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Abstract

Background: As protein-protein interactions connect proteins that participate in either the same or different
functions, networks of interacting and functionally annotated proteins can be converted into process graphs of
inter-dependent function nodes (each node corresponding to interacting proteins with the same functional
annotation). However, as proteins have multiple annotations, the process graph is non-redundant, if only proteins
participating directly in a given function are included in the related function node.

Results: Reasoning that topological features (e.g., clusters of highly inter-connected proteins) might help
approaching structured and non-redundant understanding of molecular function, an algorithm was developed that
prioritizes inclusion of proteins into the function nodes that best overlap protein clusters. Specifically, the algorithm
identifies function nodes (and their mutual relations), based on the topological analysis of a protein interaction
network, which can be related to various biological domains, such as cellular components (e.g., peroxisome and
cellular bud) or biological processes (e.g., cell budding) of the model organism S. cerevisiae.

Conclusions: The method we have described allows converting a protein interaction network into a non-redundant
process graph of inter-dependent function nodes. The examples we have described show that the resulting graph
allows researchers to formulate testable hypotheses about dependencies among functions and the underlying
mechanisms.

Keywords: Protein interaction networks, Biological functions, Markov representations, Peroxisomes, Cell budding,
Polarized growth, Saccharomyces cerevisiae
Background
In recent years, small- and large-scale experiments
have produced a considerable wealth of information
about the physical interactions of thousands of mole-
cules. Proteins, in particular, have been reported to
interact physically with other proteins, as well as with
genes, transcripts and metabolites. Various types of
protein-protein interactions (PPI) have been documen-
ted, ranging from PPI that bring about assembly of
stable protein complexes to PPI that cause transient
modifications (e.g., phosphorylation) of target proteins.
Retrieving PPI from available databases enables sys-
tem-level analysis of protein interactomes in various
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model organisms. Furthermore, suitable tools are avail-
able for representing the interactomes, including the
PPI networks, which display proteins and PPI as nodes
and edges, respectively [1].
In addition to the interactions, also the functions of

numerous proteins have been characterized broadly. Evi-
dence about protein function can be retrieved (among
other sources) from the vocabularies of Gene Ontology
(GO), which annotate each protein with its contribution
to biological processes, localization to cellular compo-
nents and performance of molecular functions. Each GO
vocabulary is hierarchically structured according to
ontological relations among the annotations, with the
terms ‘biological process’, ‘cellular component’ and ‘mo-
lecular function’ being the roots of each graph [2].
To find out which functions are associated with the

proteins of a PPI network, a common approach is gene
annotation enrichment analysis, which identifies the
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functional annotations that are significantly more fre-
quent in the PPI network than in a reference set of pro-
teins [3]. However, it is not the purpose of traditional
enrichment analysis either to consider the interactions
among proteins or to define the relationships among
biological functions. Yet, this information is essential to
address issues that are better analyzed in functional than
molecular terms (e.g., mechanisms of embryonic devel-
opment or manifestations of inherited diseases). Ideally,
a graph that represents functions and their hypothetical
causal relations (as nodes and edges, respectively) would
be useful in designing experiments aimed at testing
whether the manipulation of a function (including, but
not limited to, the manipulation of its protein compo-
nents) affects other functions.
Thus, we devised a method to elaborate PPI networks

towards a functional synthesis that might be regarded to
as one of the typical goals of systems biology. Actually,
mapping relationships among the functions that anno-
tate physically interacting proteins is not an unprece-
dented attempt [4,5]. Nevertheless, current algorithms
for mining biochemical data are not designed to distin-
guish direct functional relations from functional rela-
tions that are mediated by other functions. In addition,
they are not designed to control the level of details of
the final representation, which greatly impacts on the
represented steps through which a functional relation is
obtained.
On the other hand, no systematic analysis has been

performed so far, to arrive at a graphical representation
of relationships among functions that takes into account
the inherent limitations of the evidence exploited. First
and foremost, GO annotations refer to functions that
are impacted by the manipulation of a gene or a gene
product (for instance, the annotations inferred from mu-
tant phenotypes or direct assays, respectively), without
referring to how direct the impact is. Second, annota-
tions are heterogeneous with respect to the method,
which can be based on experimental evidence, computa-
tional inference or author statement. Third, also the ex-
perimental assays used for discovering PPI are dissimilar,
as ‘binary’ assays (e.g., yeast two-hybrid) report bona fide
direct PPI, whereas ‘cluster’ assays (e.g., affinity capture
assays) establish the existence of PPI among all the pro-
teins that belong to the same complex [6]. Finally, edges
in the PPI networks are often assumed as transitive (i.e.,
if protein A influences protein B and B influences pro-
tein C, then A does also influence C). While the as-
sumption is essential to interpret the PPI network as an
ordered layout of interacting molecules, it does not ex-
clude the possibility that different copies of the same
protein might engage in different PPI.
Thus, starting from a PPI network, our goal is to elab-

orate a graph G= (V, E), herein called process graph
(PG), where V is a set of function nodes (FN) that indi-
cate biological functions and E is a set of edges that por-
tray relations among functions. As long as information
about the direction of the relations is not available, the
relations cannot be characterized fully as ‘causal’, leaving
G as an undirected graph rather than a more easily in-
terpretable Directed Acyclic Graph (DAG) [7]. Neverthe-
less, dependencies can be read off from the whole
ensemble of edges even in undirected graphs [8]. For in-
stance, suppose that observing A is irrelevant to make
an inference about C, if B is observed. In this case, to
represent the transitivity of these dependencies, A
should be graphically linked to B and B to C, but A
should not be linked to C. In general, to signify that the
presence of a variable makes it irrelevant to observe an-
other variable, a graph must comply with the markov
property: all information about a phenomenon is con-
tained in the impact of its adjacent neighbours in the
graph [8,9]. Hereafter, we provide the rational basis for
automatically inferring such PG representation from the
topological information that is included in the PPI
network.
Given that FN are defined as annotations of proteins

and that relationships among proteins are assumed to be
transitive, one way to make the PG comply with the
markov property is to generate FN that are defined by
distinct subsets of proteins without overlaps. However,
as anticipated, the individual proteins are often anno-
tated with several functions, which makes frequent the
occurrence of several functions covering the same set of
proteins. To tackle the issue, it was further assumed that
a protein the more likely belongs to a FN, the more
interactions it has with the other proteins of the FN
[10]. On these grounds, topological analysis was applied
to discriminate between proteins supporting a function
directly and proteins acting through a path of intermedi-
ate functions. This way, by approaching the goal of the
markov property, isolated findings can be understood
within a coherent representation of the whole biological
phenomenon under scrutiny.
To test our method, we have exploited available know-

ledge about protein interactions and annotations. As do-
main of biological interest, we first focused on a cellular
component (i.e., the peroxisome) of the eukaryotic
model organism Saccharomyces cerevisiae, selected its
annotated proteins together with the corresponding PPI
network and applied our algorithm to define the relevant
PG of peroxisomal functions. Then, to focus on two
additional domains, i.e., another cellular component and
a biological process, we have applied a similar procedure
to other PPI networks composed of yeast proteins that
localize to the cellular bud and that contribute to cell
budding, respectively. The choice of well known
domains offers the opportunity to exploit additional



Table 1 Types of assays used to detect the PPI reported
in the PPI network of the yeast peroxisome

Assay PPI %

Binary methods

Two-hybrid 546 22,2

Biochemical Activity 295 12,0

PCA 194 7,9

1,035 42,1

Cluster methods

Affinity Capture-MS 1,112 45,3

Affinity Capture-Western 164 6,7

Co-crystal Structure 1 0,0

Co-fractionation 62 2,5

Co-localization 9 0,4

Co-purification 17 0,7

Far Western 2 0,1

Reconstituted Complex 55 2,2

1,422 57,9

Total Binary and Cluster 2,457 100

For each assay, the PPI detections are shown as total number and percentage.
The total number of PPI detections exceeds the actual number of PPI (2,457
versus 2,433), because 24 PPI were detected with two methods. See also
Additional file 1 (for a list of the proteins in the PPI network) and Additional
file 2 (for a visual display of the PPI network).
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information about the directionality of causal relations,
so that the undirected edges of the PG can be turned
into directed edges and be more easily confirmed by the
current biological knowledge. We argue that a successful
validation of the PG obtained from well known domains
would make a PG obtained from less known domains
particularly useful in defining a restricted class of mar-
kov equivalent DAG [11]. In turn, each DAG would cor-
respond to an experimentally testable hypothesis
representing a fully causal explanation of the investi-
gated domain [7].

Results
The protein-protein interaction network of the S.
cerevisiae peroxisome
To assemble the PPI network of the S. cerevisiae peroxi-
some, we identified first the peroxisomal core proteins
and then their mutual PPI. In addition, the PPI network
was extended to include the first-degree neighbors (i.e.,
the non-core proteins that are linked to at least one core
protein by means of a PPI). All the proteins of the yeast
peroxisome network are listed in Additional file 1, while
the PPI network is shown in Additional file 2.
The network consists of 450 proteins (61 core and 389

neighbor proteins) and 2,433 PPI (128 core-core, 501
core-neighbor and 1,804 neighbor-neighbor PPI), which
have been detected by binary or cluster assays (Table 1).
The network has average connectivity of 10.8, average
clustering coefficient of 0.20 and characteristic path
length of 2.8. Together with the protein annotations in
GO, the PPI network is the starting point to assemble
the PG of the yeast peroxisome.

From protein interactions and annotations to the function
nodes
The algorithm initially defines as many FN as are the
terms (in the ‘biological process’ vocabulary of GO) that
are shared by at least two interacting proteins within a
PPI network (step 2 of the algorithm pseudocode). This
way, several FN are generated, each with a distinct pro-
tein content (Figure 1A). Frequently, however, a protein
is annotated with more terms and is therefore assigned
to more FN (Figure 1B). For instance, among the FN of
the yeast peroxisome, the nodes that represent mem-
brane assembly (node 45046) and the docking step of
matrix assembly (node 16560) have distinct protein con-
tents (Figure 1D), while the nodes that represent mem-
brane assembly (node 45046) and inheritance (node
45033) have a partially overlapping content, i.e., the pro-
tein Pex3p (Figure 1E).
On one side, the multiplicity of annotations per pro-

tein may reflect the biological reality, in which the cor-
respondence between functions and structures is
commonly not a one-to-one relation. Rather, the same
function can be supported by more structures and, con-
versely, the same structure can be devoted to more func-
tions. Even at the molecular level, the same molecular
structure (e.g., a protein) may participate in different
functions, either because one copy of that protein
encompasses functionally distinct domains or because
more copies of that protein serve distinct functions (for
instance, in different sub-cellular components). On the
other side, most experimental procedures do not reliably
guarantee that a function is affected by the annotated
protein in a direct way (and not in an indirect way, i.e.,
by means of other functions, in a domino-like chain of
reactions). In addition, in the hierarchical structure of
GO, a protein is annotated not only with the specific
term that defines a given function, but also with the
more general parent terms of that function.
Criteria for non-redundant protein-to-function
assignment
The algorithm takes several actions to decide whether
the multiple annotations of a given protein do reflect its
real participation in the annotating functions. The issue
is critical, because redundant protein-to-function assign-
ments would undermine our major aim to comply with
the markov property, thus ensuring that the final PG is a



Figure 1 From the protein-protein interaction network to the function nodes and the process graph. (A, D) When two (or more)
interacting proteins (circles) within a PPI network share the same GO annotation, they originate a FN (rounded squares) by virtue of internal PPI
(solid lines). In many cases (B, E), it may happen that a protein has more annotations (asterisk) and is therefore assigned to more FN. (C, F)
Eventually, two FN, which share crossing PPI (dashed lines) and/or proteins, are linked in a PG.
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coherent and structured representation of functions. A
fairly obvious action is to select the most specific anno-
tation out of a set of hierarchically ordered GO terms
(step 2 of the algorithm pseudocode). The most import-
ant action, however, is to select only plausible inclusions
of a protein into the FN, based on the topology of the
PPI network (step 3 of the algorithm pseudocode). The
rationale is that biological functions are based on the
topological organization of their molecular components
into modules, i.e., groups of molecules devoted to the
same function, which are more densely connected
among themselves than with the rest of the network [12-
14]. Thus, the algorithm exploits a protein membership
score (PMS), ranging from 0% to 100%, to measure the
plausibility that a protein is member of the protein con-
tent of a FN (step 4 of the algorithm pseudocode). Spe-
cifically, the PMS reflects the ability of a FN to
discriminate among distinct topological patterns of the
PPI network, such as k-cliques (i.e., fully inter-connected
sub-graphs of k proteins) and communities of k-cliques
(i.e., unions of adjacent k-cliques), as defined in [10]. In
practice, a protein is excluded from a FN, when another
FN better overlaps the topological patterns to which the
protein belongs (Figure 2A, B), unless its PMS is higher
than a previously specified satisfactory threshold (here
set to 95%). For instance, the peroxisomal catalase Cta1p
is annotated with FN that refer to cellular metabolic pro-
cesses (node 44237), responses to stress (node 6950) and
responses to chemical stimuli (node 42221). However,
Cta1p is excluded from nodes 44237 and 6950, but
retained in node 42221, which likely represents the func-
tion most directly associated with Cta1p (Figure 2C). It
should be noted that the procedure reduces, but does
not exclude, FN with partly overlapping protein
contents.
After these operations, it may happen that more FN

have identical protein contents. In this case, the nodes
are merged into one FN, and only the most specific term
(i.e., the one with the greatest distance from the GO
root) is retained as label. Otherwise, if the terms have
the same specificity, they are all retained as label, with
the resulting FN representing the union of the merged
functions (step 5 of the algorithm pseudocode). For in-
stance, the Tdh1p-2p-3p isozymes, which originate three



Figure 2 Controlling annotation redundancy based on protein topology. (A) Schematic overview of the procedure adopted for retaining a
given protein only in those FN that satisfactorily overlap (as assessed by the PMS) the topological structures to which the protein belongs. In the
example shown in (B), the protein doubly annotated with the blue and green terms is initially included into the two relevant FN (rounded
rectangles with dashed lines). Subsequently, however, the protein is retained in the blue node (but excluded from the green node), because
(compared with the green node) the blue node overlaps better the 3-protein clique (i.e., the triangle), to which the protein belongs. As a result, in
the final PG, no edge is established between the green and red nodes. In (C), the example of the Cta1p catalase is shown, while (D) shows the
procedure of enucleating a function from a FN, which then undergoes relabeling. See also Additional file 3 for the distribution of FN and edges
at different NTS.
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FN with identical protein contents, are merged into one
FN that retains the two most specific labels (glycolysis
and gluconeogenesis; node 6094 + 6096), while the most
generic term (glucose metabolic process; GO:0006006) is
excluded.
It is also possible that a protein subset within a FN

matches the protein content of another FN. In this case,
the function associated with that protein subset is enu-
cleated from the former FN, which should be viewed as
excluding the enucleated function (step 5 of the algo-
rithm pseudocode). For instance, a FN is annotated ini-
tially with term GO:0006625, which refers to protein
targeting to the peroxisomes (Figure 2D). However, a
subset of its proteins (Pex3p and Pex19p) matches the
content of the FN annotated with term GO:0045046,
which refers to the peroxisomal membrane assembly.
Thus, the function of membrane assembly is enucleated
from node 6625 and retained in node 45046.
In the end, not all the FN have a highly connected

protein content. To focus on functions that correspond
to the best defined structures of interacting proteins,
each FN is given a node topological score (NTS), based
on its ability to overlap a k-clique of proteins or a com-
munity of k-cliques (step 7 of the algorithm pseudo-
code). The NTS can be exploited to find an optimal
threshold, below which a non linear marginal increment
occurs in the number of edges or FN in the PG (see
below, Additional file 3).
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Adapting the label of the function nodes to their
biological meaning
The GO terms provide each FN with an initial label.
Eventually, however, the label of each FN must be
adapted to the functional role of its actual protein con-
tent and to its relations with other FN, to ensure specifi-
city of definition (while preserving consistency with the
original label). In general, GO terms must be adapted to
the protein content of each FN, not only because the FN
may undergo several procedures that modify its own ori-
ginal protein content, but also because the PPI network
(which is restricted to a predefined biological domain)
provides just a partial coverage of the whole interactome
of the organism under study (such that the protein con-
tent of each FN corresponds only partially to the protein
content of the relevant GO term). As an example of the
impact of the applied procedure, after enucleation of
Pex3p and Pex19p, the residual protein content of node
6625 refers more specifically to the translocation of cyto-
solic enzymes into the peroxisomal matrix. Thus, the
original label of node 6625 ‘Protein targeting to peroxi-
some’ (corresponding to GO:0006625) was changed into
the new label ‘Translocation into the peroxisome matrix’
(Figure 2D).
From the function nodes to the process graph
On one hand, FN derive from annotations representing
random variables that refer implicitly to an exhaustive
set of alternative states, like ‘present’/‘absent’, ‘active’/‘in-
active’ or a richer set of values. Therefore, a relation be-
tween two FN refers to a possible co-variation of their
states. On the other hand, PPI link proteins that belong
to either the same FN (‘internal PPI’) or different FN
(‘crossing PPI’). While the former were used for defining
the FN, the latter provide information about the mutual
relations of the FN. Thus, an edge is initially established
between two FN, if they are linked by a crossing PPI, pro-
vided that it was detected by a binary assay (Figure 1 C, F).
However, while the occurrence of a PPI provides evi-

dence of a biochemical reaction, per se it is not deemed
sufficient to infer a relation at a functional level. Actu-
ally, to focus on the biochemical reactions that more
specifically support the hypothetical link between any
two functions, functional links based on only one PPI
are discarded (step 6 of the algorithm pseudocode). Fur-
thermore, an edge is established between two FN, if they
have a partially overlapping protein content. However, a
single shared protein is not deemed sufficient to infer a
relation between functions, mostly because more copies
of the same protein might independently support the
functions (step 6 of the algorithm pseudocode). For in-
stance, no link is established between the FN represent-
ing peroxisome fission (node 16559) and fatty acid
oxidation (node 19395), because the two FN share only
the Pex11p protein (not shown).
Hereafter, we provide a description of three PG repre-

sentations of well known cellular domains to systematic-
ally assess their validity. Specifically, each PG is revised
to unveil both false and lacking relationships among any
two FN, as well as to emphasize the compliance of larger
portions of the graph with the markov property. For a
detailed information and biochemical explanations, the
reader is referred to the Additional file 4 and Additional
file 5.

The process graph of the S. cerevisiae peroxisome
The PG of the yeast peroxisome comprises 249 FN and
5,703 edges. Among the FN, 11 contain exclusively core
proteins, 185 exclusively neighbor proteins, while 53
contain both core and neighbor proteins. For ease of
analysis, FN have been selected based on NTS (Add-
itional file 3) and protein type (i.e., core versus neigh-
bor). Specifically, to focus on peroxisome-specific
functions, FN were selected with NTS ≥ 30 and a core
protein content of at least two thirds. Furthermore, to
focus on other functions that may establish relations
with the peroxisomal functions, FN were selected with
NTS ≥ 60 and a core protein content of no more than
one third. The resulting PG (Figure 3) consists of 18 FN
(10 core and 8 peripheral; Additional file 6) and 46 edges
(18 core-core, 14 core-neighbor and 14 neighbor-neigh-
bor; Additional file 4).

A process graph-based overview of peroxisome function
A brief description of the peroxisome PG shown in Fig-
ure 3 is provided here, while a detailed analysis can be
found in the Additional file 4. First, it is known that the
metabolic activity of the peroxisomal enzymes must be
localized to the peroxisome matrix. Accordingly, the PG
portrays the conditions that enable these activities and,
in particular, the import of the enzymes from the cytosol
(where they are synthesized) into the peroxisome matrix,
i.e., the process of matrix assembly. Specifically, the
enzymes are first recognized and bound by receptors in
the cytosol (node 45184), so that the receptor-enzyme
complexes can then dock onto the peroxisomal mem-
brane (node 16560). In turn, docking allows the trans-
location of the enzymes into the matrix, across the
peroxisomal membrane (node 6625). Once the enzymes
are imported, the receptor is recycled back to the cytosol
(node 16562) for another round of import. The graph
also indicates that matrix assembly depends on mem-
brane assembly, i.e., the insertion of Peroxisomal Mem-
brane Proteins (PMP) into the peroxisome membrane
(node 45046). Actually, once inserted, the PMP assemble
to form the docking (node 16560), translocation (node
6625) and receptor recycling (node 16562) complexes.



Figure 3 The peroxisome process graph at high topological score. The PG shows the FN that represent peroxisome-specific functions and
extra-peroxisomal functions. Specifically, core and neighbor FN were chosen because of their highly connected protein content, as reflected in
NTS≥ 30 (core) or NTS≥ 60 (neighbors). See also Additional file 6 and Additional file 4, for a detailed analysis of the FN and the edges,
respectively.
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Second, membrane assembly (node 45046) is also
required for inserting PMP that mediate peroxisome
fission (node 16559) and inheritance (node 45033).
Fission (i.e., the formation of peroxisomes from pre-
existing ones) refers to the elongation and subsequent
division of the organelle, which requires the dynamin
Dnm1p (node 16559). The same division factor is re-
sponsible for mitochondrion fission (node 1) and is
similarly controlled in both peroxisomes and mitochon-
dria (node 266). An unrelated system, which requires
the dynamin Vps1p, controls selectively fission in per-
oxisomes (node 70584). Both division machineries
(nodes 16559 and 70584) may influence cell aging
(node 1300). As most of the fission-related factors must
be imported into the peroxisomes, nodes 16559, 70584
and 266 depend on protein import (node 17038). The
PG also portrays the dependence of inheritance (node
45033) on fission (node 16559). Actually, inheritance is
the function whereby peroxisomes, which have been
duplicated by fission, are delivered from the mother to
the bud cell.
Third, the graph also captures regulatory functions, in
particular of protein localization and stability. Thus,
localization signals (node 32880) regulate peroxisome
fission, by targeting to the peroxisomes regulators of
elongation (node 16559), of Dnm1p (node 266) and of
cortical actin (node 48856). Also, stability regulation
involves the proteasome (node 19538), with possible
effects on peroxisome fission (nodes 16559 and 266) and
matrix assembly (node 16560). Finally, the PG highlights
links between peroxisomes and metabolic functions, in-
cluding fatty acid oxidation (node 19395), which
depends again on membrane assembly (node 45046). In
addition, other links, which involve Dnm1p regulation
(node 266), suggest coordinated regulation of peroxi-
some fission (node 16559) and glycogen biosynthesis
(node 5977), possibly in response to glucose availability.

Presence of dubious edges and absence of expected
edges in the peroxisome process graph
Some edges portray plausible (albeit not character-
ized) dependencies among functions, which call for
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experimental validation (as discussed in the next sec-
tion). Few other edges, however, remain of dubious in-
terpretation, as it may occur when a protein, which
participates in different functions, is linked to proteins
that participate in an additional function. For instance,
Pex3p, which participates in membrane assembly (node
45046) and inheritance (node 45033), is linked to pro-
teins that participate in docking (node 16560). As dock-
ing requires membrane assembly (and not inheritance),
only the edge between nodes 45046 and 16560 (and
not the edge between nodes 45033 and 16560) seems
plausible (Figure 1E).
In contrast, some dependencies (albeit expected) are

not portrayed by the edges of the PG, as it may occur
when information is incomplete about protein interac-
tions and/or annotations. For instance, concerning the
interactions, even though it is established that peroxi-
somes can be formed from the ER (as represented in the
PG by node 32581), the PPI underlying the ER-to-per-
oxisome connection are incompletely characterized. As a
consequence, no edges in the PG link directly the per-
oxisomal nodes with node 32581. Furthermore, concern-
ing the annotations, defective annotation of Pex5p with
the term GO:0016562 results in the absence from the
PG of an expected edge linking receptor recycling (node
16562) with receptor-dependent enzyme recognition
(node 45184), as discussed in Additional file 4.

Formulating experimentally testable hypotheses
Suggesting the direction of an edge between any two FN
in a PG implies hypothesizing a causal dependence be-
tween the two represented functions. For instance, if
node A points to node B, then function B depends on
function A. Given that the primary source of evidence, i.
e., the PPI network, offers several clues on the occur-
rence, but not the direction of causality, the algorithm
elaborates an undirected graph that still requires add-
itional biological knowledge to be fully specified as a
directed graph. When specification of direction would
yield directed cycles, standard techniques can be applied
to obtain a DAG, leading to elimination of recursive
relations, by redefining nodes as temporally ordered
sequences of variables [15].
Converting an undirected graph into a DAG requires

not only attributing directionality to the undirected
edges but also removing those undirected edges that
portray dependencies among two or more causal expla-
nations, as long as they are deemed to be merely
induced by the observation of common effects [8].
Edges, whose direction remains undetermined, originate
multiple hypothetical markov equivalent DAG, each
representing an experimentally testable conjecture.
Whether a larger or smaller part of the DAG should be
exploited to represent the experimental design, is a
matter of convenience, as it is not always easy to assess
the functional state of some nodes [7,16].
Here, we focus on undirected sub-graphs consisting of

three nodes and two edges, which originate four hypo-
thetical and testable DAG (Figure 4A). The experimental
strategy requires manipulating one of the FN (node B)
and assessing the state of the other two FN (A and C).
Provided that specific manipulation and assessment are
both feasible, the result allows selecting one of the pos-
sible DAG (Additional file 7). The following examples
from the peroxisome PG indicate how our approach can
be used to plan novel experiments (or to evaluate our
graphical representation in the light of available data).
First, to confirm the established sequence of events in
peroxisome matrix assembly (Figure 4B), one might de-
vise an experiment consisting of the manipulation (e.g.,
with blocking reagents) of docking (node 16560), which
is expected to affect translocation (node 6625), while
leaving enzyme recognition (node 45184) unaffected.
Second, other experiments might be conceived to test
the likely dependence of peroxisomal receptor recycling
and fatty acid oxidation on membrane assembly (Fig-
ure 4C). In this case, available data might be used to cor-
roborate the experimental design. Actually, manipulation
of membrane assembly (node 45046), for instance by
null mutation of pex19, primarily results in cytosolic
mislocalization of several PMP, including Pex15p [17],
which mediates receptor recycling (node 16562). Simi-
larly, null mutation of pex3 (node 45046) affects fatty
acid oxidation (node 19395), possibly by altering
localization of the PMP Pex11p [18]. Conversely, ma-
nipulation of nodes 16562 and 19395 (by null mutation
of pex15 and pex11, respectively) leaves PMP
localization unaffected [17,19], thus strengthening the
likely dependence of nodes 16562 and 19395 on node
45046. Third, other experiments might be devised to test
the hypothetical dependence of the Vps1p-mediated fis-
sion of peroxisomes on the Dnm1p-mediated fission of
both peroxisomes and mitochondria (Figure 4D). In par-
tial support of this hypothesis, known genetic interac-
tions (in particular, phenotype suppression) already
suggest dependences among the fission-related FN. Spe-
cifically, manipulation of Vps1p-dependent fission (node
70584), by means of Vps1p over-expression, does not re-
store the fission defects (nodes 16559 and 1) of dnm1
mutants, whereas manipulation of nodes 16559 and 1,
by means of Dnm1p over-expression, does restore the
fission defect of peroxisomes in vps1 mutants [20].
Process graph-based overview of the cellular bud
Lastly, in addition to the peroxisome, we have applied
our method to other examples of PPI networks in the
budding yeast. The proteins in these networks either



Figure 4 Examples of experimentally-testable hypotheses. (A) The general strategy and (B-D) different examples of experimentally-testable
hypotheses derived from the PG of Figure 3 are shown. See also Additional file 7 for a list of selected DAG.
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localize to the cellular bud (Figure 5A) or participate in
the process of cell budding (Figure 5B).
From a PPI network composed of 526 PPI and 154

proteins with the annotation ‘Cellular bud’ (GO:0005933
and child terms in the cellular component vocabulary of
GO), a PG of 102 FN and 682 edges is generated. Setting
a threshold NTS ≥ 55 produces a PG of 16 FN and 26
edges (Figure 5A), which is described briefly here (and
in detail in Additional file 5). The PG represents func-
tions that take place at the cellular bud in association
with the polarization of the mother cell (light blue). Spe-
cifically, the Cdc42p-mediated establishment of polarity
(node 753), which depends on the selection of the bud
site (node 35556), activates in turn a kinase-based centre
of regulation for polarity-related responses (node 19236),
such as cytoskeleton remodelling along the mother-bud
axis (green), ring formation at the bud neck (yellow) and
cell division (orange). First, polarity induces both spindle
reorientation and actin organization (node 51300), so
that actin may assemble into filaments (node 915),
which in turn favours polarized transport to the bud
(node 32940). Transport also depends on the polarisome
(node 51016) and on actin bundling (node 8154) for the
correct orientation and strengthening of the filaments,
respectively. Second, polarity, via the phosphorylation of
septins, induces the assembly of a septin-based contract-
ile ring around the neck of the bud (node 31106). Third,
the PG shows that polarity is coordinated with the cell
cycle in several ways. On one side, in G1 phase, polarity
depends on the cell cycle, because Cdc28p (node 51321)
inactivates the Cdc42p inhibitor Rga2p (node 7154). On
the other side, in late G2/M phase, the cell cycle
depends on polarity to allow entry in mitosis, because
the Cdc42p effector Cla4p (node 19236) induces phos-
phorylation-mediated degradation of the Cdc28p inhibi-
tor Swe1p (node 51321). The PG also shows that the
cell cycle is regulated by polarity-related checkpoints
for septin ring organization (node 45860), spindle as-
sembly (node 42254) and spindle alignment (node
6261). Other accessory functions, such as DNA replica-
tion (node 6310) and cell wall remodelling (node
30242) are also shown.



Figure 5 (See legend on next page)
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Figure 5 The budding-related process graphs. The PG shows the FN that represent functions related to the cellular bud (A) and to cell
budding (B), two examples of a cellular component and a biological process in the budding yeast, respectively. See also Additional file 5 for a
detailed analysis of the FN and the edges.
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Process graph-based overview of cell budding
From a PPI network composed of 185 PPI and 72 pro-
teins with the annotation ‘Cell budding’ (GO:0007114
and child terms in the biological process vocabulary of
GO), a PG of 42 FN and 62 edges is generated. Setting a
threshold NTS ≥ 27 produces a PG of 20 FN and 20
edges, which is fragmented into three clusters. The do-
main represented by the largest cluster (13 FN and 15
edges) is shown in Figure 5B and described briefly here
(see also Additional file 5). The PG represents one of the
key events of cell budding (i.e., polarized transport of
vesicles and organelles from the mother cell to the bud)
as a FN (node 132), together with its dependence on
other FN, which are related to the underlying mechan-
isms of transport. First, polarized transport of vesicles
(node 132) depends on the fusion of post-Golgi exocytic
vesicles with the plasma membrane (node 7107), as well
as on the establishment of a specific site of fusion at the
plasma membrane, where the exocyst complex localizes
(node 6887). Exocyst localization depends on the
Cdc42p-mediated establishment of polarity (node 750),
which depends on upstream regulators (node 753). In
turn, polarity establishment (node 750) regulates other
budding-related responses, such as the assembly of a
septin-based ring around the bud neck (node 19236).
Second, polarized transport of organelles requires the
formation of polymeric actin cables along the mother-
bud axis and their anchoring at a cortical actin patch
in the bud. Specifically, nucleation of actin monomers
(node 7569) depends on the assembly of the polari-
some complex at the site of bud emergence (node
31384). Then, actin polymerization induces the assem-
bly of both actin bundles (node 8154) and a patch of
cortical actin (node 10324). The patch also depends on
additional upstream regulators (node 147), as well as
on the growth of the bud (node 747), which in turn
depends on membrane fusion events (node 32505).
Finally, these actin structures enable the polarized
transport (node 132).
Given that polarity establishment is known to induce

actin polarization [21], an edge from node 19236 to
node 32940 (in the cellular bud PG of Figure 5A), as
well as an edge from node 750 to node 7569 (in the cell
budding PG of Figure 5B) was expected. The edge, how-
ever, cannot be but missing, since polarity-dependent
regulators of actin, like Arp2p (or other proteins of the
Arp2/3 complex), were not annotated with the polarity-
related GO terms used to select the proteins of the PPI
networks, despite the fact that Arp2p is an effector of
the polarity regulator Las17p [22,23]. This observation
might suggest the usefulness of extending the PPI selec-
tion to the first degree neighbours of the core proteins
of the domain of interest, as likely means to reducing
missing annotations, even though the extension likely
increases the density of the edges in the PG (see Add-
itional file 8).

Discussion
This method combines information on the interactions
and functions of the proteins that belong to a domain of
biological interest (e.g., a cellular organelle or a bio-
logical process), with the goal of converting a function-
ally annotated PPI network into a PG, i.e., a compact
and coherently structured representation of dependen-
cies among biological functions. The goal is challenging,
as available information about the protein-to-function
relations does not guarantee that a protein under exam-
ination does indeed participate directly in the annotated
function. As edges between functions are based on the
PPI among the proteins that these functions annotate, it
follows that redundant protein-to-function assignment
inevitably produces redundant edges among the corre-
sponding FN. Thus, throughout the study, it has been
our main concern to ensure that a direct edge between
two FN could be established, only if intermediate func-
tions were unlikely to occur. Otherwise, the resulting PG
would be a mere assembly of coupled functions and not
a coherent and compact representation of the way func-
tions cooperate in supporting complex biological activ-
ities. In addition, a redundant PG would be of limited
usefulness for planning the smallest set of experimental
interventions that can be made on a function, when one
desires to impact on target functions. To achieve com-
pact representations, we took the following considera-
tions into account. First, FN are expected to map onto a
PPI network the correspondence between proteins and
annotations. Second, such mapping is expected to repre-
sent the most extensive coverage of the PPI network
with the least degree of overlap between FN, provided
that one can exclude the annotations of those proteins
that support only indirectly the annotated functions.
Third, molecules more typically contribute to biological
functions as highly inter-connected (or ‘modular’) as-
semblies, rather than as unconnected elements [12].
Within PPI networks, for instance, functional and topo-
logical modules display significant overlap [10,24]. Thus,
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based on these considerations, the algorithm we have
devised introduces a topologically-driven prioritization
that selects only plausible inclusions of a protein into a
FN, as quantified by its PMS, i.e., a score that reflects
the ability of a FN to discriminate among the topological
patterns of the PPI network, to which the protein
belongs.
The method has been applied to two cellular compo-

nents (i.e., the peroxisome and the cell bud) and one
biological process (i.e., cell budding) in S. cerevisiae,
which are well characterized domains and thus suitable
for validation purposes. On one hand, well characterized
causal dependencies among functions (e.g., dependence
of peroxisome matrix on membrane assembly) have con-
firmed that the method specifically highlights important
relations. On the other hand, less obvious dependencies
(e.g., those among different fission-related mechanisms
in peroxisomes and mitochondria) have revealed the
heuristic power of this method and its usefulness in for-
mulating testable hypotheses. It should be noted that the
peroxisome-centered PPI network has been extended to
the first neighbors of the peroxisome core proteins, be-
cause we wanted to highlight the wider biological land-
scape that ideally surrounds the organelle. The inclusion
of non-peroxisomal proteins is justified by the observa-
tion that almost half of the core proteins are annotated
(in the cellular compartment vocabulary of GO) with
terms related not only to the peroxisome but also to
mitochondrion, ER and nucleus (Additional file 1), the
organelles that interact functionally with the peroxisome
[25,26]. Clearly, some multiple annotations of the same
protein simply refer to the existence of sub-cellular dis-
tinct (and functionally unrelated) pools, such as the per-
oxisomal and nuclear pools of the dynamin Dyn2p.
Nevertheless, other multiple annotations suggest that a
protein may change its sub-cellular location, at least
under specific conditions. For instance, Pex11p relocates
from the ER to the peroxisome, when peroxisomes are
induce to proliferate in response to oleate [27].
Numerous studies have analyzed the relation between

molecules and functions. In particular, one of the major
aims of many bioinformatics studies has been to infer
the function of uncharacterized genes based on compari-
sons with characterized genes, such as sequence similar-
ity [28], co-occurrence in genomic clusters [29], co-
evolution in different species [30] and co-expression pat-
terns [31]. Also the PPI have been used to infer the func-
tion of uncharacterized proteins, based on the most
frequent annotations of their protein interactors [4,32-
34]. Like these ‘guilt by association’ methods, also our
approach builds on the assumption that proteins often
interact mutually to contribute to the same function.
Furthermore, all these studies (including ours) deploy a
non-directional annotated network as input, sometimes
designed ‘functional linkage network’ [35], in which
nodes correspond to molecules, while edges correspond
to different types of functional connection between
molecules [36].
Few studies, however, have moved beyond the immedi-

ate aim of inferring protein-function binary associations
to the ultimate aim of inferring structured dependencies
among functions, which can be displayed in a markov
graph of connected functions. An earlier study estab-
lished a link between a given pair of functions, anytime
a PPI had been detected between the proteins annotated
with the two functions [4]. A more recent study has ela-
borated on this method, by selecting statistically
enriched pairs of functions, as defined by the probability
that two sets of proteins (annotated with two distinct
functions) establish more PPI between themselves than
it can be expected by chance [5]. Our method differs
considerably from these earlier studies, as it retains any
annotation that is shared by two interacting proteins
within the PPI network, leaving to the topological ana-
lysis the task to define the FN, whose relationships may
satisfy the markov property. This way, the selected and
prioritized protein assignments to the FN are expected
to refer truly to the functions that are directly impacted
by the protein. As an example of how our approach dif-
fers from the previous studies, consider a 3-node sub-
graph composed of FN related to the GO functional
annotations of protein import (GO:0017038), PMP inser-
tion into the peroxisome membrane (GO:0045046) and
peroxisome organization (GO:0007031). While a previ-
ous study linked the three nodes with three edges [5],
our algorithm establishes only two edges (one between
nodes 17038 and 45046 and another between nodes
45046 and 7031), but not the edge between nodes 17038
and 7031, because it would violate the markov assump-
tion, given that protein import (node 17038) contributes
to peroxisome organization (node 7031) only indirectly,
i.e., by enabling PMP insertion (node 45046). Further-
more, our study also contrasts with an important impli-
cation of the earlier study, which advocated re-
engineering the GO database by complementing the GO
hierarchy with the links inferred from the functional
linkage graphs [5]. Alternatively, we propose to adapt
the semantics of the GO annotations to the level of de-
tail that characterizes the domain of interest, mostly
based on the real protein content of the FN. A more
detailed comparison of graphs that represent similar
domains but are obtained with different methods can be
found in Additional file 8.
Clearly, our method can be applied to different

domains of biological interest in different model organ-
isms, even though some words of caution should be
added. First and foremost, inaccurate and/or defective
datasets of protein interactions and functions will
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certainly affect the quality of the PG representation. In
our experience with S. cerevisiae, even after revising
carefully the PG, we found just a limited number of false
positives and false negatives. Nevertheless, we cannot ex-
clude that results might be less accurate, should the al-
gorithm be applied to other organisms that are not so
extensively and accurately characterized as the budding
yeast. Second, other features of the starting PPI network
should be taken into account, including the choice of a
cell type-specific repertoire of proteins (in the case of
multi-cellular organisms) and the size of the PPI (to en-
sure computational tractability). Third, it should be
pointed out that labor-intensive analysis is required to
verify the consistency of the PG with current biological
knowledge and to define the causal directionality of its
undirected edges. It should also be taken into account
that just a minor fraction of the physical interactions
that are reported in the PPI databases have an annota-
tion of biochemical directionality (e.g., kinase-dependent
phosphorylation of a substrate). For instance, out of
106,230 PPI reported as ‘physical interactions’ in the
3.1.83 release of BIOGRID, more than 94% of PPI
(100,388 PPI) has no annotation. Only less than 6% of
the remaining PPI has the annotation ‘phosphorylation’
or other types of modifications. Furthermore, in many of
these cases, the annotated modification has been
detected in a biochemical assay without functional
characterization. Finally, many PPI refer to physical
interactions that are non-directional in nature (e.g.,
interactions among structural proteins).
In conclusion, with all the caveats related to incom-

plete knowledge, the herein reported data suggest that,
even when the PPI structures that underlie a function
are only partially known, it is nevertheless possible to re-
gard functions as black boxes with only known inputs
and outputs, to obtain non-redundant graphical repre-
sentations of complex biological systems. In addition,
our efforts indicate that the graph we obtain can be
helpful in carefully designing experimental studies, pro-
vided that specific manipulation and measurement of
the portrayed functions are feasible.

Conclusions
The major problem with the idea of converting PPI
networks (of interacting and functionally annotated
proteins) into PG (of inter-dependent FN) is that sev-
eral proteins have multiple annotations. Faced with this
challenge, we reasoned that the final PG could be non-
redundant, if only the proteins that participate directly
in a given function are included in the related FN.
Furthermore, we surmised that topological features (e.g.,
the presence of highly inter-connected protein clusters
within the starting PPI network) might help approach-
ing structured and non-redundant understanding of
molecular function. Thus, an algorithm was developed
that prioritizes inclusion of proteins into the FN that
best overlap protein clusters. Specifically, the algorithm
identifies FN (and their mutual relations), based on
the topological analysis of the starting PPI network.
Applying the algorithm to different domains of bio-
logical interest (i.e., the S. cerevisiae peroxisome, cellu-
lar bud and cell budding) has shown that the method
is suitable for formulating testable and mechanistic hy-
potheses about the existence of dependencies among
functions.

Methods
Assembly of the PPI network
The PPI network is assembled starting from the core
proteins that characterize the domain of interest (e.g.,
the peroxisome, cellular bud and cell budding). Specific-
ally, these proteins are the gene products (as verified
open reading frames) that can be retrieved from the Sac-
charomyces Genome Database (SGD) [37], using the
‘Advanced Search’ option, with limit to the GO-Slim
terms ‘Peroxisome’ (GO:0005777), ‘Cellular bud’
(GO:0005933) or ‘Cell budding’ (GO:0007114). Then,
the list of gene products is used as query to retrieve
from the SGD database the PPI (‘physical interactions’)
that these proteins engage in, using the ‘Batch Down-
load’ search. A similar search is then performed to re-
trieve the PPI that occur among the interactors of the
core proteins.

Algorithm pseudocode
A graph G= (V, E) is a pair made by a finite set V = {V1,
V2, . . ., V K} of nodes and a collection of edges E ⊂ V×
V. Sets are indicated either in bold or within braces, the
number of their elements by indicating them within ver-
tical lines. Available data consist of two graphs, namely,
the PPI = (prot, J) and the DAG GO= (annot, H). The
set E defines which nodes are linked by an edge, so that
Ei,j means that node Vi is linked to Vj. When a graph is a
DAG, edges are oriented, so Ei,j 6¼Ei,j. The subset Vk ⊂ V
of nodes originating arrows reaching the node Vj is
called parents set, pa(Vj). A directed path is a path in
which edges always meet head-to-tail. The ancestors set
anc(Vi) of node Vi contains nodes located on directed
paths reaching Vi. The set of annotations of a protein i
as derived from GO is indicated by annotations(proti).
By reverse, the set of proteins annotated with annotation
k is indicated by proteins(annotk). Other set of annota-
tions are labelled as annotX, with X indicating a set of
proteins. The protein content of a FNi or a cluster of
proteins Cz is labelled as protFNi and protCz, respect-
ively. Complementary sets of proteins are indicated by
the superscript C, so that protFNi

C and protCz
C are the

proteins in prot, but not in FNi and Cz, respectively.
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#step 1: data loading
Get the PPI = (prot, J), the GO = (annot, H) and the set of clusters of proteins
C� {Cj} : Cj� protcj � prot.

#step 2: initial annotations of proteins
for all protv 2 prot

annotv Ø
for all annota 2 annotations(protv)
for all annotb 2 annotations(protv), b>a
if annota =2anc (annotb)
then annotv  annotv ∪ annota

end
end

end

#step 3: initial annotations’ mapping of PPI (creation of FNs)
PG= (FN, E), with FN � Ø, E� Ø
for all protv 2 prot

for all protw 2 prot, w>v
if Jv,w2J then do
if (annotv ∩ annotw) ∪ (pa(annotv) ∩ pa(annotw)) 6¼Ø) then do

annotz  (annotv ∩ annotw) ∪ (pa(annotv) ∩ pa(annotw))
for all annoti 2 annotz
if annoti =2 FN then
FNi annoti; protFNi {protv,protw}; FN FN∪FNi

Else
protFNi protFNi∪{protv,protw};

end
end

end
end

end

# step 4: refinement of annotations mapping of PPI based on PPI topology
for all FNi2 FN

for all protv 2 protFNi

PMS(protv, FNi) 0
for all Cz 2 C : protv 2 Cz
PMS ¼ max PMS ;
jprotFNi

∩protCz
j þ jprotFNC

i
∩protCC

z
j

jprotFNi
∩protCz

j þ jprotFNC
i
∩protCz

j þ jprotFNC
i
∩protCC

z
j þ jprotFNC

i
∩protCC

z
j

 !
� 100
end
end

end
for all FNi2 FN

PMS* max(PMS(protFNi))
for all protv 2 protFNi

if PMS(protv, FNi)<PMS* & PMS< PMSthreshold then
protFNi protFNi/protv

end
end
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# step 5: elimination and redefinition of redundant FNs

for all FNk2 FN
for all FNh2 FN, h>k
if protFNk�protFNh then FN FN/FNk

if protFNk�protFNh then protFNh  protFNh/protFNk

end
end

# step 6: edges among FNs
for all FNk2 FN

for all FNj2 FN, j>k
if |protFNk ∩ protFNj| >1 then E E∪Ek,j
cnt 0
for all protv 2 protFNk

for all protw 2 protFNj

if Jv,w2 J then cnt  cnt +1
end

end
if cnt >1 then E E∪Ek,j

end
end

# step 7: PG reduction
for all FNk2 FN

NTS(FNk)  0
for all Cz 2 C
NTS FNkð Þ ¼ max NTS FNkð Þ; jprotFNk
∩protCz

j
jprotFNk

∩protCz
j þ jprotFNk

∩protCC
z
j þ jprotFNC

k
∩protCC

z
j

 !
� 100
end
if NTS(FNk)< NTSthreshold then FN  FN/FNk

end
Inferring the direction of the edges within the PG:
general criteria and examples
Inferring the direction of each edge in the undirected
PG (produced by the algorithm) is a manual procedure,
which is performed by an expert investigator in the light
of biological knowledge. Given the heterogeneous nature
of current biological knowledge, the procedure relies on
different types of evidence (and corresponding oper-
ational criteria). Considering two hypothetical functions
A and B, the direction of the edge linking A and B (and
pointing from A to B) is inferred (and expressed in the
format ‘B depends on A’) according to one of the follow-
ing rules. First, direct experimental evidence indicates
that manipulation of A affects B (rule 1) or that the
main component(s) of A affect the main component(s)
of B (rule 2). Second, current understanding of the spe-
cific domain (e.g., yeast peroxisome) indicates that B
logically implies A (rule 3), or that event A precedes
event B (rule 4) or that the main component(s) of A
affect the main component(s) of B (rule 5). Third,
current understanding of cell biology suggests that A
might affect B (rule 6). Hereafter, some links from the
peroxisome PG (Figure 3) are discussed to exemplify the
six rules.
(Rule 1) Link 13 indicates that peroxisome inheritance

(node 45033) depends on Dnm1p-dependent peroxi-
some fission (node 16559). The inference is based on
direct experimental evidence that manipulation of A (de-
fective fission, with presence of non-divided peroxisomes
in mother cells lacking the fission factor Pex11p) affects
B (defective inheritance, with absence of inherited per-
oxisomes in the bud).
(Rule 2) Link 30 indicates that Dnm1p-dependent

peroxisome fission (node 16559) depends on the regu-
lation of protein localization (node 32880). The infer-
ence is based on the experimental evidence that the
main component of A (the Pho85p kinase) affects
(phosphorylates) the main component of B (the fission
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factor Pex11p), which would otherwise fail to localize
to the peroxisome.
(Rule 3) Link 5 indicates that the docking of receptor-

cargo complexes on the peroxisomal membrane (node
16560) depends on the assembly of the peroxisomal
membrane (node 45046). The inference is based on
current understanding of the specific domain, according
to which B (docking) logically implies A (assembly of
docking proteins).
(Rule 4) Link 2 indicates that translocation of recep-

tor-cargo complexes across the peroxisomal membrane
(node 6625) depends on their docking onto the outer
surface of the peroxisomal membrane. The inference is
based on current understanding of the specific domain,
according to which event A (docking) precedes event B
(translocation).
(Rule 5) Link 31 indicates that translocation (node

6625) depends on the regulation of protein localization
(node 32880). The inference is based on current under-
standing of the specific domain, according to which the
main component of A (the Pho85p kinase) affects (phos-
phorylates) the main component of B (the translocation
factor Pex10p).
(Rule 6) Link 18 indicates that cell aging (node 1300)

depends on peroxisome fission (node 16559). The infer-
ence is based on current understanding of cell biology
that oxidative metabolism (like the one occurring in
peroxisomes) may affect aging.

Labeling the function nodes
The initial labels of the FN (expressed as GO terms) can
undergo manual relabeling, if one (or more) of the fol-
lowing instances occurs. First, a FN has been enucleated
from another FN. Second, more FN with identical pro-
tein content have been merged into a single FN. Third,
the proteins of the predefined domain provide just a
minor coverage of the proteins annotated by the GO
term. In these instances, a new label is added provided
that it represents more appropriately the actual function
of the protein content of the FN (and/or its relations
with other FN in the PG). Furthermore, it should embed
(at least implicitly) some reference to the definition of
the original GO term.
Additional files

Additional file 1: The proteins of the peroxisomal PPI network (xls).
The table reports all the core and neighbor proteins of the peroxisomal
PPI network shown in Additional file 2, with the annotation(s) in the
‘cellular component’ ontology of GO (see last page of the table for
explanation). The annotations are ‘Yeast GO Slim’ terms, except the ones
in italics, which are child terms of the slim term GO:0005777
(‘Peroxisome’). k is the connectivity degree of each protein, i.e., its
number of direct neighbors in the network.
Additional file 2: The peroxisomal PPI network (jpg). The PPI
network comprises peroxisomal core proteins and their direct neighbors
(green and yellow circles, respectively), as well as the PPI that have been
detected by binary (red lines) or cluster (blue lines) assay (see also Table 1
of the main text). The size of each node is proportional to the k value of
the corresponding protein.

Additional file 3: Node and edge distribution in the peroxisome PG
at different NTS (jpg). The number of edges (top) and FN (bottom) in
the peroxisome PG is shown as a function of the NTS.

Additional file 4: FN and edges of the peroxisome PG (pdf). The file
describes the FN and edges of the peroxisome PG (displayed in Figure 3
of the main text), the physical links underlying the edges (crossing PPI
and/or shared proteins), as well as their biochemical basis and biological
significance [38-75].

Additional file 5: FN and edges of the cellular bud and cell
budding PG (pdf). The file describes the FN and the edges of the
cellular bud and cell budding PG (displayed in Figure 5A and Figure 5B
of the main text, respectively), the physical links underlying the edges
(crossing PPI and/or shared proteins), as well as their biochemical basis
and biological significance [76-94].

Additional file 6: The FN of the peroxisome PG (jpg). The FN of the
peroxisome PG (displayed in Figure 3 of the main text) are shown with
their protein contents, definitive labels and NTS. As in the Additional file
2, green and yellow circles represent core and neighbor proteins,
respectively. Also, red and blue lines represent PPI detected by binary or
cluster assays, respectively.

Additional file 7: Directed acyclic graphs in the peroxisome PG
(xls). The table reports the node identity of the different types of DAG
shown schematically in Figure 4A of the main text.

Additional file 8: Comparative analysis (pdf). The file describes the
network analysis-based comparison of PG obtained with our method and
with the method described in reference 5.
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