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ABSTRACT

Proteins are essential macromolecules for the main-
tenance of living systems. Many of them perform
their function by interacting with other molecules
in regions called binding sites. The identification
and characterization of these regions are of fun-
damental importance to determine protein function,
being a fundamental step in processes such as
drug design and discovery. However, identifying
such binding regions is not trivial due to the draw-
backs of experimental methods, which are costly
and time-consuming. Here we propose GRaSP-web,
a web server that uses GRaSP (Graph-based Residue
neighborhood Strategy to Predict binding sites), a
residue-centric method based on graphs that uses
machine learning to predict putative ligand binding
site residues. The method outperformed 6 state-of-
the-art residue-centric methods (MCC of 0.61). Also,
GRaSP-web is scalable as it takes 10-20 seconds
to predict binding sites for a protein complex (the
state-of-the-art residue-centric method takes 2-5h
on the average). It proved to be consistent in pre-
dicting binding sites for bound/unbound structures
(MCC 0.61 for both) and for a large dataset of multi-
chain proteins (4500 entries, MCC 0.61). GRaSPWeb
is freely available at https://grasp.ufv.br.

GRAPHICAL ABSTRACT

INTRODUCTION

Proteins perform their roles through interactions with
other molecules, including organic compounds, nucleotides,
metal ions, and even other proteins. The biological func-
tion of a large number of proteins is still unknown (1), with
the knowledge of the binding sites, as well as the identifica-
tion of amino acid residues involved in ligand binding, be-
ing a crucial step for protein functional characterization (2).
However, determining protein binding sites through in vitro
and in vivo experimental methods is expensive and time-
consuming.

To address this issue, a range of structure based meth-
ods have been developed to identify protein binding site
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residues. Here we present some representative examples.
Firestar (3,4) identifies ligand binding residues based on
local sequence conservation matches to known ligand-
binding residues in FireDB (5). FunFold3 (6,7) points bind-
ing residues performing a superimposition of structural
templates containing relevant ligands on the target model.
COACH (8,9) is a consensus method that combines their
in-house developed algorithms TM-SITE and S-SITE, with
third-party prediction tools COFACTOR (10), FINDSITE
(11) and ConCavity (12) using a supervised learning algo-
rithm. In LigDig (13), ligands are the starting point for
binding site prediction, combining databases in a ligand in-
teraction network to identify similar ligands and their bind-
ing proteins, which allows to point potential protein–ligand
binding sites. GASS (14,15) proposes a genetic algorithm
that searches for active site structural templates from CSA
(16) in unknown proteins.

Many of the recent developments in the field suffer from
limitations such as prohibitive execution time, lack of sup-
port for binding sites at protein interfaces and absence of ex-
plainable and visual results. Here, we present GRaSP-web,
a scalable and user-friendly web server for the prediction
of protein-ligand binding sites. GRaSP-web provides a web
interface to GRaSP (Graph-based Residue neighborhood
Strategy to Predict binding sites) (17), which is a computa-
tional strategy that represents a particular residue and its
neighbors as a graph at atomic level to perceive residue en-
vironment, and use supervised learning to predict residue
ligand binding sites.

MATERIALS AND METHODS

GRaSP strategy

In GRaSP, the problem of predicting residues that are part
of a ligand-binding site is modeled as a binary classification,
which aims to predict, for each residue, if it is in the binding
site or not. The supervised learning strategy is trained using
a data matrix, G, in which each row represents a residue, r,
and each column encodes a descriptor. Thus each residue, r,
is encoded as a feature vector, and a whole protein structure,
P, is encoded as a set of feature vectors.

The feature vectors that encode each residue are com-
posed of descriptors calculated at: (i) residue level, which
are solvent relative accessibility and cysteine; (ii) atom level,
in which we compute how many atoms of each type each
residue presents. The atoms are labeled as aromatic, ac-
ceptor, donor, hydrophobic, positive, negative; (iii) interac-
tion level, in which non-covalent interactions are calculated
based on the type of atoms and on the Euclidean distance
between them. The interaction types calculated are aro-
matic stacking, disulfide bridge, hydrogen bond, hydropho-
bic, repulsive and salt bridge. This totals 14 descriptors.

This set properties (the 14 descriptors) are calculated for
the residue being considered, for its first and for its sec-
ond shell of neighbor residues. To summarize each neighbor
shell, descriptors are averaged by the number of residues
in the shell. This builds our graph model that captures
physicochemical properties of the structural environment
of each residue. Hence, each feature vector is composed of
42 descriptors, which means that there are 42 descriptors

to represent each residue. GRaSP is a residue-centric strat-
egy to predict binding sites that models each residue and
its first two shells of neighbors as a graph in order to per-
ceive physicochemical environment information. For each
residue of a protein, GRaSP encodes it into numerical de-
scriptors, in which topological and physicochemical proper-
ties of its atoms and interactions are represented as a graph
which, in turn, are encoded as a feature vector. The set of
feature vectors is used to train predictive models. For more
details on problem modeling, please refer to (17).

To predict residue ligand binding sites GRaSP performs
a supervised learning task using the Extremely Random-
ized Trees algorithm, that belongs to a class of ensem-
ble classifiers, implemented in scikit-learn (scikit-learn.org).
GRaSP was compared with methods described in the lit-
erature, achieving comparable or higher prediction metrics
against six other residue-centric methods. Additionally, our
method took 10–20 s on average to predict the binding site
for a protein complex, whereas the state-of-the-art residue-
centric method takes 2–5 h on average. Another advantage
of GRaSP is the ability to predict protein binding sites from
multi-chain structures;, hence it is able to find binding sites
even at protein-protein interfaces.

Webserver

GRaSP-web provides a web interface enabling users to eas-
ily access the predictions visually. The server intuitive front-
end was built using the Bootstrap framework, while the
back-end was built using the Flask framework for Python
running on Apache server, and the communication is made
using a web server gateway interface described in Python
Enhancement Proposal 333. The GRaSP-web processing
steps are shown in Figure 1. Each residue of an input pro-
tein is modeled as a neighborhood graph , which is encoded
as a feature vector. Then, a training dataset is built from
proteins in the BioLip database (18) that are similar to the
input protein. Next, an ensemble of balanced classifiers is
used to predict the residues of the input protein that are
part of a binding site. As results, the web server presents the
predicted binding site residues in a molecular viewer, cou-
pled with confidence scores, that represent how confident
the method is for each prediction; residues can also be clus-
tered in binding sites and potential ligands are suggested
for each of these sites; the ranked relative importance of de-
scriptors is also presented which can be inspected to support
users on the understanding of predictions.

Input

To perform the prediction, users can upload one or many
three-dimensional structures in the PDB format or pro-
vide one or more PDB identification codes, in which case
GRaSP-web will retrieve and store the corresponding struc-
tures from the PDB database (20).

The query structure is submitted to predict the ligand
binding sites (Figure 1A). When the protein is submitted,
GRaSP uses graph modeling to perceive the chemical en-
vironment of each residue and encode it into numerical
features (Figure 1B, C). These feature vectors are com-
bined into a matrix which is used for the ligand-binding
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Figure 1. GRaSP-web workflow. In (A) we see an input protein. It is modeled as a neighborhood graph in (B), which is encoded as a feature vector (C). A
training dataset is built with data extracted from the BioLip database in (D). Binding site residues are predicted by an ensemble classifier in (E). In (F), the
results are presented: potential binding sites, suggested ligands and ranked feature importance. This figure was inspired by aCSM workflow (19).

site prediction (Figure 1C). The amino acid sequence of
the query structure is matched with the ligand-binding tem-
plates from BioLip (18). The BioLip is a semi-manually cu-
rated database for biologically relevant ligand-protein in-
teractions constructed based on the PDB database. These
templates are used as training data by our method to build
the supervised machine learning model.

Data imbalance is intrinsic to the problem of predicting
binding sites. The number of non-binding site residues is
greater than the number of binding site residues, which de-
creases the predictive power of conventional classifiers. So
GRaSP-web combines a resampling approach with an en-
semble of trees to balance the data and improve the predic-
tions (Figure 1E). GRaSP-web takes about 20 seconds to
process a protein complex with ∼300 residues. Moreover, we
aim to make predictions more informative by taking advan-
tage of the white box model in decision trees (Figure 1F).
For example, the prediction confidence, which means the
class probabilities of the trees, can be used to verify how ho-
mogeneous the ensemble prediction was. Furthermore, we
can rank the set of features according to its relative impor-
tance with respect to the predictability of the target variable.

Output

A URL is assigned to each submission so the user can ac-
cess the results or track the processing status. The standard
output for each protein submitted includes a list of pre-
dicted ligand binding site residues (Figure 2A), which can
be downloaded to a local computer. Each predicted residue
has a confidence score, provided to show the reliability of

Figure 2. GRaSP-web results page. Binding site residues are presented cou-
pled with confidence scores in (A). A molecular viewer shows in (B) binding
site residues clustered as potential binding sites. A set of ligands are sug-
gested for each binding site in (C). The relative importance of descriptors
is presented in (D).
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each prediction and computed as the mean predicted class
probabilities of the trees in the forest. Additionally, GRaSP-
web uses NGL viewer (nglviewer.org) for molecular visual-
ization, where the query protein is shown and the binding
site residues are highlighted (Figure 2B).

The GRaSP algorithm is a residue-centric method that
models the ligand-binding site prediction problem as a bi-
nary classification, which aims to predict, for each residue,
whether it is in the binding site or not. In order to give our
method a pocket-centric perspective, we provide a way to
cluster the predicted residues into groups, emulating pock-
ets. By turning on the ‘clustering’ button (Figure 2B), the
set of residues predicted as binding sites are clustered using
DBSCAN (21), a density-based clustering algorithm that
separates areas of high density from areas of low density.

By clustering the residues into regions that are potential
pockets, we can use these subsets of residues to estimate can-
didate ligands to bind to a specific region (Figure 2(C)). Us-
ing the PocketMatch (22) algorithm to compare each cluster
of residues against the entire database of binding sites used
as training dataset, we can estimate which ligands have the
potential to bind to a cluster, since similar binding sites tend
to bind to similar ligands. A score bar is provided for each
ligand candidate, that represents the PocketMatch compari-
son score between the respective cluster and the binding site
from the template database.

Taking advantage of decision tree explainability, we can
rank the set of features used in the prediction of binding
site residues according to its relative importance. It is im-
portant to highlight that relative importance does not imply
causation. The features are ranked and followed by a brief
description as shown in Figure 2(D).

RESULTS

In order to assess the GRaSP-web performance, we used a
variety of datasets that captured different characteristics of
protein structures, including drug-like complexes, proteins
on bound/unbound state and multimeric structures (Sup-
plementary Table S1). The GRaSP strategy was previously
assessed on these data and achieved comparable or superior
results in comparison with other residue-centric methods
(17). As a way to measure the predictive performance of the
assessed methods, the metrics Matthews correlation coeffi-
cient (MCC), precision, recall, binding distance test (BDT)
and distance between the center of the pocket and any lig-
and atom (DCA) were used. MCC is a correlation coeffi-
cient between observed and predicted classifications and it
is considered by authors of the state-of-the-art residue cen-
tric method as the main measure to compare their strategy
with other methods (8). For more details on the evaluation
strategy, please refer to (17).

We used the benchmark dataset from COACH (8), a set of
500 non-redundant single-chain proteins, as well as results
reported in (9), to compare our method with the state-of-
the-art residue centric method (Supplementary Table S2).
GRaSP achieved a MCC of 0.61, requiring between 10 and
20 seconds to perform a prediction, whereas the competi-
tor achieved a MCC of 0.60 taking 2–5 h to predict pro-
teins of similar sizes. On the CASP10 (23) dataset, GRaSP
achieved an MCC of 0.58, ranking seventh among 18 meth-

Figure 3. Binding site residues predicted by GRaSP-web (in orange) for the
multiple chain protein structure of alpha-chymotrypsin (PDB: 2CHA).

ods (according to CASP10, differences among the first 10
methods were not statistically significant). It is important to
mention that on the CASP10 dataset, GRaSP used as train-
ing data just the 25 templates provided for each protein tar-
get, while other methods used curated databases, coupled
with sequence and structural alignment. Our method out-
performed the method from CAMEO (24) independent as-
sessment that resembles GRaSP, showing better average val-
ues (MCC 0.656 and BDT 0.632 ) than method Raptor-X-
Binding (MCC 0.557 and BDT 0.546). GRaSP ranked sec-
ond when compared with five state-of-the-art pocket cen-
tric methods (DeepSite (25), Fpocket (26), Metapocket 2.0
(27), P2Rank (28,29), Sitehound (30)), which we consider a
significant result as our method was not devised to predict
pockets that are potential binding sites.

Since the method considered state-of-the-art is not able
to process multi-chain structures, we perform additional ex-
periments using a diverse dataset containing single chain
and multiple chains protein structures. As a result, GRaSP-
web proved to be consistent in predicting ligand-binding
site residues at protein-protein interfaces. Figure 3 shows
the structure of alpha-chymotrypsin (PDB: 2CHA), a het-
ero hexamer, with its binding site between chains predicted
by GRaSP-web, evidencing that our method is able to pre-
dict residue binding sites in this context.

Another aspect that needs to be highlighted when pre-
dicting binding site residues is the conformational state of
the protein. Many proteins undergo induced fit when bind-
ing to ligand molecules, changing the conformation of the
protein structure. Binding site prediction methods should
ignore these variations in protein folding, focusing only on
physicochemical patterns of the cavity in both bound and
unbound states. We used a benchmark containing 44 pro-
tein structures in both states, obtained from (28), totaling
88 entries, to assess whether GRaSP-web is able to predict
residue binding sites correctly (Supplementary Table S3).
Figure 4 shows the structure of the HIV protease in com-
plex with the VAC ligand (pdb 4PHV), and the HIV pro-
tease in unbound state (pdb 3PHV). GRaSP-web was able
to correctly predict the binding site residues in both sce-
narios, achieving an overall average MCC of 0.67 for the
bound/unbound benchmark.
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Figure 4. Protein structure of HIV protease. (A) Superposition of the HIV protease structures 4PHV (bound state in beige) and 3PHV (unbound state in
magenta). (B, C) Prediction performed by GRaSP-web in orange in both conformational states of HIV protease.

CONCLUSION

In this work, we introduced the GRaSP-web server, a
user-friendly and visual interface to GRaSP, which is a
residue-centric approach to predict ligand-binding sites.
Each amino acid residue, as well as its neighborhood of
residues, is modeled as a graph that captures the physico-
chemical properties of the residue environment. All infor-
mation is encoded as a feature vector that serves as input
to a supervised machine learning strategy. Experiments per-
formed with several benchmarks showed that our server is
capable of predicting binding site residues with compati-
ble or superior results to existing methods. In addition to
its speed, GRaSP-web was able to correctly predict bind-
ing sites for heterogeneous structural data, contemplating
protein structures which are druggable, containing single
and multiple chains, and featuring distinct conformational
states, such as bound and unbound structures. The users
can submit their own protein structures, or structures from
the PDB database. After that, binding site residues are pre-
dicted, and GRaSP-web provides a user-friendly interface
along with visual insights into the predictions made. We be-
lieve that these features incorporated by GRaSP-web can
contribute to protein function prediction studies and to the
discovery or development of new drugs.
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