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Abstract
The microglial triggering receptor expressed on myeloid cells 2 (TREM2) signals via the activa-

tory membrane adaptor molecule TYROBP. Genetic variants or mutations of TREM2 or TYR-

OBP have been linked to inflammatory neurodegenerative diseases associated with aging. The

typical aging process goes along with microglial changes and mild neuronal loss, but the exact

contribution of TREM2 is still unclear. Aged TREM2 knock-out mice showed decreased age-

related neuronal loss in the substantia nigra and the hippocampus. Transcriptomic analysis of

the brains of 24 months old TREM2 knock-out mice revealed 211 differentially expressed genes

mostly downregulated and associated with complement activation and oxidative stress response

pathways. Consistently, 24 months old TREM2 knock-out mice showed lower transcription of

microglial (Aif1 and Tmem119), oxidative stress markers (Inos, Cyba, and Cybb) and complement

components (C1qa, C1qb, C1qc, C3, C4b, Itgam, and Itgb2), decreased microglial numbers and

expression of the microglial activation marker Cd68, as well as accumulation of oxidized lipids.

Cultured microglia of TREM2 knock-out mice showed reduced phagocytosis and oxidative burst.

Thus, microglial TREM2 contributes to age-related microglial changes, phagocytic oxidative

burst, and loss of neurons with possible detrimental effects during physiological aging.
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1 | INTRODUCTION

Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate

immune receptor that recognizes a broad spectrum of polyanionic

molecules including lipopolysaccharides of bacteria, sulfated glycos-

aminoglycans, and phospholipids (Cannon, O'Driscoll, & Litman, 2012;

Daws et al., 2003; Wang et al., 2015). TREM2 is expressed on micro-

glia, resident self-renewing mononuclear phagocytes of the brain that

are derived from embryonic hematopoiesis (Kierdorf et al., 2013).

Upon stimulation, TREM2 on microglia associates with the adaptor

protein TYROBP/DAP12 leading to a widespread immunoreceptor

tyrosine-based activation motif (ITAM)-mediated signaling. This can
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result in proliferation, survival, phagocytosis, phagocytic oxidative

burst with production of reactive oxygen species (ROS), as well as

pro- and anti-inflammatory cytokine expression (Charles et al., 2008;

Otero et al., 2012; Takahashi, Rochford, & Neumann, 2005; Wang

et al., 2015).

Loss-of-function mutations of TREM2 and TYROBP have been

linked to development of Nasu–Hakola disease (NHD; Paloneva et al.,

2000, 2002), an inflammatory degenerative disease of the brain and

bone, leading to premature dementia and death (Bianchin, Martin, de

Souza, de Oliveira, & Rieder, 2010). Rare variants of TREM2 are asso-

ciated with increased risk of developing Alzheimer's disease

(AD; Guerreiro et al., 2013; Jonsson et al., 2013). Most TREM2 muta-

tions found in AD risk variants are heterozygous mutations that

impact the binding of TREM2 ligands (Kober et al., 2016) or the shed-

ding of the extracellular domains, also containing the TREM2 ligand

binding site (Schlepckow et al., 2017; Thornton et al., 2017).

Since TREM2 mutations are associated with neurodegenerative

diseases, aged homozygous TREM2 knock-out (KO) mice could be an

animal model for NHD and might give insight into the pathomechan-

ism of AD. Therefore, we analyzed the neuroinflammatory and neuro-

degenerative phenotype in 24 months old TREM2 KO mice.

Here we show that TREM2 KO mice are protected against age-

related inflammatory changes, accumulation of oxidized lipids and loss

of neuronal structures.

2 | MATERIALS AND METHODS

2.1 | Animals

All animal experiments have been approved by the authors’ institu-

tional review boards and by the local government and have been con-

ducted according to the principles expressed in the Helsinki

Declaration. We used male B6.129P2-TREM2tm1cln mice (referred to

hereafter as TREM2 KO mice; Turnbull et al., 2006) and their corre-

sponding wild-type (wt) littermates as controls.

2.2 | RNA sequencing, pathway enrichment, and
gene transcript analyses

Half brains were collected after PBS perfusion of mice and immedi-

ately homogenized in 1 ml QIAzol Lysis reagent (Qiagen, Germany) for

two times 3 min at 50 Hz using a Tissue Lyser LT (Qiagen, Germany)

and stainless steel beads (mean diameter: 7 mm, Qiagen, Germany).

Total RNA was extracted using the spin column protocol of the

RNeasy® Mini Kit (Qiagen, Germany) according to the manufacturer's

protocol. The RNA concentration was measured using a Nanodrop

system (NanoDrop 200c, Thermo Fisher Scientific, Waltham, MA) and

diluted to 100 ng/μl. RNA integrity was assessed using 2100 Bioana-

lyzer (Agilent, Santa Clara, CA). Transcripts were analyzed by RNA

sequencing and pathway enrichment as described in Supporting infor-

mation Methods. For reverse transcription (RT) of isolated RNA,

Superscript® III Reverse Transcriptase (Invitrogen, Germany) and ran-

dom hexamer oligonucleotides (Roche, Germany) were used following

the manufacturers' protocol for SuperScript First-Strand Synthesis

(Invitrogen, Germany). As controls reactions without addition of cDNA

were performed. The cDNA concentration was measured with a

Nanodrop system (NanoDrop 200c, Thermo Fisher Scientific). sqRT

PCR with specific oligonucleotides (for sequences see SI Methods) was

performed with SYBR GreenER qPCRSuperMix Universal (Invitrogen,

Germany) using the Eppendorf ep gradient S Mastercycler®. Regula-

tion of the housekeeping genes glyceraldehyde-3-phosphate dehydroge-

nase (Gapdh), beta-Actin, 18S, and Rpl13a were investigated in

24 months old TREM2 KO versus wt animals (Supporting Information

Figure S1). The Vulcano Plot (Supporting Information Figure S1A) as

well as the comparison of the cycle threshold (ct; Supporting Informa-

tion Figure S1B) demonstrated that none of the investigated house-

keeping genes was regulated. Thus, gene transcripts of the

housekeeping gene GAPDH were used for normalization. Amplifica-

tion specificity was confirmed by the analysis of the melting curves.

Quantification using the ΔΔCt method was carried out.

2.3 | Immunohistochemistry

Mouse half brain tissues of PBS-perfused mice were immersed in 4%

paraformaldehyde (PFA, Sigma, Germany) for 24 hr, followed by 30%

sucrose (Sigma, Germany) supplemented with 0.1% sodium azide

(Sigma, Germany) until processed into frozen sections. The hemi-

sphere was embedded in O.C.T.™ Compound, Tissue Tek® (Sakura,

Torrance, CA), cut into 20 μm coronal sections and stored at −20�C

before staining.

For analysis of neurons or oxidized lipids, sections were blocked

and permeabilized using 10% bovine serum albumin (BSA, Sigma, Ger-

many), 5% normal goat serum (Invitrogen) and 0.2% Triton X-100

(Sigma, Germany) in PBS followed by the primary antibodies rabbit-

anti-tyrosine hydroxylase (TH; 1:500; Sigma, Germany) and anti-NeuN

(1:500; Millipore, Germany) or mouse-anti-4-hydroxynonenal (Hne,

1:15; Abcam, United Kingdom) in blocking solution for 2 hr at room

temperature. For microglial analysis, sections were blocked and per-

meabilized using 10% BSA and 0.25% TritonX-100 in PBS followed by

the primary antibodies rabbit-anti-ionized calcium-binding adapter

molecule 1 (Iba1, 1:500; Wako, Japan) and rat-anti-mouse Cd68

(1:500; Bio-Rad, Germany) in incubation solution (IS; 5% BSA and

0.05% TritonX-100 in PBS) overnight at 4�C. For synapse analysis,

sections were blocked and permeabilized using 2% BSA and 0.2%

TritonX-100 in PBS followed by the primary antibodies mouse-anti-

mouse postsynaptic density 95 (PSD95; 1:200; Thermo Fisher Scien-

tific) and rabbit-anti-mouse vesicular glutamate transporter 1 (vGlut1;

1:500; Synaptic Systems GmbH; Germany) in diluent solution (DS;

0.5% BSA and 0.05% TritonX-100 in PBS) for 3 days at 4�C. After

three washing steps in 1× PBS for analysis of neurons, oxidized lipids,

and synapses or in IS for microglial analysis, the sections were incu-

bated in the corresponding Cy3- or Alexa488-coupled secondary anti-

bodies (1:200 or 1:500 [neurons, oxidized lipids]/1:400 [microglia],

respectively; Jackson ImmunoResearch Laboratories, United Kingdom)

in blocking solution for analysis of neurons and oxidized lipids or IS

for microglial analysis for 2 hr at room temperature or overnight at

4�C in DS for synapse analysis. After two washing steps with 1x PBS,

nuclei of cells were labeled with 40 ,6-diamidino-2-phenylindole (DAPI,

1:10,000; Sigma, Germany) for 30 s followed by another washing step
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with 1× PBS. Sections were embedded with Moviol (Sigma, Germany)

or (Aqua-)Polymount (Polysciences Inc, Warrington, PA) and stored at

4�C. Images were taken with ApoTome microscope (AxioImager.Z1)

equipped with AxioVisio imaging software (both Zeiss, Germany) for

analysis of neurons. For analysis of oxidized lipids, microglia and syn-

apses images were acquired with a confocal microscope

(Fluoview1000) equipped with FluoView imaging software (both

Olympus, Germany) and 3D reconstruction was performed.

All number-coded images were analyzed by a blinded investiga-

tor using the ImageJ software (NIH, MBF, Bethesda, MD). The levels

were defined according to the mouse brain atlas of Paxinos & Frank-

lin. For quantification of neuronal density, in total three matching

levels per animal were analyzed (Bregma −2.92 mm, −3.52 mm

and − 3.64 mm for substantia nigra pars compacta [SNpc] and

Bregma −2.30 mm to −2.46 mm, −2.92 mm, −3.4 mm for hippo-

campal CA3). The SNpc was encircled based on the TH-positive

immunostaining and the number of NeuN-positive cells in the

selected area was counted. The cell number was divided by the

selected area. Moreover, for analysis of the width, different points

of the selected CA3 region (pyramidal cell layer as indicated in

Figure 1a) as well as of the dentate gyrus (DG) were measured and

the mean was calculated. For analysis of oxidized lipids, z-stacks of

the 4-Hne stained hippocampus and the SN pars reticulate (SNpr)

were taken at the Bregma level −2.94 mm to −2.98 mm and the

intensity per area was calculated and the background was sub-

tracted. For quantification of microglia z-stacks of the SNpr at

Bregma level −2.88 mm to −2.9 mm were taken. The intensity of

Iba1 as well as Cd68 per area was measured and background inten-

sity was subtracted. Additionally, the number of Iba1/DAPI-double

positive cells was counted, the soma area was measured according

to the Iba1 staining of 10 cells in each picture and the mean value

was calculated. Soma intensities of Iba1 and Cd68 were measured

in the ten cells encircled for soma area and the corresponding back-

ground intensities were subtracted for each soma. For quantifica-

tion of synapses, two z-stacks were taken of the hippocampus in-

between the DG region at Bregma level −2.3 mm to −2.5 mm. The

quantification was carried out using the Puncta Analyzer plugin for

ImageJ according to Ippolito and Eroglu with a rolling ball radius of

50 and the minimum puncta size of four pixels (Ippolito & Eroglu,

2010). The same settings for the analysis were used for all images.

2.4 | Lipid peroxidation (MDA) assay kit

Brain regions (hippocampus and midbrain) were directly prepared

after PBS perfusion of the mice, shock-frozen in liquid nitrogen and

stored in −150�C for 1–2 days, before using for the malondialdehyde

(MDA) assay kit (Sigma, Germany) that was performed according to

manufacturers' protocol. The absorbance of the samples was mea-

sured at 532 nm with the EnVision 2104 Multilabel Plate Reader

(Perkin Elmer, Waltham, MA).

2.5 | Primary microglia preparation

Primary microglial cultures were prepared from TREM2 wt or KO mice

and cultured according to an established protocol (Napoli, Kierdorf, &

Neumann, 2009). Primary microglia were cultured in serum-free

medium consisting of Dulbecco's Modified Eagle's Medium (DMEM)/

F12 supplemented with 1% N2 supplement, 1% L-glutamine and 1%

penicillin/streptomycin (all Invitrogen, Gibco, Germany) for 24 hr

before using for phagocytosis assay or dihydroethidium (DHE)

staining.

2.6 | Phagocytosis assay

Beads phagocytosis assay was performed according to an established

protocol (Beutner, Roy, Linnartz, Napoli, & Neumann, 2010). To ana-

lyze the phagocytosis of inactivated, pHrodo-labeled bacteria

(pHrodo™ Red BioParticles®, Staphylococcus aureus, Molecular

Probes, Eugene, OR) primary microglia were incubated with 1 mg/ml

pHrodo-inactivated bacteria for 2 hr at 37�C, 5% CO2. Cells were

washed with PBS, fixed with 4% PFA containing 0.25% glutaraldehyde

(Sigma, Germany), images were taken with a confocal microscope

equipped with FluoView imaging software and analyzed using ImageJ

software. pHrodo intensity per picture of five pictures per condition

per experiment was calculated and background intensity was

subtracted.

2.7 | Superoxide detection by DHE staining

Neural necrotic debris has been prepared by incubating ARPE-19

cells (#ATCC-CRL-2302, ATCC, Germany) in PBS for 1 hr at 56�C.

Cells were treated for 15 min either with 5 μg/μl debris or 1 μg/μl

inactivated bacteria (unlabeled BioParticles ®, Staphylococcus aureus,

Molecular Probes). Cells were pre-incubated with superoxide

dismutase-1 (SOD-1; 40 μg/ml; Serva, Germany) or trolox (80 μM;

Cayman, Germany) as indicated before the treatment with inacti-

vated bacteria. Detection of superoxide was carried out according

to an established protocol (Claude, Linnartz-Gerlach, Kudin, Kunz, &

Neumann, 2013). SOD-1 (debris: 20 μg/ml; inactivated bacteria:

40 μg/ml) or Trolox (debris: 40 μM; inactivated bacteria: 80 μM)

were added as indicated.

2.8 | Statistical analysis

Data of at least three independent experiments were normalized to

3 months old wt mice or to wt primary microglia. Data with one vari-

able were analyzed by unpaired Student's t test (2 groups) or by

ANOVA followed by post hoc Bonferroni correction (>2 groups) using

SPSS computer software (IBM Corporation, Germany). Data with

more than one variable were analyzed by multiple linear regression

including an interaction term followed by a pairwise comparison with

LSD-post hoc correction using STATA®/IC computer software

(StataCorp, College Station, TX). The Breusch–Pagan/Cook–Weisberg

test for heteroscedasticity was performed to assess the equality of

variances in the linear model. If variances were significantly different,

a robust linear model including an interaction term was chosen for fur-

ther analysis.

LINNARTZ-GERLACH ET AL. 541



3 | RESULTS

3.1 | Decreased age-related neuronal loss in TREM2
KO mice

To investigate the role of TREM2 in brain aging, neuronal loss was

analyzed in two selected brain regions, the SN and the hippocampus.

The neurons in the SNpc are susceptible to oxidative stress, a process

occurring in the aging brain. The CA3 region of the hippocampus is

involved in memory processes and is susceptible to neurodegenera-

tion. NeuN-positive cells were counted per selected area as indicated

in Figure 1a,b (up) and the relative cell density was quantified in

3, 12 and 24 months old TREM2 wt versus KO mice (Figure 1a,b

[down]). In wt animals, the relative neuronal density decreased with

age in both brain regions (3 months versus 24 months: p = .002 for

hippocampus and p = .005 for SNpc). In contrast, in the TREM2 KO

mice, the relative numbers of NeuN-positive cells were neither

decreasing in the hippocampus (3 months vs. 24 months: p = .624)

nor in the SNpc (3 months vs. 24 months: p = .431). Thus, the number

of NeuN-positive cells was generally higher in TREM2 KO mice (geno-

type-specific difference: p = .0016 in hippocampus and p = .0002 in

SNpc), especially at 24 months of age (hippocampus: wt

78.06 � 5.5%, KO 98.74 � 8.3%, p = .011; SNpc wt 78.71 � 4.26%,

KO 106.6 � 5.58%, p = .002). To investigate changes in tissue

FIGURE 1 Less age-related neuronal loss in TREM2 KO mice. a,b Up— Representative images of neuronal nuclei (NeuN, red) and 40,6-diamidino-

2-phenylindole (DAPI, blue) staining in the hippocampus (a) and of NeuN, DAPI and tyrosine hydroxylase (TH, green) in the substantia nigra pars
compacta (SNpc; b) of 24 months old TREM2 wild-type (wt) and knock-out (KO) mice. Quantification was carried out in the encircled area. Scale
bar: 200 μm, higher magnifications of hippocampus: 100 μm, Bregma level: Hippocampus: −2.4 mm, SNpc: −2.92 mm. Down—quantification of
NeuN-positive cell density of 3, 12, and 24 months old TREM2 wt versus KO mice in the hippocampal CA3 region (a) and in the SNpc (b) showed
a higher NeuN-positive cell density in 24 months old TREM2 KO mice. (c) Left—representative z-stack images of vesicular glutamate transporter
1 (vGlut1, red) and postsynaptic density protein 95 (PSD95, green) positive structures in-between the dentate gyrus in 24 months old TREM2 wt
versus KO mice. Bregma level: −2.30 to −2.50 mm. Scale bar: 5 μm. Right—quantification of synapses (co-puncta density) in 3, 12, and 24 months
old TREM2 wt versus KO mice revealed a higher synaptic density in TREM2 KO mice. Data are presented as mean � SEM (n = 6–12 mice per
group. * p ≤ .05; ** p ≤ .01; n.s. not significant)
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morphology due to different neuronal densities, the width of the DG

as well as of the CA3 region was analyzed and found to be increased

in aged TREM2 KO mice compared to wt mice (Supporting Informa-

tion Figure S2; genotype-specific difference in CA3: p < .0001). To

investigate alterations of neuronal-specific structures, the synaptic

density in the hippocampus was analyzed. Coronal sections were

stained with antibodies for glutamatergic pre- and post-synapses

(Figure 1c, left) and the co-puncta density was quantified (Figure 1c,

right). In the TREM2 KO mice, the co-puncta density was higher com-

pared to the wt animals (genotype-specific difference: p = .0022).

Taken together, less age-related neuronal loss accompanied by

increased synaptic density was detected in TREM2 KO mice com-

pared to wt littermates.

3.2 | Diminished activation of complement and
oxidative stress pathways in aged TREM2 KO mice

To better understand the molecular mechanisms leading to less neuro-

nal loss in aged TREM2 KO mice compared to wt littermates, tran-

scriptomic analysis of 24 months old brains was performed. In total,

211 genes were found to be differentially expressed (DE) above

0.5-fold on log2-scale with a false discovery rate (FDR) < 0.05

(Supporting Information Figure S3a). The DE genes included genes of

the complement system (e.g., Itgb2 [cd18], C4b, C3), genes involved in

an oxidative stress response (e.g., Cybb, Inos), and microglial markers

(e.g., Cd68, Tyrobp). Interestingly, the before mentioned genes are all

downregulated in TREM2 KO mice. An Ingenuity Pathway Analysis®

(IPA) using these 211 DE genes revealed as top enriched canonical

pathways TREM1 signaling, complement system and production of

nitric oxide and ROS in macrophages, with most of the genes downre-

gulated (Supporting Information Figure S3a,b). The top five molecular

and cellular functions are cell-to-cell signaling and interaction, cellular

function and maintenance, cellular movement, protein synthesis, and

cellular development (Supporting Information Figure S3c). The top six

predicted upstream regulators from the IPA (Interferon γ [Ifnγ], Tumor

necrosis factor α [Tnfα], Interleukin 4 [Il4], Il-1β, Il6, and Ifnα) are all

predicted to be inhibited in the 24 months old TREM2 KO mice com-

pared to wt littermates (Supporting Information Figure S3d).

Thus, data indicate that the innate immune system of the brains

of aged TREM2 KO mice is in a less activated state as indicated by the

lower expression of genes involved in the innate immune, comple-

ment, and oxidative stress response pathways.

3.3 | Decreased age-related expression of microglial
markers and pro-inflammatory cytokines in TREM2
KO mice

To confirm the lower activated innate immune system state in the

brains of TREM2 KO mice, the resident immune cells of the brain, the

microglia, were investigated. The transcription levels of the microglial

markers allograft inflammatory factor 1 (Aif1, the iba1 encoding gene)

and the transmembrane protein 119 (Tmem119) were lower in

TREM2 KO mice compared to wt littermates (Figure 2a). The multiple

linear regression model revealed genotype-specific differences for

both markers (Aif1 p = .0045; Tmem119 p = .0094). The reduced

transcription is especially detectable for Aif1 (wt 0.78 � 0.1 FC, KO

0.38 � 0.05 FC, p = .001) at 24 months of age. To check whether

changes can also be observed on the protein level, coronal sections

were stained for Iba1 to analyze the number of microglia. The number

of Iba1-positive cells was lower in TREM2 KO mice compared to wt

littermates at every investigated time point (Figure 2b left; genotype-

specific difference: p = .0012). Especially at 24 months of age, the

relative number of Iba1-positive cells was lower in the TREM2 KO

mice compared to wt littermate controls (Figure 2b, left; wt

85.87 � 11.32%, KO 47.57 � 5.66%, p = .003). Additionally, at this

age, the relative Iba1 intensity per area (wt 28.1 � 8.07%, KO

12.25 � 2.2%) showed a tendency to be lower in TREM2 KO mice

(p = .109; Figure 2b, right). In line with lower microglial numbers, the

transcription levels of the pro-inflammatory cytokines Tnfα and Il-1β

were less increased in the TREM2 KO mice (genotype-specific differ-

ences: p < .0001 for both cytokines; Figure 2c). Especially at

24 months of age, the differences were obvious (Tnfα wt 3.82 � 0.32

FC, KO 1.65 � 0.19 FC, p < .001; Il-1β wt 1.27 � 0.11 FC, KO

0.4 � 0.04 FC, p < .001).

Thus, loss of TREM2 results in reduced numbers of microglia

accompanied by lower levels of pro-inflammatory cytokines.

3.4 | Less production of nitric oxide and reactive
oxygen species and reduced signs of age-related
oxidation in TREM2 KO mice

Oxidative damage is a hallmark occurring in aging phagocytes and the

aging brain. Our transcriptomic data indicate differences in the brains

of 24 months old TREM2 KO mice and wt littermates, with genes

encoding for the proteins involved in the pathways of NO production

by inducible NO synthases (iNOS) and superoxide production by nico-

tinamide adenine dinucleotide phosphate (NADPH) oxidase, or their

upstream regulators, being DE or predicted to be affected (Figure 3a).

Moreover, all regulated genes are less expressed in the 24 months old

TREM2 KO mice and the upstream regulators are predicted to be

inhibited, indicating less oxidative stress responses in TREM2 KO

mice. To confirm the RNAseq data, transcription levels of oxidative

stress markers were analyzed (Figure 3b). The oxidative stress markers

were less transcribed in 24 months old TREM2 KO mice (Inos wt

0.97 � 0.06 FC, KO 0.61 � 0.08 FC, p = .014; Cyba wt 0.22 � 0.01

FC, KO 0.12 � 0.01 FC, p < .001; Cybb wt 1.29 � 0.15 FC, KO

0.96 � 0.05 FC, p = .038). Lipid peroxidation is, among others, a con-

sequence of oxidative stress. The 4-Hne is an α,β-unsaturated hydro-

xyalkenal produced by lipid peroxidation. Since oxidative stress

responses are reduced in 24 months old TREM2 KO mice, we investi-

gated whether the detection of oxidized lipids is also changed. There-

fore, we stained coronal slices for 4-Hne and investigated the staining

intensity in the hippocampus (Figure 3c, left) and the SNpr (Figure 3c,

right). The relative 4-Hne intensity per area increased with age in wt

mice especially in the hippocampus (Figure 3c, left; 3 months vs. 24

months: p < .001). In the TREM2 KO mice however, the relative

4-Hne intensity per area was increasing less in the hippocampus

(3 months vs. 24 months: p = .01; genotype-specific differences:

p < .0001) and was quite stable with age in the SNpr (3 months vs. 24

months: p = .726; genotype-specific difference: p = .0185). Especially
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at 24 months of age the relative 4-Hne intensity per area was lower

in the hippocampus (wt 180.1 � 16.71%, KO 119.25 � 13.84%,

p = .006) and the SNpr (wt 130.9 � 10.92%, KO 84.4 � 8.98%,

p = .039) of TREM2 KO mice. Moreover, lipid peroxidation was also

measured via MDA assay in the whole hippocampus (Figure 3d, left)

and the midbrain (Figure 3d, right) of 3 and 12 months old animals.

The level of lipid peroxidation was generally lower in TREM2 KO mice

compared to wt littermates (Figure 3d; genotype-specific differences:

p = .0142 [hippocampus] and p = .0011 [midbrain]). Especially at

3 months of age, the relative MDA concentration per tissue

weight was lower in the hippocampus (wt 100 � 4.85%, KO

64.36 � 13.04%, p = .015) and the midbrain (wt 100 � 7.32%, KO

59.91 � 12.17%, p = .007) of TREM2 KO mice. To investigate the

microglial oxidative stress responses in more detail, we prepared

microglial cultures out of newborn TREM2 KO mice and wt litter-

mates and investigated the production of ROS. Therefore, primary

microglia were either treated with necrotic neural debris (Figure 3e) or

inactivated bacteria (Figure 3f ) and stained with DHE to detect intra-

cellular ROS production. In wt primary microglia, the relative DHE

intensity per cell was increased after feeding with debris (from

100 � 3.12% to 125.99 � 6.26% after treatment, p = .007) and inac-

tivated bacteria (from 100 � 2.43% to 203.18 � 12.41% after treat-

ment, p < .0001). The superoxide scavengers SOD1 or trolox

completely prevented the oxidative burst induced by debris

(92.3 � 3.87%, p < .001 vs. debris treatment and 100.69 � 3.99%,

p = .019 vs. debris treatment, respectively) or partially prevented the

oxidative burst induced by inactivated bacteria (158.28 � 12.43%,

p = .019 vs. inactivated bacteria treatment and 167.53 � 8.78%,

p = .186 vs. inactivated bacteria treatment, respectively). No increase

in ROS production was detectable after treatment of TREM2 KO pri-

mary microglia with necrotic neural debris (untreated 90.84 � 4.46%,

p < .001; debris treated 94.3 � 5.72%, p = .001; debris+SOD1 trea-

ted 95.35 � 6.2%, p = .001; debris+trolox treated 95.06 � 5.96%,

p = .001; p values versus wt debris treated) or less increased after

FIGURE 2 Less age-related expression of microglial markers and pro-inflammatory cytokines in TREM2 KO mice. (a) Semi-quantitative real-time

(sqRT) PCR of microglial markers in half brains of 3, 12, and 24 months old TREM2 wt and KO mice. At 24 months of age transcription of aif1
(allograft inflammatory factor 1) and tmem119 was lower in TREM2 KO mice. Gapdh was used as internal loading control. (b) Left—quantification
of the numbers of Iba1/DAPI double positive cells in the substantia nigra pars reticulata (SNpr) showed especially at 24 months of age lower
amounts of cells per area in TREM2 KO mice. Right—quantification of the Iba1 staining intensity per area in the SNpr revealed a tendency to
lower Iba1 staining intensity in 24 months old TREM2 KO mice. (c) SqRT PCR of pro-inflammatory cytokines demonstrated lower transcription
levels of Tnfα and Il-1β in TREM2 KO mice. Gapdh was used as internal loading control. Data are presented as mean + SEM or mean � SEM
(n = 5–12 mice per group; *p ≤ .05; **p ≤ .01; *** p ≤ .001; n.s. not significant)
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FIGURE 3 Less production of nitric oxide and reactive oxygen species and reduced signs of age-related oxidation in TREM2 KO mice. (a) The

pathways of the production of nitric oxide (NO) by inducible NO synthase (iNOS) and reactive oxygen species (ROS) by NADPH oxidase are less
activated in 24 months old TREM2 knock-out (KO) animals as revealed by RNA-seq. Significantly down-regulated genes are shown in red and
bold. Protein names corresponding to differentially expressed (DE) genes are shown. Ingenuity pathway analysis was performed on significantly
DE genes (FC > 0.5, FDR < 0.05). (b) Semi-quantitative real-time PCR of oxidative stress markers in half brain of 3, 12, and 24 months old
TREM2 wild-type (wt) and KO. At 24 months of age, transcription of Inos, Cyba, and Cybb was lower in TREM2 KO mice. Gapdh was used as
internal loading control. (c) Quantification of 4-hydroxynonenal (4-Hne) staining intensity per area in the hippocampus (left) and substantia nigra
(SN) pars reticulata (right) showed less (hippocampus) or no (SN) age-related increase of oxidized lipids in 12 and 24 months old TREM2 KO mice.
(d) Relative malondialdehyde (MDA) concentrations of 3 and 12 months old TREM2 KO mice were lower in the hippocampus (left) and midbrain
(right). (e,f ) Analysis of oxidative stress response in primary microglia obtained from TREM2 wt and KO mice. Quantification of levels of
superoxide production after necrotic neural debris feeding (e) or inactivated bacteria treatment (f ) as determined by DHE staining intensity
showed increased superoxide production in primary wt microglia. The increase was completely (e) or partially (f ) antagonized by superoxide
dismutase 1 (SOD1) or trolox. In primary TREM2 KO microglia, no (e) or less (f ) significant increase in superoxide production was observed after
treatment. Data are presented as mean + SEM or mean � SEM (n = 6–12 per group (b–d) and n = 4 independent culture preparations (e,f ).
*p ≤ .05, **p ≤ .01, ***p ≤ .001, n.s. not significant)

LINNARTZ-GERLACH ET AL. 545



treatment with inactivated bacteria (untreated 99.86 � 7.11%,

p < .001; inactivated bacteria treated 150.58 � 9.29%, p = .002; inac-

tivated bacteria+SOD1 treated 149.76 � 9.86%, p = .002; inactivated

bacteria+trolox treated 135.61 � 6.75%, p < .0001; p values versus

wt inactivated bacteria treated).

Thus, lower levels of oxidative stress markers and lipid peroxida-

tion in aged TREM2 KO mice and a lower oxidative burst of TREM2

KO microglia support the data of the RNA-seq analysis and the sqRT

PCR hinting toward a reduced oxidative stress response in TREM2

KO animals.

3.5 | Less age-related increase in complement
factors in TREM2 KO mice

The complement system is involved in synaptic pruning and the

removal of unwanted structures during development, homeostasis,

and neurodegeneration via microglial complement-mediated phagocy-

tosis. RNA-seq data identified several DE genes encoding for proteins

involved in the different complement cascades (Figure 4a). To validate

the RNA-seq results, we performed sqRT PCR to investigate changes

in the transcription levels of the complement components C1qa, C1qb,

C1qc, C3, C4b, Itgam, and Itgb2. Most of the complement markers

stayed stable over time in TREM2 KO mice, while some increased

with age in the wt littermates (Figure 4b; genotype-specific differ-

ences: C1qa p = .0125; C1qb p = .0982; C1qc p = .0274; C3

p = .0685; C4 p = .0176; Itgam p = .0013; Itgb2 p = .0002). Impor-

tantly, in 24 months old animals, all investigated complement compo-

nents were less transcribed in TREM2 KO mice than in wt littermates

(Figure 4b; C1qa wt 1.27 � 0.08 FC, KO 0.8 � 0.09 FC, p = .029;

C1qb wt 0.72 � 0.08 FC, KO 0.38 � 0.05 FC, p < .001; C1qc wt

4.22 � 0.35 FC, KO 2.73 � 0.1 FC, p = .001; C3 wt 1.96 � 0.18 FC,

KO 0.96 � 0.11 FC, p = .005; C4b wt 5.41 � 0.93 FC, KO

2.92 � 0.29 FC, p = .012; Itgam wt 0.73 � 0.05 FC, KO 0.53 � 0.05

FC, p = .011; Itgb2 wt 2.22 � 0.17 FC, KO 1.43 � 0.03 FC, p < .001).

Data show that the different gene transcripts of the complement

cascades are less upregulated during aging in the TREM2 KO mice

compared to wt controls.

3.6 | Less expression of phagocytosis-associated
activatory membrane adaptors and lysosomal/
endosomal Cd68 in TREM2 KO mice and decreased
phagocytosis of TREM2 KO microglia

The phagocytic removal of debris and unwanted structures is neces-

sary for normal brain homeostasis. During aging more debris, apopto-

tic cells and oxidized lipids might occur that have to be removed by

the microglia. Our RNA-seq data hint toward differences in microglial

phagocytosis in 24 months old TREM2 KO versus wt littermates since

Tyrobp (Dap12), the adaptor molecule of TREM2, and the lysosomal/

endosomal associated membrane glycoprotein Cd68 belong to the DE

genes (Supporting Information Figure S3A). To validate the RNA-seq

data, we investigated the transcription levels of Dap12, Fcer1g, and

Cd68 over time that revealed genotype-specific differences in a multi-

ple linear model (Figure 5a; Dap12 p < .0001; Fcer1g p = .0045; Cd68

p = .0077). Especially at 24 months of age, all three markers are

transcribed less in the TREM2 KO mice compared to wt littermates

(Dap12 wt 1.32 � 0.05 FC, KO 0.81 � 0.06 FC, p < .001; Fcer1g wt

0.71 � 0.03 FC, KO 0.47 � 0.05 FC, p < .001; Cd68 wt 1.05 � 0.14

FC, KO 0.57 � 0.09 FC, p = .006). Moreover, no age-related increase

in the expression of the microglial phagocytosis marker Cd68 was

observed in the TREM2 KO mice. The Iba1 stained coronal slices have

been co-stained with an antibody directed against Cd68 (Figure 5b).

In TREM2 KO mice, the relative overall intensity of Cd68 per area

was decreasing with age (3 months vs. 24 months: p = .001), whereas

the Cd68 intensity per Iba1-positive soma was stable (3 months vs. 24

months: p = .078), while both parameters were increasing in the wt

littermate controls (Figure 5c; overall intensity 3 months vs. 12

months: p = .022; soma intensity 3 months v. 24 months: p < .001;

genotype-specific differences: for both p < .0001). Especially in

24 months old animals, the relative overall Cd68 intensity per area

(Figure 5c, left; wt 167.94 � 27.18%, KO 55.47 � 5.18%, p < .001) as

well as the relative Cd68 soma intensity per area (Figure 5c, right; wt

311.27 � 34.38%, KO 148.34 � 15.34%, p < .001) was lower in

TREM2 KO mice compared to wt littermates. To investigate the

microglial phagocytic function in more detail, we analyzed the phago-

cytosis of beads (Figure 5d, left) as well as of inactivated bacteria

(Figure 5d, right) of primary cultured microglia via flow cytometry or

confocal microscopy, respectively. The relative beads phagocytosis as

well as the phagocytosis of inactivated bacteria was lower in TREM2

KO compared to wt primary microglia (beads: wt 100 � 14.7% and

TREM2 KO 37.24 � 5.06%, p = .016; inactivated bacteria: wt

100 � 4.76%, TREM2 KO 63.11 � 2.69%, p < .001).

Thus, the lower expression level of phagocytic markers in TREM2

KO mice as well as the decreased phagocytic capacity of TREM2 KO

microglia further support the RNA-seq data indicating a lower phago-

cytic activation status.

4 | DISCUSSION

Several TREM2 mutations have been associated with age-related

inflammatory neurodegenerative diseases. However, the exact role of

TREM2 in the aging process of the brain is still unknown. Our data

now demonstrate that TREM2 deficiency leads to less age-related

neuronal loss. Already at 3 months of age, a slight increase in neuronal

numbers in the SN as well as a slight increase in synapse density were

detected in TREM2 KO compared to wt mice. While the neuronal cell

number and the synapse density were preserved over time in TREM2

KO mice, both were reduced with age in the wt animals. This finding

is in line with another previous observation from Leyns et al. (2017)

investigating the impact of TREM2 on tau pathology. Loss of TREM2

in a tau mouse model led to less brain atrophy. Interestingly,

deficiency of TYROBP, the adapter protein for TREM2, was neuropro-

tective in a mouse model of AD (Haure-Mirande et al., 2017). The

deficiency of TYROBP resulted in an altered expression of AD-related

genes, with less severe neuritic dystrophy and attenuated learning

behavior deficits. Moreover, a current study indicates a role for

TREM2 in synaptic pruning during brain development. In the develop-

ing brain, deficiency of TREM2 resulted in a higher density of synaptic

structures that was attended by enhanced excitatory neurotransmission
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and reduced long-range functional connectivity (Filipello et al., 2018).

This might be due to the absence of TREM2-mediated phagocytosis.

In our study, TREM2 KO mice have preserved neuronal numbers as

well as an increased number of synaptic co-puncta. In line, we

observed lower levels of phagocytic markers and decreased phagocy-

tosis of TREM2 KO primary microglia. However, it still has to be clari-

fied whether the preserved neuronal numbers have any functional

impact. Another study in TREM2-deficient mice already demonstrated

that TREM2 sustains microglial expansion during aging because

24 months old TREM2-deficient mice had fewer microglia in the cor-

pus callosum, cerebellum and hippocampus (Poliani et al., 2015).

Moreover, a further study showed that TREM2 promotes microglial

survival in an AD mouse model (Wang et al., 2015). Consistently, our

study demonstrated lower microglial density also in the SN of TREM2

KO mice accompanied by less pro-inflammatory cytokine, comple-

ment component, and microglial marker transcripts. The fact that

TREM2 KO mice do not show an increased gene transcription of Il-1β

and/or Tnfα after crossing with different AD mice (Jay et al., 2015;

Wang et al., 2015) or after experimental stroke (Sieber et al., 2013)

was already observed before. These initial findings were also recently

elaborated by Mazaheri et al. (2017) and Krasemann et al. (2017). This

was also confirmed recently in tau transgenic mice deficient for

TREM2. The indicated animals displayed reduced microgliosis and

lower levels of inflammatory cytokines (Leyns et al., 2017). Interest-

ingly, also in an AD mouse model expressing the human AD-

associated TREM2 R47H variant reduced microgliosis and less Il-1β

gene transcription was observed compared to mice expressing the

human common TREM2 variant (Song et al., 2018). Thus, data hint

toward TREM2 being involved in the regulation of microglial numbers.

In line, our data demonstrate that TREM2 KO mice have less gene

transcription of complement factors. Recently, complement has been

linked to age-related neurodegeneration. Complement C3-deficient

FIGURE 4 Less age-related increase in complement factors in TREM2 KO mice. (a) The complement pathway is less activated in 24 months old

TREM2 knock-out (KO) animals. Significantly down-regulated genes are shown in red and bold. Protein names corresponding to differentially
expressed (DE) genes are shown. Ingenuity pathway analysis was performed on significantly DE genes (FC > 0.5, FDR < 0.05). (b) Semi-

quantitative real-time PCR of complement factors in half brain of 3, 12, and 24 months old TREM2 wild-type (wt) and KO. At 24 months of age
transcription of complement components and parts of the complement receptor 3 (Itgam, Itgb2) was lower in TREM2 KO mice. Gapdh was used
as internal loading control. Data are presented as mean � SEM (n = 6–12 mice per group; *p ≤ .05; **p ≤ .01; ***p ≤ .001; n.s. not significant)
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mice failed to display an age-related hippocampal decline in the typical

aging process (Shi et al., 2015) and displayed less neurodegeneration

in aged AD model mice (Shi et al., 2017). Thus, decreased loss of neu-

rons in TREM2 KO mice possibly might be related to the reduced

complement expression. That loss of TREM2 keeps microglia in a less

activated status is also confirmed by our results hinting toward less

oxidative stress in brains of aged TREM2 KO mice. Upon ligand bind-

ing, TREM2 activates downstream protein tyrosine phosphorylation

through its adaptor TYROBP and can signal toward phagocytosis and

production of ROS (Charles et al., 2008; N'Diaye et al., 2009; Zhu, Li,

Wu, Huang, & Wu, 2014). We now observed less staining of oxidized

lipids as well as a reduced oxidative burst of debris- or inactivated

bacteria-challenged cultured microglia of TREM2 KO mice. Primary

microglia from neonatal mice are not reflecting the situation of an

aging brain. However, whether TREM2 contributes to the production

of radicals has not been investigated so far. With the well-established

procedure of primary microglia, we got the first hint, indicating that

TREM2 might be involved in accumulation of oxidized lipids possibly

via its capacity to produce ROS.

Our data demonstrating that loss of TREM2 in mice leads to

lower microglial density accompanied by less inflammatory gene tran-

scription and less oxidative stress appears to be contrary to what has

been observed in NHD patients. Loss-of-function of TREM2 or

TYROBP in NHD is associated with the upregulation of genes

involved in the inflammatory response (Numasawa et al., 2011) and

the expression of the ROS producing NADPH oxidase subunit

gp91phox in microglia; suggesting a disease-relevant ROS-mediated

white matter damage (Satoh et al., 2016). Age (decades in humans

versus 24 months in mice) and/or environmental triggers (infections

in humans vs. specific-pathogen-free [SPF]-housing of mice) might

contribute to these substantial differences. Furthermore, microglial

cells are highly plastic and can polarize toward different phenotypes.

FIGURE 5 Less expression of phagocytosis-associated activatory membrane adaptors and Cd68 in TREM2 KO mice and decreased phagocytosis

of TREM2 KO microglia. (a) Semi-quantitative real-time PCR of phagocytic markers in half brains of 3, 12, and 24 months old TREM2 wild-type
(wt) and knock-out (KO) mice. At 24 months of age transcription of Dap12, Fcer1g (fc receptor gamma), and Cd68 was lower in TREM2 KO mice.
Gapdh was used as internal loading control. (b) Representative z-stack images of ionized calcium binding adaptor molecule 1 (Iba1, green), Cd68
(red), and 40,6-diamidin-2-phenylindole (DAPI, blue) staining in the substantia nigra pars reticulata (SNpr) in 24 months old TREM2 wild-type

(wt) and knock-out (KO) animals. Scale bar: 10 μm; Bregma level: −2.90 mm. (c) Quantification of whole Cd68 staining intensity per area (left) and
Cd68 staining intensity per Iba1-positive cell soma area (right) revealed no age-related increase in Cd68 staining intensities in TREM2 KO animals.
Especially, at 24 months of age, the whole Cd68 staining intensity as well as the Cd68 intensity of the soma are lower in TREM2 KO mice.
(d) Analysis of beads phagocytosis by flow cytometry (left) and pHrodo-inactivated bacteria phagocytosis by confocal microscopy (right) in primary
microglia obtained from TREM2 wt and KO mice. Quantification of phagocytic activity showed reduced phagocytosis of beads as well as
inactivated bacteria by primary microglia from TREM2 KO mice. Data are presented as mean + SEM or mean � SEM (n = 5–12 mice per group
(a-c) and n = 3 independent culture preparations (d). *p ≤ .05; **p ≤ .01; ***p ≤ .001; n.s. not significant)
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Recently, it has been shown in mice that a small microglial subpopula-

tion can completely switch toward a neurodegenerative disease-

associated phenotype when triggered by local environmental factors

(Keren-Shaul et al., 2017). TREM2 appears to be a master regulator of

the microglial switch toward a neurotoxic phenotype in mice (Keren-

Shaul et al., 2017; Krasemann et al., 2017) and in parallel can restrict

the over-shooting inflammatory cytokine production induced by pat-

tern recognition receptors (Hamerman et al., 2006; Turnbull et al.,

2006). In aged humans, the chronic neurodegenerative disease-

associated microglia can have an activated, lipid-loaded, CD68+, MHC

class II+, and dystrophic phenotype (Streit, Xue, Tischer, & Bechmann,

2014; Tischer et al., 2016), thus indicating a phenotypic microglial

switch. However, we failed to observe such a phenotypic microglial

switch in mice, possibly because the TREM2 KO mice were housed in

an SPF animal facility, driving the microglia to remain locked in the

homeostatic status for the entire life-span of the animals.

In conclusion, our data show that TREM2 impacts the amount of

microglia and therewith the inflammatory status of the brain, as well

as the neuronal numbers and synaptic co-puncta during physiological

aging.
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