple motif. For
example, in the genome of Saccharomyces cerevisiae, the
binding sites of transcription factor, GAL4 [1], can be
characterized by the simple motif shown in Table 1, which
illustrates the pattern over the IUPAC alphabet (ΣIUPAC;
see Table 2), as well as its profile (which gives the fre-
quency of each DNA base at each position). The motif in

Table 1 only consists of one component and thus is a sim-
ple motif. Since the symbols in the first 3 positions (CGS)
and in the last 3 positions (SCG) are well conserved, we
can also represent this motif as CGS[11,11]SCG, where
[11,11] means that there is a fixed "gap" of length 11
between the two components. If variable gaps are allowed
in a motif, it is called a structured motif. A structured motif
can be regarded as an ordered collection of simple motifs
with gap constraints between each pair of adjacent simple
motifs. For example, the LTR retrotransposons from the
Copia group, corresponding to genes encoding reverse tran-
scriptase, in A. thaliana can be characterized by the struc-
tured motif M1 [2,5] M2 [6,7] M3, as shown in Table 3[2].
Here M1, M2 and M3 are three simple motifs; [2,5] and

Published: 21 November 2006

Algorithms for Molecular Biology 2006, 1:22 doi:10.1186/1748-7188-1-22

Received: 21 May 2006
Accepted: 21 November 2006

This article is available from: http://www.almob.org/content/1/1/22

© 2006 Zhang and Zaki; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 24
(page number not for citation purposes)

http://www.almob.org/content/1/1/22
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17118189
http://www.cs.rpi.edu/~zaki/software/sMotif/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22
[6,7] are variable gap constraints ([minimum gap, maxi-
mum gap]) allowed between the adjacent simple motifs.
Note that each simple motif Mi (with 1 ≤ i ≤ 3) can either
be a pattern over ΣIUPAC or a profile over ΣDNA. Searching
for structured motifs is more complicated than searching
for simple motifs, and is an ongoing research area [3-7].
The sequence to be searched can be very long, e.g., chro-
mosome 1 of Homo Sapiens contains 245 million (245M)
base pairs. The structured motif can also be as long as sev-
eral kilobases. All these factors need to be considered
when designing an efficient structured motif search algo-
rithm.

More formally, a structured motif , is specified in the
form: M1 [l1, u1] M2 [l2, u2] M3 ... Mk-1 [lk-1, uk-1] Mk,

where Mi, 1 ≤ i ≤ k, is a simple motif component; and li

and ui (with 0 ≤ li ≤ ui), 1 ≤ i <k, are the minimum and
maximum length of the gap allowed between Mi and
Mi+1, respectively. Note that a gap is defined to be the
number of intervening positions after Mi but before Mi+1.
In other words if si and ei represent the start and end posi-

tions of component Mi, then for i ∈ [1, k - 1], the length
of the gap between Mi and Mi+1 is given as gi = ei+1 - si -

1, and we require that gi ∈ [li, ui]. We use |Mi| to denote
the number of symbols/positions in component Mi, also
called the length of the component, and we use

 to denote the total length of the struc-

tured motif (not counting gaps). The maximum span,

L, of the motif is the maximum number of positions
that can be occupied by the structured motif, which is

given as . The structured motif

 can be either specified as a pattern or a profile. When

 denotes a pattern, we use the notation j to denote

the symbol at position j in the motif, and when

denotes a profile, we use the notation xj to denote the

frequency of symbol x ∈ ΣDNA at position j, where j ∈ [1,

| |]. Table 3 shows both the pattern and profile repre-
sentation of an example structured motif with three com-
ponents.

Given a collection of sequences, , over the DNA alpha-

bet ΣDNA = {A,C,G,T}, and a structured motif, , the

structured motif search problem is to report all the occur-

rences (or matches) of in . The occurrence set of the

structured motif, given as , can be reported in two
forms: a) full positions: list of the positions for each symbol

in , for all possible matches in , or b) start positions:

list of the starting positions of for each match in .

Table 4 shows an example sequence and a structured

motif , where M1 = CG, M2 = TTA and M3 = CAT, and

[0, 1] and [1,4] are the intervening gap ranges between M1

and M2, and M2 and M3, respectively. The motif has k = 3

components, it length is | | = 8 and its maximum span

is L = 13. The occurrence set of full positions is =
{(5,6,8,9,10,12,13,14), (5,6,8,9,10,15,16,17)}, and of

start positions is = {5}.

Depending on the application, the structured motif search
problem can have several variations:

• Missing Components: The matching motifs can consist of

some, instead of all, the simple motifs in , allowing for
at most q missing components.

• Approximate Matches: The matching motifs may consist
of similar motifs (as measured by Hamming or Levenshtein
distance [8]), instead of exact matches, to the simple

motifs in , allowing for at most εi errors for simple

motif Mi (when is expressed as a pattern).

• Overlapping Components: The variable gap constraints (li
and ui) can take on a limited range of negative values,

| | | | = =∑ ii
k

1

L M ui ii
k

i
k= + =

−
= ∑∑ | |

1
1

1

Table 1: A Simple Motif

Symbols Motif

A 0 0 0 4 1 1 7 0 5 1 0 2 0 2 0 0 0
C 10 0 1 2 3 5 0 7 0 4 2 5 5 1 9 10 0
G 0 10 9 4 5 3 2 3 0 3 1 1 4 1 1 0 10
T 0 0 0 0 1 1 1 0 5 2 7 2 1 6 0 0 0

IUPAC C G S V N N D S W N B N B N S C G

The binding sites for the transcription factor GAL4 in S. cerevisiae satisfy this motif [1]. Rows 2–5 show the profile (the frequency of observing a
DNA base in a given position). The last row shows the corresponding pattern over the IUPAC alphabet.
Page 2 of 24
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22
allowing search for overlapping simple motifs. We allow
two adjacent components Mi and Mi+1 to overlap, but we
require that Mi+1 does not precede Mi. This condition can
be satisfied by the following constraints on the gap range
[li, ui]: - |Mi| ≤ li ≤ ui, for i ∈ [1, k). For example the search
for motif ACG[-2,2]CGA, can discover the overlapped
occurrence ACGA, as well as the non-overlapped occur-
rence ACG- -CGA, at the two extremes of the gap range.

• Profile Search: The components of the motif can be

specified as a pattern in either the DNA (ΣDNA) or IUPAC

(ΣIUPAC) alphabets, or as a profile over ΣDNA.

In this paper, we focus on the problem of searching for a
given structured motif in one or more sequences. We pro-
pose SMOTIF, an efficient algorithm for structured motif
searches. It uses an inverted index of symbol positions,
and it finds all occurrences by positional joins over this
index. For structured pattern search problem, we propose
two main variants of our approach: i) a direct search for
simple motifs and the structured motif via positional
joins, and ii) a two-step approach, where we use a suffix
tree to search for simple motifs and then use positional
joins for the structured motif. For structured profile search
problem, we first search each simple motif by aligning its
profile with the sequences, and then search structured
motifs with positional joins. SMOTIF allows missing com-
ponents, overlapping motifs, and also approximate
matches (when using the two-step approach). SMOTIF
also allows flexible matches using IUPAC symbols.

We apply SMOTIF for searching long DNA sequences for
LTR retrotransposons, which constitute a substantial frac-
tion of most Eukaryotic genomes and are believed to have
a significant impact on genome structure and function
[9,10]. We show that SMOTIF is effective in searching for
composite regulatory patterns, and it can also suggest
potentially new binding sites. We experimentally demon-
strate the superiority of SMOTIF over SMARTFINDER, a
state-of-the-art method for structured motif search, both
in terms of time and space; SMOTIF can be up to 7 times
faster and can consume 100 times less space.

Related work
Many existing pattern matching algorithms [8,11-18] can
be used to solve the simple pattern search problem. Given
the sequence length, n, and the pattern length, m, exact
matching algorithm can run in O (n + m) [11]; approxi-
mate matching algorithm can run in O (rn) [16,17] or O
(nm/w) [18], where r is the error threshold and w is the
size of a computer word. The space complexity is O (n) for
both exact matching and approximate matching.

Several previous efforts have focused on the structured
pattern search problem. Anrep [3,4] provides a unified
biosequence pattern representation by using network
expressions with spacers, where a network expression is a reg-
ular expression without Kleene closure. With network
expressions, one can specify the scoring scheme and the
threshold of approximate matching for each simple motif
separately, the positional weights which express the rela-
tive importance of different parts of a motif, and whether
a simple motif is optional. Anrep introduces a two-step
approach: first it searches for simple motifs by a thresh-
old-sensitive motif matching algorithm and then it finds
the structured motif by an optimized backtracking match-
ing algorithm. However, as compared by [6], Anrep is
much slower than SMARTFINDER.

In [5], the structured motif is called a Classes of Characters
and Bounded Gaps (CBG) expression and is represented by

Table 3: A Structured Motif

Symbols M1 M2 M3

A 2 12 17 1 11 1 35 0 24 1 0 3 1 35
C 0 10 8 5 2 0 0 19 0 0 25 5 35 1
G 2 5 5 2 10 34 1 0 0 26 11 0 0 0
T 32 9 6 28 13 1 0 17 12 9 0 28 0 0

IUPAC D N N N N D R Y W D S H M M

We aligned the 36 A. thaliana LTR retrotransposons from Repbase Update [2] database which belong to Copia group corresponding to genes
encoding reverse transcriptase to obtain the structured motif M1 [2,5] M2 [6,7] M3. Rows 2–5 show the profile (the frequency of observing a DNA
base in a given position), and the last row shows the corresponding pattern over the IUPAC alphabet.

Table 2: IUPAC Alphabet (ΣIUPAC)

Symbol A C G T U R Y K
Bases A C G T U A,G C,T G,T

Symbol M S W B D H V N
Bases A,C G,C A,T C,G,T A,G,T A,C,T A,C,G A,C,G,T
Page 3 of 24
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22
a non-deterministic ε-automaton with bit parallelism.
Two algorithms are proposed for CBG expression search:
forward search and backward search. Bit parallelism
speeds up the search, but is adequate only for a pattern
whose maximum span is smaller than the length of the
computer word. Also the implementation of CBG can
only handle such pattern. This limits the application of
CBG to searching for patterns with small number of sym-
bols and gaps.

SMARTFINDER [6,7], which is currently the most efficient
method for structured motif search, is also a two-step
approach. In the first step each simple motif is searched
separately by building a suffix tree for the sequence. This
step outputs the ordered occurrence lists of all simple
motifs. The second step solves a constraint satisfaction prob-
lem by considering constraints individually in three sub-
steps. First it considers the gap constraints and builds a
constraint graph whose nodes are the simple motif occur-
rences and edges connect all possible pairs of nodes that
locally satisfy the gap constraints. It then considers the
constraint for the maximum number of missing compo-
nents and shrinks the graph to contain only the nodes that
can be in the structured motif occurrences. Finally it enu-
merates all the valid occurrences by a depth first search
(DFS). Notable differences in SMOTIF and SMART-
FINDER are as follows: we search patterns directly by posi-
tional joins over an inverted index, we consider variable
gap constraints during the positional joins as opposed to
building a constraint graph, and we handle missing com-
ponents more efficiently by considering them over pat-
terns instead of over each occurrence as in SMARTFINDER.
Note also that like Anrep and SMARTFINDER, SMOTIF
can also mine approximate patterns, when using the two-
step approach, which we describe later.

For profile search, MATCH [19], P-Match [20], and MatIn-
spector [21,22] search DNA sequences against a position
weight matrix library (such as TRANSFAC database [23])
and report the occurrences that satisfy given score thresh-
olds. They compute the matrix score by multiplying the
base frequency with the information content value at each
position, in order to emphasize the fact that mismatches
at less conserved positions are more easily tolerated than
mismatches at highly conserved positions. Besides the

matrix score, they define a core region, which is usually the
first 4–5 most conserved consecutive positions of the
matrix, and perform the core score threshold check. Then
they align the matrix to each position of the sequence and
calculate the core score and matrix score. However, these
algorithm don't consider the prior probability of each
base when calculating the matrix (or core) score, and the
core region is required to be consecutive. They need to
check all positions of each subsequence (at least all the
core positions) in order to calculate the matrix (core)
score. Moreover, these algorithms only work on simple
profile with one single matrix component. For structured
profile search, only Anrep [3,4] provides the capability to
model structured profiles, with its general network expres-
sions. However, Anrep doesn't give a solution on score
calculation and fast search for structured profiles. Moreo-
ver, its implementation doesn't support structured profile
search. To our knowledge, SMOTIF is the only imple-
mented method that can handle structured profile search.

Methods
We first introduce our basic approach for structured pat-
tern search, and successively optimize it for various prac-
tical scenarios. We then present our approach for
structured profile search.

Structured pattern search: basic approach

Let us assume that we are searching for a structured motif

 over a single sequence S ∈ . We assume that S is

over ΣDNA, whereas, is over ΣIUPAC to allow for more

flexible matches. SMOTIF first converts S into an equiva-
lent inverted format [24,25], where we associate with each
symbol in the sequence its pos-list, a sorted list of the posi-
tions where the symbol occurs in S. More formally, for a

symbol X ∈ ΣIUPAC, its pos-list is given as (X, S) = {i | S

[i] = X, i ∈ [1, |S|]}, where S [i] is the symbol at position i
in S, and |S| denotes the length of S. When S is obvious,
we drop it, and denote the pos-list as (X). For our

example sequence S in Table 4, the pos-lists for X ∈ ΣDNA

are given in Table 5.

Depending on whether we compute the pos-lists for
IUPAC symbols or not, SMOTIF uses two approaches: (a)
DNA pos-lists: Here we keep (in memory) the pos-lists only
for the four DNA symbols. For the other IUPAC symbols,
we obtain their pos-lists by taking a union over the pos-
lists of their constituting DNA symbols, e.g., (R) =

(A) ∪ (G) = {1, 3, 5, 7, 10, 11, 13, 16}. (b) IUPAC
pos-lists: Here we keep (in memory) the pos-lists for the

IUPAC symbols that actually appear in . These pos-
lists are computed directly by scanning S once.

Table 4: Structured Motif Search

Sequence (S ∈): GCATGCGTTAGCATCATC

Structured Motif (): GC[0,1]TTA[1,4]CAT

Occurrences of in are marked in bold.

Page 4 of 24
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22
Positional joins

We first extend the notion of pos-lists to cover structured

motifs. The pos-list of is given as the set of start posi-

tions of all the matches of in S. Let X, Y ∈ ΣIUPAC be

any two symbols, and let = X [l, u] Y be a structured

motif. Given the pos-lists of X and Y, namely, (X) and

(Y), the pos-list for can be obtained by a positional

join as follows: For a position x ∈ (X), if there exists a

position y ∈ (Y), such that l ≤ y - x - 1 ≤ u, it means that
Y follows X within the variable gap range [l, u] in the
sequence S, and thus we can add x to the pos-list of motif

X [l, u] Y. Let d be the length of the gap between x ∈ (X)

and y ∈ (Y), given as d = y - x - 1. Then, in general, there
are three cases to consider in the positional join algo-
rithm, as shown in Figure 1,

• d <l: Advance y to the next element in (Y).

• d > u: Advance x to the next element in (X).

• l ≤ d ≤ u: Save this occurrence in (X [l, u] Y), and then
advance x.

The pos-list for X [l, u] Y can be computed in time linear
in the lengths of (X) and (Y). In essence, each time

we advance x ∈ (X), we check if there exists a y ∈ (Y)
that satisfies the given gap constraint. Instead of searching
for the matching y from the beginning of the pos-list each
time, we search from the last position used to compare
with x. This results in fast positional joins, and also allows
overlaps among occurrences. For example, during the
positional join for the motif T[0, 1]A, with l = 0 and u = 1,
we scan the pos-lists of T and A in Table 5. Initially, x = 4
and y = 3. This gives d = 3 - 4 - 1 = -2 <l, thus we advance
y to 10. Next, d = 10 - 4 - 1 = 5 > u, thus we advance x to 8.

Next, d = 10 - 8 - 1 = 1 ∈ [0, 1]. So we store x = 8 in (T[0,
1] A) and advance x to 9. By continuing the process, we get
the final pos-list as (T[0,l] A) = {8, 9, 14}.

Given a longer motif , the positional joins start with
the last two symbols, and proceed by successively joining
the pos-list of the current symbol with the intermediate
pos-list of the suffix. Formally, let H [l, u] T be an interme-
diate pattern, with symbol H as the head symbol, and a suf-
fix structured motif T as tail. The pos-list of H [l, u] T is
obtained by doing positional join on the pos-list of H and
the pos-list of T. As the computation progresses the previ-
ous tail pos-lists are discarded. Combined with the fact
that only start positions are kept in a pos-list, this saves
both time and space.

SMOTIF handles both simple and structured motifs uni-
formly, by adding the gap range [0, 0] between adjacent
symbols within each simple motif Mi. For our example in

Table 4, the structured motif becomes:
G[0,0]C[0,1]T[0,0]T[0,0]A[1,4]C[0,0]A[0,0]T. Further-
more, SMOTIF treats the IUPAC symbol N (which stands
for any of the four bases: A,C,G,T) as a gap, [1,1], and
merges it with adjacent gaps in the motif. For example, the
motif A[0,0]N[0,0]N[0,0]C will be first converted to A[0,
0][1,1][0,0][1,1][0,0]C, and then the adjacent gaps will be
combined to obtain A[2,2]C as the final motif.

Figure 2 shows how the positional joins work for our
(expanded) motif from Table 4. At any stage in the proc-
ess, the head symbol's pos-list corresponds to the full list
of positions shown, whereas the tail's pos-list consists
only of the positions shown in bold. For example, when
computing A[1,4]CAT, the pos-list of the tail CAT is {2,
12, 15}, and that of the head symbol A is {3, 10, 13, 16}.
Also, for illustration, we add a link between any two posi-

Positional Joins AlgorithmFigure 1
Positional Joins Algorithm.

Positional-Joins(P(X),P(Y), l, u)
1 i← j ← k ← 1;
2 while (i ≤ |P(X)| and j ≤ |P(Y)|) do
3 d← P(Y)[j]− P(X)[i]− 1;
4 if (d < l) then
5 j ← j + 1;
6 else if (d > u) then
7 i← i + 1;
8 else
9 P(X [l, u]Y)[k]← i;

10 i← i + 1;
11 k ← k + 1;

12 return P(X [l, u]Y);

Table 5: Pos-lists

A C G T

3 2 1 4
10 6 5 8
13 12 7 9
16 15 11 14

18 17
Page 5 of 24
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22
tions (x and y) in adjacent columns if their difference (d =
y - x - 1) falls within the corresponding gap range. The
joins begin with the last two symbols, with A as the head
and T as the tail with a gap of [0,0]. The only positions x

∈ (A) that satisfy the adjacent gap constraint are 3, 13
and 16 (marked in bold), that form the pos-list of A[0,0]T.
Next we join (C) with (A[0,0] T) to get the valid
positions 2,12 and 15. At the next step we need to con-
sider A as the head, with constraint [1,4], followed by the
tail C [0,0] A [0,0] T. The only positions in (A) that sat-
isfy the gap constraint of l = 1 and u = 4 are 10 and 13.
Note also how position 2 that was in the tail's pos-list can-
not be extended, since there is no position where A occurs
within a gap of [1,4] before the tail CAT. The join process
continues until the first symbol, and we finally get 5 as the
only start occurrence for the full structured motif.

Full position recovery
In our positional join approach, to save time and space we
retain only the motif start positions, however, in some
applications, we may need to know the full position of
each occurrence, i.e., the set of matching positions for
each symbol in the motif. We describe two approaches to
recover the full positions: recomputed or indexed full-
position recovery.

Recomputed full position recovery

For recomputing the full positions SMOTIF needs access

to only the sequence S and the post-list (). Let s ∈

() be a start position for the structured motif in
sequence S. Figure 3 shows how to recompute the full
positions starting from s. Note that a structured motif with
maximum span L must be found within position range [s,
s + L - 1], so we can stop searching from s after the maxi-

mum span is reached. During the full position recovery,

we maintain a list of intermediate position prefixes

that match the prefix of . For an intermediate prefix F

∈ , let |F| denote the number of positions in F. Initially

 = {(s)}. For each symbol S [i] with i ∈ [s + 1, s + L - 1]

in sequence S, we consider each candidate prefix F ∈

and check whether [|F| + 1] = S [i] and d = i - F [|F|] ∈

[l, u]. If yes, S [i] is a valid occurrence of [|F| + 1], and
we append position i to F. If there are multiple positions i

that are valid occurrences for [|F| + 1], we add as many

copies of F appended with the i positions to . A prefix
F is removed if there are no symbols in S which match
within the maximum gap. The algorithm stops once all F

∈ are full positions or if the maximum span L has been
reached.

As an example, let's assume we want to recover the full

position for the motif = GC[1,2]T in our the sequence
S from Table 4, starting from position s = 5. The recovery
process is illustrated in Figure 4. Since the maximum span

of is L = 5 the figure shows positions 5 through 9 in S,

which are the only valid positions where may be

found. Initially, = {(5)}, and we know that [1] = S

[5]. Next S [6] = C = [2] match and are also adjacent in

S, so we update = {(5, 6)}. We discard S [7] since it

doesn't match [3]. However, both S [8] = T = [3]

and S [9] = T = [3] are valid matches within the gap

constraints. Thus we update = {(5, 6, 8), (5, 6, 9)}. At
this point we have reached the maximum span, and also

all F ∈ are full positions, so we stop.

Positional Joins ExampleFigure 2
Positional Joins Example. The figure shows how the positional joins work for the (expanded) motif from Table 4.

[0, 0][0, 0][1, 4]

10
139

86
7

G [0, 0] C [0, 1] T [0, 0] T [0, 0] A C A

1

11

2

15
18

12

17 17

4

9
14

4
8

14

3

16

6

18

10 8
9

2 3 4

12
15

13
1416
17

5

T

Page 6 of 24
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22
Indexed full position recovery

Rather than recomputing the positions, we can "index"
some information during the positional joins in order to

facilitate full position recovery. For each suffix of start-

ing at position i with 1 ≤ i ≤ | |, we keep its pos-list, i,

and an index list, i. For each entry, say i [j], in the

pos-list i, the corresponding index entry i [j], points

to the first entry, say l, in i+1 that satisfies the gap range

with respect to i [j], i.e., i+1 [l] - i [j] - 1 ∈ [li, ui].

Note that is never used. Also note that () =

1. Let s be a start position for the structured motif in

sequence S, and let s be the js-th entry in 1, i.e., s =

1[js]. Also let F store a full position starting from s, and

let store the set of all full positions. Figure 5 shows the
pseudo-code for recovering full positions starting from s.
This recursive algorithm has two parameters: i denotes a

(suffix) position in , and j gives the j-th entry in i.

The algorithm is initially called with = {F = {s}}, i = 2

 | |

Recomputed Full Position Recovery AlgorithmFigure 3
Recomputed Full Position Recovery Algorithm.

Recomputed-Recovery(S, s)
1 F ← {(s)}, i← s + 1;
2 while (i < (s + L) and ∃F ∈ F , such that F < |M|) do
3 foreach (F ∈ F) do
4 if (M[|F |+ 1] = S[i]) then
5 d← i− F [|F |]− 1;
6 if (d ∈ [li, ui]) then
7 if (l = u) then
8 Append i to F ;

else
9 Copy of F to F ′, append i to F ′ and add

F ′ to F ;

10 else if (d > u) then
11 remove F from F ;

12 i← i + 1;
13 foreach (F ∈ F) do
14 if (|F | < |M|) then
15 Remove F from F ;

16 Return F ;
Page 7 of 24
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22
and with j = 1[js]. Since we have 2[j] - F [1] - 1 ∈ [l1,

u1] we set F [2] = 2[j]. In the next call we can follow the

index 2[j] to get the next position in F, namely F [3].

Thus in each call we keep following the indices from one
pos-list to the next and finally we can get a full position

starting from s when we reach the last pos-list, . Fur-

thermore, at each suffix position i, since j only marks the
first position in i+1 that satisfies the gap constraints, we

also need to consider all the subsequent positions j' > j
that may satisfy the corresponding gap range.

Consider the example shown in Figure 6 to recover the full
positions for our example motif from Table 4. Under each
symbol we show two columns. The left column corre-
sponds to the intermediate pos-lists i (compare to Fig-

ure 2), whereas the right column stores the indices i

into the pos-list i+1. For example, (A[0,0]T) = 7 =

{3, 13, 16}, and 7 = {1, 4, 5}. For example, for entry

7[2] = 13, we have 7[2] = 4, which means that the

first position in 8 = (T) that satisfies the gap range

[0,0] is 14, which occurs at index 4, i.e., 8[4] - 7[2] -

1 = 14 - 13 - 1 = 0 ∈ [0,0]. To recover the full position for
our example motif, from start position 5, we follow index

1 to get position 6 in the next pos-list, to obtain = {(5,

6)}. Then we keep following the indices and get = {(5,
6, 8, 9)}. In the next step, we follow to position 10 (at
index 1); a quick check for the gap range [0,0] discards

position 13. We now have = {(5, 6, 8, 9, 10)}. In the
next step we immediately jump to position 12 (at index
2). However, both 12 and 15 are within the gap range
[1,4]. From 12, we will eventually get F = (5, 6, 8, 9, 10,
12, 13, 14), whereas from 15, we will eventually get F = (5,
6, 8, 9, 10, 15, 16, 17), as the two possible full-positions.

Sequence segmentation

The SMOTIF approach as described above works well for
searching a motif in a relatively short sequence. For a very
long sequence S (e.g., searching for (LTR) retrotransposons
in an entire chromosome) the pos-lists can get very long
in the initial stages, consuming a lot of memory. SMOTIF
handles a long sequence by splitting it into several seg-
ments and searches each segment separately for the struc-
tured motif. That is, the sequence S is split into p equal
partitions (except for the last one). Handling each smaller

segment Si (i ∈ [l, p]) instead of the original S can save a

lot of space and also reduces the total search time. After
segmentation, to avoid missing any occurrence, we

require that each partition Si, with i ∈ [l, p - 1], include the

| |

Indexed Full Position Recovery AlgorithmFigure 5
Indexed Full Position Recovery Algorithm.

Indexed-Recovery(i, j, F)
1 if (i > |M|) then
2 Add F to F ;
3 foreach (|Pi| ≥ j′ ≥ j such that (Pi[j′]− F [i− 1]− 1) ∈ [li, ui]) do
4 F [i]← Pi[j′];
5 Indexed-Recovery(i + 1, Ni[j′], F);
6 if (i=2) then
7 Return F ;

Recomputed Full-position Recovery ExampleFigure 4
Recomputed Full-position Recovery Example. The fig-
ure shows how recomputed full-position recovery, using the
structured example shown.

Full−positions

Position
Symbol

5
G

6 7 8 9
C G T T

G[0,0]C[1, 2]T

(5, 6, 8) (5, 6, 9)

Structured Motif
Page 8 of 24
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22
first L - 1 symbols from partition Si+1. Finally, to avoid

duplicate occurrences, we discard all occurrences with a
start position in the overlap region, since it would be
reported when we process segment Si+1. For example, let S

be the sequence in Table 6, and let the structured motif be

 = GC[1,2]T with maximum span L = 5. If p = 3, then
we would have three segments of length 6 each. After add-
ing the overlap region of L - 1 = 4 positions at the end of
each segment, we obtain the final three segments shown

in Table 6. Two start positions of would be found in
S1 (namely 1 and 5), and one in S2 (namely 11). Note that

start positions 5 and 11 would have been missed if we had
no overlap.

So far we have assumed that we are searching for the struc-
tured motif in a single sequence. SMOTIF can easily han-

dle a collection of sequences. We simply search each
sequence separately using segmentation when necessary.

Missing components

In some applications a partial match of the structured
motif might still be of interest. SMOTIF allows up to q
simple motif components to be missing during the search.

Let be a structured motif with k components. SMOTIF
first enumerates all possible sub-motifs having k' compo-

nents, where k' ∈ [k - q, k]. Next, the gap ranges are
adjusted in each sub-motif to account for skipping over
the missing components. The new gap range, [li,j, ui,j],

between components Mi and Mj (with 1 ≤ i <j ≤ k) in a sub-

motif, is calculated as follows: , and

.

For example, if we allow one (q = 1) missing component
for our structured motif in Table 4, the set of sub-motifs
that need to be searched for are: GC[0,1]TTA[1,4]CAT,
GC[1,8]CAT, GC[0,1]TTA and TTA[1,4]CAT. Note that it
is straightforward to incorporate other approaches to
compute new ranges into SMOTIF since it would only
change the gap constraints. For example, li,j = minn ∈ [i,j-1]
{ln} and ui,j = maxn ∈ [i,j-1] {un} is another possible way to
compute the adjusted gap ranges.

Instead of searching each sub-motif separately, we do an
optimized search. We reuse the partial pos-lists created
when using a depth first search to enumerate and search
the sub-motifs. The idea is to re-use the pos-lists created
for common suffixes when enumerating their sub-motif
extensions.

Two-step approach for structured pattern search

So far we have described the direct method used by SMO-
TIF to search for the structured motif by positional joins
over the symbols. In fact, SMOTIF, can also follow a two-
step approach like in Anrep [4] and SMARTFINDER [6]. In

the first step, given and , we search for each sim-

ple motif in , i.e., M1, M2, ..., Mk. This task can be

solved by existing pattern matching algorithms. In the sec-
ond step, we do positional joins on the pos-lists of the
simple motifs. Let (Mi [li, ui]) be an intermediate

l li j nn
j

, = =
−∑ 1
1

u u u Mi j i n nn i
j

, (| |)= + += +
−∑ 1
1

Table 6: Segmentation into p = 3

S G C A T G C G T T A G C A T C A T C
S1 G C A T G C G T T A
S2 G T T A G C A T C A
S3 A T C A T C

Indexed Full-position Recovery ExampleFigure 6
Indexed Full-position Recovery Example. The figure shows how indexed full-position recovery, using the (expanded)
motif from Table 4.

13

G [0, 0] C [0, 1] T [0, 0] T [0, 0] A A[1, 4] [0, 0] [0, 0] TC
5 6 8 9 10 3

313
15
12 2

41 1 1 1

16

1 −2 2 1

3
−

17

8
9

−
−

−5
14

4

Page 9 of 24
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22
pos-list, with simple motif Mi as the head, and a suffix

structured motif = Mi+1 � Mk as tail. Since (Mi)

stores only the start positions, we need convert them into
end positions to check the gap constraints. There are two
cases to consider.

Exact matching

Many algorithms [11-14] exist for exact pattern matching.
Like in SMARTFINDER we use a lazy suffix tree [11] to
extract the pos-lists for all simple motifs. The matching
occurrences are sorted after extracting them from the suf-
fix tree to obtain the pos-list in sorted order. For an inter-

mediate pattern Mi [li, ui] , each start position s ∈ (Mi

[li, ui]) is converted into an end position s + |Mi| - 1.

Figure 7(a) shows an example of the pos-list join using
exact matches for simple motifs. Each column shows the
pos-list for a simple motif in the structured motif from
Table 4. We first join the pos-lists of TTA and CAT, check-

ing for gap range [1,4]. The start position 8 ∈ (TTA) is
converted to end position 8 + 3 - 1 = 10. We find that both
positions 12 and 15 lie within the minimum and maxi-
mum gap range (indicated by the links), and thus 8 is
retained in the resulting pos-list. Likewise 5 is in the final
pos-list, since after obtaining its end position 5 + 2 - 1 = 6,

we find d = 8 - 6 - 1 = 1 ∈ [0, 1].

Approximate matching
Several algorithms [8, 12, 15–18] exist for approximate
pattern matching. For consistency, we used Sellers'
dynamic programming algorithm [26], as implemented
in SMARTFINDER, to extract the pos-lists for all simple
motifs with approximate matches. This algorithm is not
optimal and it can be replaced by more efficient ones [16-

18]. Since we allow a specific Levenshtein distance [8]
(i.e., insertions, deletions and substitutions) between the
occurrences and the motif, the length of the occurrences
can be different from the component length |Mi|. Thus we
augment the pos-list to explicitly store the end position, in
addition to the start position, for each occurrence. Figure
7(b) shows how the pos-list joins work for approximate
matches of simple motifs. In the structured motif from
Table 4, we consider the exact matches of GC and CAT,
and the approximate matches of TTA within Levenshtein
distance of 1. Each column in (b) shows the pos-list of a
simple motif: the left sub-column is a list of its start posi-
tions and the right sub-column is a list of its end posi-
tions. We first join the pos-lists of TTA and CAT, checking
for gap range [1,4]. We compare the end positions of TTA
and the start positions of CAT and find that the pairs
(9,12), (10,12), (10,15), and (11,15) all lie within the gap
range (indicated by the links), and thus the pairs, (7, 10),
(8, 9), (8, 10) and (8, 11) are retained in the resulting pos-
list. Likewise (5, 6) is in the final pos-list, since after com-
paring the end position of GC, 6, with the start position of
TTA, 7 and 8, we find d = 7 - 6 - 1 = 0 ∈ [0,1] and d = 8 - 6
- 1 = 1 ∈ [0, 1].

Structured profile search

Having outlined our approach for structured pattern
search, here we tackle the problem of structured profile
search. The profile (also called a position weight matrix)

for a structured motif gives for each position in each
component, the frequency of occurrence for each symbol

in ΣDNA, i.e., xj gives how often symbol x ∈ ΣDNA occurs

at position j. Note that, as in the case of pattern motifs, for

a structured profile motif , we have to specify the gap
constraints between its simple profile motif components.
Profiles are able to better capture the variability in the

Simple Motif Positional Joins ExampleFigure 7
Simple Motif Positional Joins Example. The figure shows an example of positional joins on simple motifs, using the motif
from Table 4.

16

[0, 1]

10

[1, 4]

9
1
5
11

8 2
12
15

14

[0, 1]

8

[1, 4]

71
5
11

2
6
12

2
12
15

4

17
148

8
11

(b)(a)

10
GCCATTTAGC TTA CAT
Page 10 of 24
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22
motifs, since they capture position specific statistics on the
symbols, and as such can retain more valuable informa-
tion than the pattern representation.

Given a profile structured motif , and a user-specified

match/score threshold λ, the goal of structured profile
search is to enumerate all structured patterns that match

the profile motif above the threshold λ. Our approach to
profile motif search consists of the following two steps: a)
convert the raw frequency profile into a relative profile
weighted by information content at each position, b) enu-
merate occurrences matching the profile.

Weighted profile creation

Given the initial "raw" frequency profile for the structured

motif , we first convert it into a weighted profile as fol-
lows:

where xj gives the absolute frequency of symbol x ∈

ΣDNA at position j in the structured motif , for 1 ≤ j ≤

| |; fxj represents the relative frequency of symbol x at

position j in the motif; px (or py) denotes the prior (back-

ground) probability of symbol x (or y) ∈ ΣDNA; is the

weight (log-likelihood) of observing symbol x at position
j.

Whereas the weights computed above give the likelihood
of observing a given symbol in a given position they do
not account for the degree to which some symbols are
conserved at some positions. We can adjust the weights by
considering the information content at each position. The
information content for a profile is given as:

where xj is the information content of symbol x at posi-

tion j; j is the information content over all bases at posi-

tion j; and is the information content of the entire
profile. To allow mismatches at less conserved positions
to be more easily tolerated than those at highly conserved

positions, we multiply each weight by j, which is

larger for more conserved positions. As a result, the cor-
rected weight of each element in the profile becomes:

Given the initial profile motif we obtain its corre-

sponding information content weighted profile for
use in the enumeration step. Our weighting approach has
some differences with respect to previous ones [19-22].
For instance, we consider the prior probability of each
base for the calculation of the positional weight and infor-
mation content. That is necessary because some bases (i.e.
C and G) occur more frequently than others (i.e. A and T).
Also we use relative frequency instead of the absolute one,
so as to compare with the prior probability. However,
note that, in general, SMOTIF is flexible enough to handle
any user specified profile.

Figure 8 shows an example of computing a profile from a
set of aligned structured motifs. There are 8 aligned motifs
with different gaps between components. We first obtain

the initial frequencies of each symbol x ∈ ΣDNA in each

position j (xj), as well as its background probability

(px). For example, in position j = 1, we have 4 occurrences

of G, i.e., G1 = 4. Also, the background probability of G

in the aligned motif is pG = 34/120 = 0.28 (note that the

background probabilities can be obtained using different
means, for example, from the entire set of DNA
sequences, and not just the aligned motifs). Plugging in
these values into Equations 1, 2 and 3 yield the final posi-
tion specific weights (under each column) in the weighted

profile shown in Figure 8, e.g., G1 = 0.13. The fig-

ure also shows the information content for each position,
as well as the IUPAC symbol that best captures the symbol
distribution in each position.

Profile scoring

Given the weighted profile for a structured motif ,

a sequence S ∈ , and any subsequence S' of S (not nec-

essarily consecutive) of length | |, that satisfies the gap
constraints, the profile score for subsequence S' is com-
puted as the sum of weights of its symbols at each position

in the profile, given as: (note that

S' [j]j gives the weight of symbol S' [j] at position j in the

profile motif). In order to check whether S' is a potential
binding site, we compare its profile score with the user-

specified threshold, λ ∈ [0,1]. To ensure that the profile
score lies between 0 and 1, we have to normalize it. Let

f
p

p

f

pxj
xj x

yj yy
xj

xj

x
=

+
+

′ =

 ()

∈∑

()
, ln

ΣDNA

1

′xj

xj xj xj x x j xj
x

j
j

f f p p= − = = ()
∈ =
∑ ∑ln() ln(), ,

| |

ΣDNA 1

2

′xj

 xj j xj j
xj

x

f

p
= ′ =

 ()ln 3

 () []
| |′ = ′=∑S S j jj 1

Page 11 of 24
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22
min and max be the minimum and maximum

weights, and let µ and σ be the mean and standard devia-
tion of the weights, across all the positions in the
weighted profile. The normalized profile score n can
then be calculated using any of the following formulas:

Note that whereas Equations 4(a) and 4(b) are strictly in
the range [0, 1], for 4(c) n is in the range [0, 1] only

99.7% of the time (within a range ± 3σ of the mean µ).

When applying the score threshold for an occurrence S',
we require that its normalized score is above the threshold
λ. For example, for Equation 4(b),

In other words, instead of normalizing the score for each

match, we take λn as the new normalized threshold for

scoring the potential matches. Likewise we can get the
new thresholds for Equations 4(a) and 4(c). For example,

for 4(a) the normalized threshold would be λn = λ ·
max.

Partial scores

For profile matching problem, we are only given the score

threshold λ for the whole structured motif. We here
develop a method to compute a partial score threshold for
any sub-profile, which can lead to great pruning effi-

ciency. For a sub-profile of profile , let λn ()

denote its minimum score threshold and let max be its
maximum weight, i.e., the sum of the maximum weights

(regardless of the symbol) across all positions in .

Then the minimum (partial) score threshold for is
calculated as:

(). ()
()

(). ()
()

().
max

min

max min
a S

S
b S

S
cn n

′ =

′ ′ =
′ −

−
nn S

S

()

()

′ =

′ − +
()

 µ
σ3

1

2
4

 n nS
S

S()
()

() ()
min

max min
max min min′ =

′ −
−

≥ ⇒ ′ ≥ − + =λ λ λ

′ ′
′

′
′

λ λn n() ()max max′ = − − ′ () 5

Structured ProfileFigure 8
Structured Profile. A set of 8 aligned structured motifs yield the initial profile motif = M1 [0, 5] M2 [0, 9] M3, (where |M1|

= 4, |M2| = 6, and |M3| = 5), which is converted into the information content weighted profile . The highest weights at each
position are given in bold. The penultimate row shows the position specific information content (IC), and the core positions
with highest IC are given in brackets. The last row shows the IUPAC symbol that best captures the position specific symbol
occurrences.

1.36

A

0G
T

0 8 0 8 0 0 10 0 0 5 0 6 0 0
2 0 5 1 7 0 0 3 3 1 0 0 2 4 0
4 0 3 7 1 0 5 2 2 0 0 0 2 8
2 0 0 0 0 0 8 0 2 5 3 8 0 2 0

C
28
28
34
30

GACG

GACG

TACG
GACC
CAGG
CACG
GAGG

[1,1]
[3,3]
[4,4]

Aligned Motifs

C

T

TAGG

S 9
A

G

IUPAC

0.23
0.28
0.25

0.23 1.36

1.000.24

0.46
0.13

0.51 0.75 0.74 1.00
1.31
1.01

0.37

0.51

0.02

0.05 0.35

0.45

1.31
1.01

0.62

0.57

0.17

0.24

1.20

1.02

5 6 7 8 10 11 12 13 14 151 2 3 4

AB S S S A T S N B
0.50
W T M B G

Pr

0.13

[2,2]
[5,5]
[0,0]

[1,1]

CATGCT
CATGGT
CATCCG
GATCTG
CATGCC
CATCAT
CATGGT
CATGTT

[4,4]
[2,2]
[9,9]
[6,6]
[0,0]
[7,7]
[5,6]
[8,8]

ATACG
ATAGG
ATCGG
TTCTG
TTACG
ATATG
TTACG
ATACG

Sum

IC

[5,5]

Initial Profile (M)

Weighted Profile (W)

0.78
0.30−1.62 −2.19

−2.19

−2.19
−2.21

−2.21

−2.21

−2.21

−2.21

−1.26

−1.26

−0.03

−2.24

−2.24

−2.24−1.64−1.11−2.19

−2.19

−2.19

−1.11 −1.64

−0.400.01

−0.53

0.00

−1.62

−0.50

−1.12

0.22

−1.12 −0.03

−0.01

0.00

−0.04

−0.19

−0.78
−1.09

−1.09

0.18

−2.21

0.04

0.00

−0.53

0.91

Page 12 of 24
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22
In another word, the minimum threshold for any sub-

profile is calculated as the difference of the minimum
threshold for the whole structured motif and the maxi-

mum weight of the motif excluding the sub-profile .
For example, consider the weighted profile M1 [0, 5] M2

[0, 9] M3 shown in Figure 8. Assume that λ = 0.8, then

using Equation 4(a), we have λn = λ max = 0.8 × 10.75

= 8.60. Note that max = 10.75 is obtained by adding all
the highest weights (in bold) at each position in the pro-

file. Now consider the sub-profile of consisting only

of component M3. Then the score threshold for ' = M3

is given as λn (M3) = 8.6 - (10.75 – 3.75) = 1.60. Likewise,

we can compute the minimum score threshold for any

sub-profile (composed of any set of positions) of . Wu
et al. [27] proposed a (permuted) lookahead profile scor-
ing approach similar to our partial scoring method. How-
ever, their method is only for simple motif scoring, while
our method is applied for both simple motif scoring and
structured motif scoring.

Core scores

In many biologically relevant motifs, some positions are
more conserved than others. We call them core positions,
and these are precisely those positions with high informa-
tion content. We choose the top h (usually 4 to 6) posi-
tions in the profile with highest information content as
the core positions. For any potential match S', we can
compute its core score c (S') to be the sum of the
weights over only the core positions, and we require that

c (S') satisfy a user-specified normalized core score

threshold λc. Just like the score threshold, we use the nor-

malized core score threshold for pruning, and further-

more, we can compute the core threshold for any sub-
profile of the core positions. Note that we compute sepa-
rate (partial) core scores for each component. For exam-
ple, assuming we restrict our attention to only component

M1 in Figure 8, with λc = 1, we have c (M1) = 1.36 + 0.78

= 2.14.

Motif enumeration
Simple motif scoring

Given a profile motif , score threshold λ, core score

threshold λc, and a sequence set , for each sequence S ∈

, we first compute the potential matches for each com-
ponent Mi separately. That is, for each component Mi, for

each consecutive subsequence S' of length |Mi| starting at

each position j in S (i.e., S' = S [j, j + |Mi| - 1]) we compute

its component core score c (S'), and partial score
(S'). If these scores are larger than the corresponding score

thresholds (Mi) and λn (Mi), respectively, we record

this position j into the component's pos-list (Mi).

To prune matches S' that will eventually not meet the
score threshold, we check the score threshold as each posi-
tion in S' is being considered. If the score for any prefix of
S' falls below the score threshold, we can discard S'. In
fact, before applying scores over all positions, we first con-
sider the scores for the prefixes of the core positions
within the component. This continuous check for the core
positions and regular positions leads to very effective
pruning. Note that as opposed to previous methods [19-
22], our approach does not require the core positions be
consecutive so as to find the most conserved parts in the
profile.

Figure 9 shows how we search for the example profile
motif from Figure 8, namely M1 [0, 5] M2 [0, 9] M3. In Fig-

ure 9(a), under each component Mi, 1 ≤ i ≤ 3 a set of tuples

are listed in the format (j, S', (S'), C (S')), where j is a
position in the given sequence S, S' is the subsequence S
[j, j + |Mi| - 1], (S') is the profile score for S', and c

(S') is the core score for S'. In this example we use the core

score threshold λc = 1 and the score threshold λ = 0.8. We

use Equation 4(a) for normalization. In Figure 9(b)–(c)
the minimum thresholds are given: (b) gives the score
thresholds for each prefix of a given component. For
example, looking at the 1st position of M2, we have the

score threshold λn (M2 [1]) = 8.60 - (10.75 - 0.91) = -1.24

(using Equation 5). (c) gives the core thresholds for each
prefix over core positions in each component. For exam-

ple, for the 1st core position of M1, we have (M1 [2])

= 2.14 - (2.14 - 1.36) = 1.36. Consider component M1,

whose core positions are 2 and 4, and consider the subse-
quence S' = AACG starting at position j = 1 in S. We first

check position 2 and get its core score c (S') = A2 =

1.36, which indeed passes the corresponding threshold

 = 1.36. Thus we continue checking position 4 and get

c (S') = A2 + G4 = 2.14 ≥ = 2.14. Thus we con-

tinue to check the whole score. Checking for position 1

gives A1 = -0.53 > -2.02; then a check for the prefix up

to position 2 gives A1 + A2 = 0.83 > -0.66. By con-

tinuing this process, we see that AACG satisfies the core

′

′

′

λc
n

λc
n

λc
n

λc
n

 λc
n

Page 13 of 24
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22

3

score threshold as well as the score threshold. Figure 9(a)
shows all the matching positions, i.e., the pos-list, for each
component in the profile.

Structured motif scoring and positional joins
After obtaining the pos-lists of simple motif components,
we can enumerate structured motifs by doing positional
joins on these pos-lists, as already outlined for structured
pattern search. We compute the positional joins with Mi
as the head and Mi+1 � Mk as the tail, as we start from Mk
as the head and end at M1 as the head. During the posi-
tional joins we also check the partial structured score
thresholds λn (Mi � Mk). If the check fails at any stage we
prune the match candidate. We keep a pattern (along with
its score) only if it satisfies the full structured score thresh-
old λn.

Figure 9(a) shows how to enumerate structured motifs via
positional joins. The pos-list of each component is simply
the set of positions (1st element of the quadruples) under
it. For example, (M1) = {1, 5, 10, 21, 25, 32}. As before

the joins proceed from M3 to M1, i.e., first we obtain the

pos-list for M2 [0,9] M3, and then for M1 [0, 5] as head and

M2 [0, 9] M3 as the tail. At any stage, the head motif's pos-

list corresponds to the full list of positions shown,
whereas the tail's pos-list consists only of the shaded posi-
tions. For illustration, we add a link between any two
positions, x and y, in adjacent columns if their difference
(d = y - x - 1) falls within the corresponding gap range. If
the current partial motif starting at position x also satisfies

the corresponding (partial) score threshold, the link is
solid; otherwise, the link is dashed. When joining M2 as

the head and M3 as the tail with a gap of [0, 9], the posi-

tions x ∈ (M2) that satisfy the gap constraint are 10, 19

and 25 (marked in bold), which thus form the pos-list of
M2 [0, 9] M3. We then check whether each occurrence sat-

isfies the corresponding structured score threshold. Figure
9(d) shows the minimum partial scores required for each

component suffix. For example the threshold λn (M2 [0, 9]

M3) = 5.87. Checking the score for CATACG[0,9]TTACG,

we get 2.44 + 3.48 = 5.92 > 5.87, so we keep it. The other
occurrences also satisfy the partial score threshold. Next
we join (M1) with (M2 [0, 9] M3) to get the valid

positions 1, 5, 10 and 21. When checking with the score
threshold, we find that the score of CATG[0,5]CAT-

ACG[0,9]TTACG is 1.05 + 5.87 = 6.97 < 8.60 = λn, so we
discard this motif (as a result the corresponding link
between the positions is dashed.) Finally, we get (M1

[0, 5] M2 [0, 9] M3) = {1, 5, 21} as the pos-list for the full

structured motif.

Full position recovery

Once the pos-list for the profile has been computed,
we can then recover the full positions from each start posi-
tion, using the approach already outlined for the struc-
tured pattern search, i.e., we use an index i for each

component to speed up the full position recovery. For

Profile Positional Joins and Full Position RecoveryFigure 9
Profile Positional Joins and Full Position Recovery. The example sequence S has length 36. (a) Under each component
Mi, 1 ≤ i ≤ 3 a set of tuples are listed in the format (start position, subsequence, score, core score). (b) Minimum Simple Scores
row gives the minimum score threshold for any prefix of a component; (c) Minimum Core Scores gives the minimum core
score threshold for any prefix of core positions for each component; (d) Minimum Structured Scores gives the minimum score
threshold for each (component-wise) suffix of the structured motif; (e) The final pos-lists and the index for each component;
(f) The motifs (M) that satisfy the profile, along with their full positions (F).

−1.24

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 33 34 62 3 29 32 351

A C G G A C G T C A T G C T G A C C A T A C G C A T G C C T T A C G CA

TACG21

M1

10

25

32

GACG

CATG

CATG

TACG

2.73

1.05

2.61

1.05

2.61

CATGCC

AACG

19

25

CATGCT

CATACG 2.44

3.78

2.67

2.67

31

ATACG

TTACG 3.48

3.75

2.50

2.08

M2

5

1 10 2.67 2.5020

0.58

1.36

8.60

1.31 2.67

5.87

1.20

M3

Minimum Simple Scores

Minimum Structured Scores

M2 M3M1

20

19 2 31

25

5

1

1

3

1

2

1

21

10

Simple Motifs

2.50 Minimum Core Scores
TACG

FM

4.27

Pos−Lists & Scores of

[0,0]

ATACG[4,4]CATGCT[5,5]AACG

GACG [1,1]CATGCT[4,4]ATACG

CATGCC[0,0]TTACG

(5, 10, 20)

(21, 25, 31)

(1, 10, 20)

2.14

2.14

2.14

2.14

2.14

2.14

2.14

1.60

S=
j =

Positional Joins Indexed Full−position Recovery
(a)

(d)

(c)

(b)

(e)

(f)

−

−

−1.70−0.20−0.66−2.02 0.40 1.600.23−0.392.121.821.801.430.12

4

Page 14 of 24
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22
example, in Figure 9(e), to recover the full position for the
occurrence starting at position 1, we follow index 1 to get

position 10 in M2's pos-list, to obtain = {(1, 10)}.

Then we follow index 1 to position 20 in M3's pos-list, to

get = {(1,10, 20)} as a full position and its corre-
sponding sequence is AACG[5]CATGCT[4]ATACG. By
continuing this process, we can get the other two full posi-
tions, as shown in Figure 9(f).

The complete SMOTIF algorithm: complexity analysis

The pseudo-code for the complete SMOTIF algorithm is
shown in Figure 10. We distinguish three cases: the direct
(or one-step) approach, and the two-step approach for
structured pattern search are denoted as SMOTIF-1, and
SMOTIF-2, respectively. The approach for structured pro-

file search is called SMOTIF-P. Let be the

total length over all sequences in , let and m = maxi

{|Mi|} be the maximum component length, and assume

that all patterns/profiles are over ΣDNA. In Figure 10, line

2 takes O (| | · |ΣDNA|) time and space to compute the

weighted profile and O (| |) time/space to compute the
(core) score thresholds. Line 4 reads one segment each
time and takes O (n) time and space over all sequences.
Line 7 also takes O (n) time and space since SMOTIF-1
scans the input sequences only once to create the pos-lists.
For SMOTIF-2 with exact matching, line 9 builds the suffix
tree in O (n) time and space. In line 10, to get the occur-
rences for all components, takes time O (km) to search in
the suffix tree, and in the worst case, O (n) time/space to
extract all the occurrences. To sort the occurrences takes O
(n log n) using comparison-based sorting, or O (n) time
using counting sort, for example. The total time is then O
(km + n log n) (or O (km + n) if using counting sort). For
SMOTIF-2 with approximate matching, line 11 applies
Sellers' dynamic programming algorithm [26] which

takes O (| | · n) time/space over all components. For
SMOTIF-P, line 12 considers O (n) starting positions and

the scoring takes total time O (| | · n) over all compo-
nents. Line 13 enumerates all the possible sub-motifs of

 with q missing components. The number of sub-

motifs to be searched for is with i ∈ [k -

q, k] simple motifs, which in the worst case is T = 2k - 1
(when q = k - 1). Since the positional joins take linear time
in the length of the pos-lists (the length is O (n) in the

worst case), the time for pos-list joins is O (| | · n) for
SMOTIF-1, and O (kn) for SMOTIF-2 and SMOTIF-P,

when there are no missing components; these times have
to be multiplied by T when there are q missing compo-
nents. The number of final occurrences of the structured

motif in the sequences is given as . Lines 14–15 scan a
region of span L from each starting position, taking O (L

· | |) time over all occurrences. Note that in the worst

case, for any sequence S ∈ , the number of full occur-

rences of the motif can be | | = .

Overall, the total time for SMOTIF is O (| | · |ΣDNA| +

n · (| | + k) + L · | |), except when we use a compar-
ison based sorting in SMOTIF-2 exact matching case, in

which case the second term becomes n · (| | + k + log
n).

Results and discussion
Performance comparison
We have implemented the SMOTIF algorithm in standard
C++. We compare our results with SMARTFINDER, the
best previous algorithm for structured motif search. For
fair comparison, the suffix tree used in SMOTIF-2 for find-
ing the pos-list of simple motifs is the same as the one
used in SMARTFINDER, namely the lazy mode suffix tree
[11], and we apply Sellers' dynamic programming algo-
rithm [26] for approximate matching. The programs were
compiled with g++ v3.2.2 at the optimization level 3 (-
O3). Unless indicated otherwise, we did the experiments
on an Apple G5 with dual 2.7Ghz processors and 4GB
memory running Mac OS X; the timings reported are total
times for all steps of the algorithms; all our experiments
use exact matching for the simple motifs, and we report
the full position for the occurrences.

SMOTIF: parameter settings

In the first set of experiments we used the 5 chromosomes
of Arabidopsis thaliana as our sequence set. These five chro-
mosomes have lengths 29M, 19M, 22.7M, 16.9M and

25.7M base pairs, respectively. The structured motif to
search for includes a well conserved feature of a Copia ret-
rotransposon [6,7], shown in Table 7.

Figure 11 shows how SMOTIF performs on the A. thaliana
chromosome 1, while searching for the Copia retrotrans-
poson. We study the impact of allowing 0, 1 or 2 missing
components out of the 6 simple motifs in the Copia struc-
tured motif. Figure 11(a) and 11(b) show the effect of
sequence segmentation on SMOTIF-1 and SMOTIF-2,
respectively. The x-axis shows the length of the segments,
whereas the y-axis shows the time. The rightmost end
point on the x-axis shows the case when the sequence is
not segmented. For these experiments we used the IUPAC
pos-list approach. The different curves in each figure show

n S
S

= ∈∑ | |

T
k

ii k q
k=

= −∑

 O u li ii

k
(())− +=

−∏ 1
1
1

Page 15 of 24
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22

Page 16 of 24
(page number not for citation purposes)

Table 7: Real Motifs

Copia Motif TNGA [12,14] TWNYTNNA [19,21] TNTMYRT [4,6] WNCCNNNNRG [72,95] TGNNA [100,125] TNTANRTNRAYGA

Motif 1
HNGTNYDNHDNBTNNDNA [0,3] YNHTNYRHGGNBTNAR [0,2] ARDBNBH

Motif 2
TNVRNKAYNKNVVNDV [9,11] HNRR [6,8] YDNNVNNV [9,13] HB [4,5] TNNNNRBNYDBDNNRR

Motif 3
DNNNNDRYW [2,5] DS [6,7] HMM [1,2] TNDB

Motif 4
DBNNNND [48,102] KRRYMYNNNMRNHYNDVNYAYVH [7,10] VNNNYNNND [34,63] WD [2,8] KNNH [3,5]
VNDDRNNNNNNHVNNNNNNNHHH

SMOTIF AlgorithmFigure 10
SMOTIF Algorithm.

sMOTIF (S,M, q, h, λ, λc)
1 if (structured profile search) then
2 Select h core positions, calculate the weighted profileW , and normalized thresh-

olds λn, λn
c for all (core) positions and components;

3 foreach (S ∈ S) do
4 foreach (segment G of S) do
5 if (structured pattern search) then
6 if (one-step approach) then

//sMOTIF-1
7 Obtain the pos-list of each symbol from G;

else
//sMOTIF-2: two-step approach

8 if (exact matching) then
9 Build suffix tree from segment G;

10 Obtain the sorted pos-list of each simple motif, Mi, for 1 ≤ i ≤ k;
else

//approximate matching
11 Apply Sellers’s algorithm to obtain the pos-list of each simple

motif, Mi, for 1 ≤ i ≤ k;

else
//sMOTIF-P: structured profile search

12 For each component Mi, and for each consecutive subsequence of G of
length |Mi|, check core scores and overall scores, and store valid occur-
rences into the pos-list of Mi;

13 Perform pos-list joins to start positions for motif M with up to q missing
components;

14 foreach (i ∈ [1, |P(M))|) do
15 Recover full positions starting from P(M)[i];

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22
the effect of 0,1, or 2 missing components. Both figures
suggest the best segment length is 10,000 base pairs. At
that segment length, sequence segmentation can speed up
the search around 2 to 3 times for SMOTIF-1 (depending
on the number of missing components) and 4 times for
SMOTIF-2. In the following experiments, we use 10,000
as the default segmentation length.

Figure 11(c) and 11(d) compare the time and memory
usage for SMOTIF-1 when we use the recomputed or
indexed full position recovery. We find that the indexed
approach is about 2 times faster than recomputing the full
positions, and at the same time it can consume up to 20
times less memory! The effects are more pronounced for
more missing components. Henceforth, we use the
indexed approach to full position recovery.

Figure 11(e) compares the two methods for handling
IUPAC symbols in SMOTIF-1, namely DNA pos-lists or
IUPAC pos-lists. We find that there is not much difference
between the two when 0 or 1 missing components are
allowed; but for 2 missing components, IUPAC pos-lists
have a slight advantage. In terms of memory space, even
though the IUPAC pos-lists approach stores the pos-lists
for each distinct symbol that appears in the structured
motif, since only one segment is processed at one time,
the space utilization of the two approaches is comparable.
For example, with no missing components, the IUPAC
and DNA pos-lists consume 2.98MB and 2.82MB mem-
ory, respectively. Henceforth, we use the IUPAC pos-lists
approach.

Figure 11(f) shows the time for SMOTIF-1 and SMOTIF-2
on each of the 5 chromosomes of A. thaliana, with no
missing components. The chromosomes are arranged by
increasing length on the x-axis. We find that the search
time increases linearly with the lengths of the sequences.
We also observe that the direct approach, SMOTIF-1, out-
performs the two-step approach, SMOTIF-2, when search-
ing for the Copia retrotransposon.

SMOTIF and SMARTFINDER: comparison
Comparison on A. thaliana
Figure 12(a) and 12(b) compare time and memory usage,
respectively, for SMOTIF-1, SMOTIF-2 and SMART-
FINDER, when searching for the Copia retrotransposon in
chromosome 1 of A. thaliana. We can see that SMOTIF-2
is around 5 times faster and takes around 8 times less
memory than SMARTFINDER. Their running time and
memory usage increase slowly with the number of miss-
ing components. This is because in both approaches, the
simple motif search step is the same for different number
of missing components and usually takes most of the time
and memory. SMOTIF-1 always outperforms SMART-
FINDER, both in time and memory usage. SMOTIF-1 is

more than 7 times faster and takes 100 times less memory
than SMARTFINDER! Its time increases linearly with the
number of missing components. While SMOTIF-1 is faster
when there are no missing components, SMOTIF-2 does
better when there are two missing components. This is
because SMOTIF-1 does the positional joins on the pos-
lists of individual symbols, rather than simple motifs, so over
all the sub-motifs of the structured motif, the pos-lists of
simple motifs may be redundantly computed several
times in SMOTIF-1, whereas these are computed only
once in SMOTIF-2. Thus the time of SMOTIF-1 varies
depending on the number of missing components. How-
ever, since we keep one pos-list per DNA/IUPAC symbol,
the memory usage remains almost unchanged for SMO-
TIF-1 algorithm.

To directly evaluate SMARTFINDER's constraint graph
approach with our positional join approach, in Figure
12(c), we compare the time for the second step of SMO-
TIF-2 and SMARTFINDER, after the suffix tree is built in
the first step. We observe that SMOTIF-2 is orders of mag-
nitude faster than SMARTFINDER in finding all the occur-
rences that satisfy the structured gap constraints
depending on the number of missing components
allowed. We conclude that doing positional joins on the
inverted index is an efficient way of enumerating all occur-
rences.

We also multiply aligned 36 A. thaliana LTR retrotrans-
posons from Repbase Update [2] database, which belong
to Copia repeat class, and have reverse transcriptase as the
keyword. We then extracted four conserved features from

the alignment results, shown as i (i ∈ [1, 4]) in Table

7. We searched chromosome 1 of A. thaliana for the four
extracted motifs using SMARTFINDER, SMOTIF-1 and
SMOTIF-2, respectively. Table 8 shows the number of

occurrences | | found, and the search times. We can
observe that since we allow no missing components,
SMOTIF-1 can be 4 to 5 times faster than SMOTIF-2, and
4 to 18 times faster than SMARTFINDER. Note also that

for the longest motif 4, SMARTFINDER ran out of

memory.

Searching motifs with long gaps
One application of SMOTIF is to find structured motifs
with long gaps. For example, we extracted the motif
DNNNNDRYW [2578, 4202]RNNGVHVY, from the same
36 LTRs of A. thaliana mentioned above. Here we retain
only the first and last conserved components in the result-
ing alignment of the 36 sequences. Note the relatively
long gap ranges, with minimum gap l = 2578 and maxi-
mum gap u = 4202. SMOTIF was able to extract the
approximately 83 million full positions, corresponding to

Page 17 of 24
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22

Page 18 of 24
(page number not for citation purposes)

SMOTIF Performance: Comparing SMOTIF-1 and SMOTIF-2Figure 11
SMOTIF Performance: Comparing SMOTIF-1 and SMOTIF-2. The figure shows how SMOTIF performs while search-
ing for the Copia retrotransposon on Chromosome 1 from A. thaliana. (a) and (b) show the effect of sequence segmentation
on SMOTIF-1 and SMOTIF-2, respectively. (c) and (d) compare the time and memory usage, respectively, for SMOTIF-1, when
we use the recomputed or indexed full position recovery (e) compares the DNA versus IUPAC pos-lists for handling IUPAC
symbols in SMOTIF-1. (f) shows the time for SMOTIF-1 and SMOTIF-2 on each of the 5 chromosomes of A. thaliana, with no
missing components.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1000 10000 100000 1e+06 1e+07

T
i
m
e
(
s
)

Segment Length (#bases)

sMOTIF-1

no missing components
1 missing component
2 missing components

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1000 10000 100000 1e+06 1e+07

T
i
m
e
(
s
)

Segment Length (#bases)

sMOTIF-2

no missing components
1 missing component
2 missing components

(a) (b)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 1 0

T
i
m
e
(
s
)

#Missing Components (q)

sMOTIF-1

Recomputed
Indexed

 0

 10

 20

 30

 40

 50

 60

 2 1 0

M
e
m
o
r
y

U
s
a
g
e
(
M
B
)

#Missing Components (q)

sMOTIF-1

Recomputed
Indexed

(c) (d)

 0

 5

 10

 15

 20

 0 1 2

T
i
m
e
(
s
)

#Missing Components (q)

sMOTIF-1

DNA pos-lists
IUPAC pos-lists

 1

 1.5

 2

 2.5

 3

 18 20 22 24 26 28

T
i
m
e
(
s
)

Chromosome Length (Mb)

sMOTIF-1
sMOTIF-2

(e) (f)

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22
3 million start positions, in just 35.75s (SMOTIF-1) and
15.72s (SMOTIF-2).

Comparison on random motifs
Here we used chromosome 20 of Homo Sapiens as the
sequence; it has length 61M base pairs. We generate 100
random structured motifs in the ΣIUPAC alphabet, with k ∈
[3,8] simple motifs of length l ∈ [5,10] (k and l are
selected uniformly at random within the given ranges).
The gap range between each pair of simple motifs is a ran-
dom sub-interval of [-5, 100]. Note that the negative min-
imum gap shows that SMOTIF can mine overlapping
simple motifs. Here we also compare the structured pro-
file search approach SMOTIF-P, as follows: for each ran-
dom motif, we form a profile by first expanding the
IUPAC symbols into their corresponding DNA symbols

and assign them a random probability of occurrence
which accounts for 90% of the share, whereas the other
DNA symbols randomly share in the remaining 10%. We
use SMOTIF-P to search for the profiles with 2 as the
number of core positions in each simple motif, λc = 0.1 as
the core score threshold and λ = 0.6 as the total score
threshold. We use random motifs mainly to demonstrate
the effects of various parameters on SMOTIF and SMART-
FINDER.

Figure 13(a)–(d) show the results. Here we do not allow
missing components. As noted before, we may find over-
lapping occurrences if a negative gap is present in a motif.
Figure 13(a) shows how the running time varies with the
sum of the number of occurrences of the simple motifs in
each of the 100 random motifs. For clarity, each point

Table 8: Search Time for Several Real Motifs

| | SMARTFINDER SMOTIF-1 SMOTIF-2

1 27 17.44s 3.98s 3.80s
2 446 85.68s 4.98s 19.73s
3 507911 84.11s 4.69s 21.98s
4 283676 Out of memory 10.61s 50.86s

SMOTIF and SMARTFINDER Comparison: Copia MotifFigure 12
SMOTIF and SMARTFINDER Comparison: Copia Motif. The figure compares SMOTIF-1, SMOTIF-2 and SMART-
FINDER, when searching for the Copia retrotransposon in chromosome 1 of A. thaliana. (a) and (b) compare time and memory
usage. (c) compares the constraint graph approach of SMARTFINDER with the positional joins in SMOTIF.

 0

 5

 10

 15

 20

 0 1 2

T
i
m
e
(
s
)

#Missing Components (q)

SMaRTFinder
sMOTIF-1
sMOTIF-2

 1

 10

 100

 1000

 2 1 0

M
e
m
o
r
y

U
s
a
g
e
(
M
B
)

#Missing Components (q)

SMaRTFinder
sMOTIF-1
sMOTIF-2

 0.001

 0.01

 0.1

 1

 10

 2 1 0

T
i
m
e
(
s
)

#Missing Components (q)

SMaRTFinder
sMOTIF-2

sMOTIF-2 (non-segmented)

(a) (b) (c)
Page 19 of 24
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22
reflects the average time for the number of occurrences in
the given range on the x-axis. For example, the first point
on the x-axis [0, 1) corresponds to the case when there are
between 0 and 1 million occurrences found. The general
trend is that it takes more time as the number of occur-
rences increases. Figure 13(b) shows the time with respect
to the number of occurrences of the whole structured
motif (again, for clarity, only average times are plotted for
occurrences in the given ranges in the x-axis). We observe
that the time increases slightly with increase in the occur-
rences. In general, the times are more sensitive to the
number of intermediate (simple) occurrences. Figure
13(c) shows the effect of the number of simple compo-
nents in the structured motif. Each point shows the aver-
age time over all motifs having the given number of
simple motifs. Here again the time increases with increas-
ing components. Finally Figure 13(d) shows the impact of
the number of IUPAC symbols in the structured motifs;
the trend being that the more the symbols the more time
it takes to search. We also observe that the approaches
scale linearly, on average, with respect to the different
parameters. Also SMOTIF remains about 5–10 times faster
than SMARTFINDER over all these experiments.

Table 9 shows the mean and variance of the search times
over all the 100 structured motifs. It also shows the time
for finding only the start positions or the full positions for
SMOTIF. Overall, for these random motifs, we find that
on average SMOTIF-1 is the fastest, SMOTIF-2 and SMO-
TIF-P are comparable, and all three outperform SMART-
FINDER by a factor of 4 to 6.

It is interesting to note that SMOTIF is more stable than
SMARTFINDER: SMOTIF-P has around 8 times less vari-
ance than SMARTFINDER, SMOTIF-2 has around 5 times
less variance than SMARTFINDER, whereas SMOTIF-1 has
around 17 times less variance than SMARTFINDER. Note
also that the overhead in recovering the full positions
from the start positions is negligible.

Application: composite regulatory patterns
The complex transcriptional regulatory network in
Eukaryotic organisms usually requires interactions of
multiple transcription factors. A potential application of
SMOTIF is to search for such composite regulatory bind-
ing sites in DNA sequences. We took two such transcrip-
tion factors, URS1H and UASH, that are known to
cooperatively regulate 11 yeast genes [28]. These 11 genes
are also listed in SCPD [1], the promoter database of Sac-
charomyces cerevisiae. In 10 of those genes the URS1H
binding site appears downstream from UASH; in the
remaining one (HOP1) the binding sites are reversed. We
took the binding sites for the 10 genes, and after their
multiple alignment, we obtained the composite motif
NNDTBNGDWGDNNDH[5,179]WBRGCSGCYVW,

where we represent each column in the alignment with
the IUPAC symbol corresponding to the bases that appear
at that position. We also extracted the profile for these 10
binding sites. Table 10 shows the binding sites for the 10
genes, their alignment, and the start positions and the dis-
tances between the sites (the difference of start positions).
The smallest distance is 20 and the largest is 194. Since
these are start positions, the variable gap range is obtained
by subtracting the length (15) of UASH to obtain l = 20 –
15 = 5 and u = 194 – 15 = 179. Notice also how the align-
ment preserves the highly conserved GCSGC region in
URS1H.

We then searched for the structured motif in the upstream
regions of all 5873 genes in the yeast genome. We used the
-800 to -1 upstream regions, and truncated the segment if
it overlaps with an upstream open reading frame (ORF).
As a result, 5794 sequences with average length of 497
bases are left. By searching for the IUPAC pattern, we
found 65 occurrences, including the 10 originally known
sites, within 1 second. By searching for the profile with 5
as the number of core positions in each simple motif, λc =
0.6 as the core score threshold and λ = 0.8 as the total
score threshold, we found 56 occurrences in 0.18 seconds.
For each occurrence, we then extracted its actual sequence
segment in the matching upstream regions. Since the
structured motif represented by IUPAC symbols may be
too general, for each matching segment, we calculated its
hamming distance to one of the 10 known binding sites.
We then selected an occurrence as a possibly new binding
site if the minimum hamming distance to any of the 10
known sites is within a given maximum threshold value.
Table 11 lists the 12 newly found occurrences in the entire
yeast genome (upstream regions) using a hamming dis-
tance threshold of 5. The sites discovered using both pat-
tern and profile search are listed. These new occurrences
could be putative binding sites for the two transcription
factors UASH and URS1H.

Upon further analysis, we found that in fact, the new
occurrence in MEK1 (at positions -233,-136) that we
found is also listed in the SCPD database as a binding site.
SCPD lists one site for UASH at position -233, and two
sites for URS1H at positions -136 and -150. To construct
the motif, we had used -150 as the site for URS1H, with-
out knowledge of the other site. SMOTIF was thus able to
automatically find the other site based on the extracted
motif! For REC114, we also found another occurrence at
positions -158 (UASH) and -94 (URS1H). However, this
is not reported in SCPD.

To further analyze the remaining new occurrences, we
consulted the SGD (Saccharomyces Genome Database)
Gene Ontology Term Finder [29] to find the inter-rela-
tionships between the genes. The first three rows of Table
Page 20 of 24
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22

Page 21 of 24
(page number not for citation purposes)

SMOTIF and SMARTFINDER Comparison: Random MotifsFigure 13
SMOTIF and SMARTFINDER Comparison: Random Motifs. The figure compares SMOTIF-1, SMOTIF-2 and SMART-
FINDER, when searching for 100 randomly generated structured motifs in chromosome 20 of Homo sapiens. (a) shows how
the running time varies with the sum of the number of occurrences of the simple motifs in each of the 100 random motifs. (b)
shows the time with respect to the number of occurrences of the whole structured motif. (c) shows the effect of the number
of simple motif components in the structured motif. (d) shows the impact of the number of IUPAC symbols in the structured
motifs.

 0

 20

 40

 60

 80

 100

 120

 140

 160

[20,30)[10,20)[9,10)[8,9)[7,8)[6,7)[5,6)[4,5)[3,4)[2,3)[1,2)[0,1)

T
i
m
e
(
s
)

#Simple Motif Occurrences (in millions)

SMaRTFinder
sMOTIF-1
sMOTIF-2
sMOTIF-P

 0

 10

 20

 30

 40

 50

 60

 70

[105,106[104,105)[103,104)[102,103)[101,102)[0,101)
T
i
m
e
(
s
)

#Structured Motif Occurrences

SMaRTFinder
sMOTIF-1
sMOTIF-2
sMOTIF-P

(a) (b)

 0

 10

 20

 30

 40

 50

 60

 70

 8 7 6 5 4 3

T
i
m
e
(
s
)

#Simple Motif Components

SMaRTFinder
sMOTIF-1
sMOTIF-2
sMOTIF-P

 0

 10

 20

 30

 40

 50

 60

 70

[60,65)[55,60)[50,55)[45,50)[40,45)[35,40)[30,35)[25,30)[20,25)[15,20)

T
i
m
e
(
s
)

#IUPAC Symbols

SMaRTFinder
sMOTIF-1
sMOTIF-2
sMOTIF-P

(c) (d)

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22
12 show the significant GO terms (biological process or
molecular function) that are common to the genes corre-
sponding to a new occurrence and its closest (known)
gene. The rest of the table shows the significant terms
among the 18 genes. These results indicate that at least
some of the new occurrences (such as SPO1, HSP60,
MES1, and GNT1) have a potential to be binding sites
since they share some significant processes with the
known sites' genes. Out of these SPO1 has the highest
potential to be a new binding site, since it is known that
UASH and URS1H are involved in early meiotic expres-
sion, during sporulation [28]. Table 12 shows that SPO1
shares meiosis and M phase of meiotic cell cycle with the rest
of the genes. After searching for SPO1 in SGD database,
we found that SPO1 is a transcriptional regulator involved
in sporulation, and required for middle and late meiotic
expression. This increases our confidence that SPO1 has
high potential to be a previously unknown binding site.

Finally, since we knew that in gene HOP1, the URS1H
binding site appears upstream from UASH, we wanted to
see if we could extract the "reversed" binding site. We

search for the original and the reversed motifs using a
hamming threshold of 6. We found 34 new binding sites
where UASH can appear either up-or down-stream from
URS1H. Among these we found two possible potential
binding sites for the gene HOP1, with UASH at position -
201 and URS1H at positions -534 and -175. The former
pair (-201,-534) is in fact a known binding site as reported
in the SCPD database [1]. This once again showcases the
ability of SMOTIF to find potential new binding sites.

Conclusion
We introduced SMOTIF, a fast and efficient algorithm to
search structured pattern and profile motifs in biological
sequences. We showed its applications in searching for
composite regulatory patterns, long terminal repeat retro-
transposons, and for searching long range motifs. SMOTIF
is also computationally more efficient than previous state-
of-the-art methods like SMARTFINDER [6].

In biosequence analysis there are four related structured
motif problems depending on whether the simple motifs
and gap ranges in the structured motif are known or not:

Table 10: UASH and URS1H Binding Sites

Genes UASH URS1H Distance

Site Pos Site Pos

ZIP1 GATTCGGAAGTAAAA -42 ==TCGGCGGCTAAAT -22 20
MEI4 TCTTTCGGAGTCATA -121 ==TGGGCGGCTAAAT -98 23
DMC1 TTGTGTGGAGAGATA -175 AAATAGCCGCCCA== -143 32
SPO13 TAATTAGGAGTATAT -119 AAATAGCCGCCGA== -100 19
MER1 GGTTTTGTAGTTCTA -152 TTTTAGCCGCCGA== -115 37
SPO16 CATTGTGATGTATTT -201 ==TGGGCGGCTAAAA -90 111
REC104 CAATTTGGAGTAGGC -182 ==TTGGCGGCTATTT -93 89
RED1 ATTTCTGGAGATATC -355 ==TCAGCGGCTAAAT -167 188
REC114 GATTTTGTAGGAATA -288 ==TGGGCGGCTAACT -94 194
MEK1 TCATTTGTAGTTTAT -233 ==ATGGCGGCTAAAT -150 83

Motif NNDTBNGDWGDNNDH ==WBRGCSGCYVW== [5,179]

Table 9: Random Motifs: Mean and Variance

Algorithm Mean(s) Variance (s)

SMARTFINDER 44.42 24.85
SMOTIF-1 (full) 6.97 1.45

SMOTIF-1 (start) 6.93 1.46
SMOTIF-2 (full) 10.83 5.07

SMOTIF-2 (start) 10.81 5.07
SMOTIF-P (full) 9.67 2.95

SMOTIF-P (start) 9.66 2.97

full gives the time for full position recovery, whereas start gives the time for reporting only the start positions.
Page 22 of 24
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22

Page 23 of 24
(page number not for citation purposes)

Table 12: Genes and Significant Gene Ontology (GO) Terms

Genes Significant GO Terms p-value

MES1, MER1 RNA metabolism 5.7e-3

HSP60, MER1 nucleic acid binding 7.9e-3

SPO1, RED1 M phase-meiotic cell cycle, meiotic cell cycle,
meiosis, M phase

1.1e-3

‡ MMS1, REC114 DNA recombination, DNA metabolism 6.0e-3

MES1, REC114, † GNT1, MEK1, MEI4, DMC1, MER1, REC104 biopolymer metabolism, macromolecule
metabolism

2.3e-4

REC114, SPO1, MEK1, ZIP1, MEI4, DMC1, SPO13, MER1, REC104, RED1, HOP1 meiosis, M phase of meiotic cell cycle, meiotic cell
cycle, M phase, cell cycle

1.6e-14

HSP60, DMC1, RED1, HOP1 DNA binding 6.7e-7

HSP60, DMC1, RED1 structure-specific DNA binding 3.1e-8

HSP60, DMC1 single-stranded DNA binding 3.7e-6

MEI4, DMC1, REC104, REC114, ‡ MMS1 DNA recombination, DNA metabolism 2.8e-6

MEI4, DMC1, MER1, REC104, REC114, MEK1, MES1, ‡ MMS1 biopolymer metabolism, macromolecule
metabolism

2.3e-4

† : found only by IUPAC pattern. search, ‡ : found only by profile search.

Table 11: Potential Binding Sites

Genes UASH URS1H Hamming Distance

Site Pos Site Pos

MES1 GATTTTGAAGTAGGA -438 TTAGCCGCCGA -246 5:MER1

YJL045W TTTTGTGAAGAGATA -407 TTAGCCGCTCA -273 4:DMC1

HSP60 GTTTTTGTAGGTATA -329 ATAGCCGCCCA -252 5:MER1

SPO1 ATTTTTGAAGTTAAC -192 TCAGCGGCTAT -90 5:RED1

MEK1 TCATTTGTAGTTTAT -233 TCGGCGGCTAT -136 3:MEK1

YIG1 ATTTCCGGAGTTTTC -183 TCGGCGGCTAT -140 5:RED1

†AGP1 CCTTTTGATGACTTT -786 TCGGCGGCTAA -699 5:SPO16

†AGPl CCTTTTGATGACTTT -786 TCGGCGGCTAA -668 5:SPO16

†REC114 CATTTTGGTGGGTTC -158 TGGGCGGCTAA -94 5:SPO16

†GNTl TCATTTGGAGAATAT -340 ATAGCCGCCAT -299 5:SPO13

‡MEK1 TTATATGCAGTATAT -276 ATGGCGGCTAA -150 4:MEK1

‡MMS1 AACTCTGTAGTTATA -643 TGGGCGGCTAA -497 5:REC114

For each occurrence we give the gene names corresponding to the upstream region, the sites and positions for UASH and URS1H, and also the
hamming distance and the closest known gene with the cooperative binding sites. For example, 5:SPO16 in the first row means that the hamming
distance between AGP1 and SPO16 was 5. †: found only by IUPAC pattern search, ‡: found only by profile search.

Algorithms for Molecular Biology 2006, 1:22 http://www.almob.org/content/1/1/22
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

(i) Structured motif search [4-6]: all simple motifs and gap
ranges are known; (ii) Structured motif extraction [30-32]:
all simple motifs are unknown and all gap ranges are
known; (iii) Extended structured motif search: all simple
motifs are known and all gap ranges are unknown; and
(iv) Extended structured motif extraction: all simple motifs
and gap ranges are unknown. In this paper we tackled
problem (i). A companion paper [33] tackles problem
(ii). In the future, we plan to develop efficient algorithms
for the other two motif problems as well.

Authors' contributions
All authors contributed equally to this work.

Acknowledgements
This work was supported in part by NSF CAREER Award IIS-0092978,
DOE Career Award DE-FG02-02ER25538, and NSF grants EIA-0103708 &
EMT-0432098. We thank the anonymous reviewers for their many helpful
suggestions.

References
1. Zhu J, Zhang M: SCPD: A Promoter Database of the Yeast Sac-

charomyces Cerevisiae. Bioinformatics 1999, 15(7–8):607-11.
2. Jurka J, Kapitonov V, Pavlicek A, Klonowski P, Kohany O, Walichie-

wicz J: Repbase Update, a database of eukaryotic repetitive
elements. Cytogenet Genome Res 2005, 110(l–4):462-467.

3. Mehldau G, Myers G: A System for Pattern Matching Applica-
tions on Biosequences. Computer Applications in the Biosciences
1993, 9(3):299-314.

4. Myers E: Approximate Matching of Network Expressions with
Spacers. J Comput Biol 1996, 3(1):33-51.

5. Navarro G, Raffinot M: Fast and Simple Character Classes and
Bounded Gaps Pattern Matching, with Applications to Pro-
tein Searching. J Comput Biol 2003, 10(6):903-23.

6. Policriti A, Vitacolonna N, Morgante M, Zuccolo A: Structured
Motifs Search. Int'l Conf on Research in Computational Molecular Biol-
ogy 2004:133-139.

7. Morgante M, Policriti A, Vitacolonna N, Zuccolo A: Structured
Motifs Search. In Tech Rep UDIMI/15/2003/RR University of Udine;
2003.

8. Michailidis P, Margaritis K: On-line Approximate String Search-
ing Algorithms: Survey and Experimental Results. Interna-
tional Journal of Computer Mathematics 2002, 79(8):867-888.

9. McCarthy E, McDonald J: LTR_STRUC: A Novel Search and
Identification Program for LTR Retrotransposons. Bioinfor-
matics 2003, 19(3):362-367.

10. Feschotte C, Jiang N, Wessler S: Plant transposable elements:
where genetics meets genomics. Nature Reviews Genetics 2002,
3(5):329-41.

11. Giegerich R, Kurtz S, Stoye J: Efficient Implementation of Lazy
Suffix Trees. 3rd Workshop on Algorithmic Engineering 1999:30-42.

12. Gusfield D: Algorithm on Strings, Trees, and Sequences: Computer Science
and Computational Biology Cambridge University Press; 1997.

13. Inenaga S: String Processing Algorithms. In PhD thesis University
of Zurich, Department of Informatics; 2003.

14. Karp RM, Miller RE, Rosenberg AL: Rapid identification of
repeated patterns in strings, trees and arrays. ACM symposium
on Theory of computing 1972:125-136.

15. Ukkonen E: Approximate String-Matching over Suffix Trees.
Combinatorial Pattern Matching Conference 1993:228-242.

16. Ukkonen E: Finding Approximate Patterns in Strings. J Algo-
rithms 1985, 6:132-137.

17. Landau GM, Vishkin U: Fast String Matching with k Differences.
J Comput Syst Sci 1988, 37:63-78.

18. Myers G: A fast bit-vector algorithm for approximate string
matching based on dynamic programming. Journal of the ACM
1999, 46(3):395-415.

19. Kel A, Gossling E, Reuter I, Cheremushkin E, Kel-Margoulis O, Win-
gender E: MATCH: A tool for searching transcription factor

binding sites in DNA sequences. Nucleic Acids Research 2003,
31(13):3576-3579.

20. Chekmenev D, Haid C, Kel A: P-Match: transcription factor
binding site search by combining patterns and weight matri-
ces. Nucleic Acids Research 2005:W432-W437.

21. Quandt K, Frech K, Karas H, Wingender E, Werner T: MatInd and
MatInspector: new fast and versatile tools for detection of
consensus matches in nucleotide sequence data. Nucleic Acids
Research 1995, 23(23):4878-4884.

22. Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff
A, Frisch M, Bayerlein M, Werner T: MatInspector and beyond:
promoter analysis based on transcription factor binding
sites. Bioinformatics 2005, 21(13):2933-2942.

23. Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hor-
nischer K, Karas D, Kel AE, Kel-Margoulis OV, Kloos DU, Land S,
Lewicki-Potapov B, Michael H, Munch R, Reuter I, Rotert S, Saxel H,
Scheer M, Thiele S, Wingender E: TRANSFAC: transcriptional
regulation, from patterns to profiles. Nucleic Acids Research
2003, 31:374-378.

24. Zaki M: SPADE: An Efficient Algorithm for Mining Frequent
Sequences. Machine Learning Journal 2001, 42(1/2):1-31.

25. Zaki M: Sequence Mining in Categorical Domains: Incorpo-
rating Constraints. ACM Int'l Conference on Information and Knowl-
edge Management 2000:422-429.

26. Sellers PH: On the theory and computation of evolutionary
distances. SIAM J Appl Math 1974, 26:787-793.

27. Wu T, Nevill-Manning C, Brutlag D: Fast Probabilistic Analysis of
Sequence Function Using Scoring Matrices. Bioinformatics
2000, 16(3):233-244.

28. Thakurta D, Stormo G: Identifying target sites for coopera-
tively binding factors. Bioinformatics 2001, 17(7):608-621.

29. Saccharomyces Genome Database Gene Ontology Term
Finder [http://www.yeastgenome.org]

30. Marsan L, Sagot M: Extracting Structured Motifs Using a suffix
Tree – Algorithms and Application to Promoter Consensus
Identification. Journal of Computational Biology 2000, 7:345-354.

31. Carvalho A, Freitas A, Oliveira A, Sagot M: Efficient Extraction of
Structured Motifs Using Box-links. String Processing and Informa-
tion Retrieval Conference 2004:267-278.

32. Carvalho A, Freitas A, Oliveira A, Sagot M: A highly scalable algo-
rithm for the extraction of cis-regulatory regions. Asia-Pacific
Bioinformatics Conference 2005:273-283.

33. Zhang Y, Zaki MJ: EXMOTIF: Efficient Structured Motif
Extraction. Algorithms for Molecular Biology 2006, 1:21.
Page 24 of 24
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10487868
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10487868
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16093699
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16093699
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8324630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8324630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8697238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8697238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14980017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14980017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14980017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12584121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12584121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11988759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11988759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8532532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8532532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8532532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15860560
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15860560
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15860560
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10869016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10869016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11448879
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11448879
http://www.yeastgenome.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11108467
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11108467
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11108467
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17109757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17109757
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Related work

	Methods
	Structured pattern search: basic approach
	Positional joins
	Full position recovery
	Recomputed full position recovery
	Indexed full position recovery

	Sequence segmentation
	Missing components
	Two-step approach for structured pattern search
	Exact matching
	Approximate matching

	Structured profile search
	Weighted profile creation
	Profile scoring
	Partial scores
	Core scores

	Motif enumeration
	Simple motif scoring
	Structured motif scoring and positional joins
	Full position recovery

	The complete SMOTIF algorithm: complexity analysis

	Results and discussion
	Performance comparison
	SMOTIF: parameter settings
	SMOTIF and SMARTFINDER: comparison
	Comparison on A. thaliana
	Searching motifs with long gaps
	Comparison on random motifs

	Application: composite regulatory patterns

	Conclusion
	Authors' contributions
	Acknowledgements
	References

