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Abstract: Exposure to ambient particulate air pollution is a recognized risk factor for 

cardiovascular disease; however the link between occupational particulate exposures and 

adverse cardiovascular events is less clear. We conducted a systematic review, including 

meta-analysis where appropriate, of the epidemiologic association between occupational 

exposure to particulate matter and cardiovascular disease. Out of 697 articles meeting our 

initial criteria, 37 articles published from January 1990 to April 2009 (12 mortality; 5 

morbidity; and 20 intermediate cardiovascular endpoints) were included. Results suggest a 

possible association between occupational particulate exposures and ischemic heart disease 

(IHD) mortality as well as non-fatal myocardial infarction (MI), and stronger evidence of 

associations with heart rate variability and systemic inflammation, potential intermediates 

between occupational PM exposure and IHD. In meta-analysis of mortality studies, a 

significant increase in IHD was observed (meta-IRR = 1.16; 95% CI: 1.06–1.26), however 

these data were limited by lack of adequate control for smoking and other potential 

confounders. Further research is needed to better clarify the magnitude of the potential risk 

of the development and aggravation of IHD associated with short and long-term 

occupational particulate exposures and to clarify the clinical significance of acute and 

chronic changes in intermediate cardiovascular outcomes. 
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1. Introduction 

Cardiovascular disease (CVD) is the leading cause of death and morbidity worldwide [1], and within 

recent years, research studies have increasingly sought to understand the environmental determinants. In 

particular, much attention has focused on ambient particulate air pollution. As reviewed in several places 

[2-4], exposure to particulate matter (PM) as a result of air pollution has become a recognized risk factor 

for adverse cardiovascular events including cardiovascular mortality, cardiac arrhythmia, myocardial 

infarction (MI), myocardial ischemia, and heart failure [5-12]. The elderly and those with pre-existing 

cardiovascular disease appear to be especially vulnerable [2]. Estimates place close to one million 

individuals at risk of death from CVD related to particulate air pollution exposures (i.e., not including 

estimates of morbidity) worldwide each year [13]. With regard to non-fatal outcomes, the risk of MI has 

been estimated to be 1.48 times greater (95% CI: 1.09–2.02) for a small increase in particulate air 

pollution (25 µg/m3 in the preceding two hours) [5]. In comparison, the risk of MI was recently reported 

to be nearly 3 times higher in current smokers as compared to never smokers (95% CI: 2.77–3.14) [14]. 

While the increase in risk of adverse clinical cardiovascular outcomes associated with particulate air 

pollution is relatively small compared to traditional risk factors such as smoking, as well as diet, obesity, 

diabetes, metabolic syndrome, etc. the ubiquity of particulate air pollution exposes a much larger 

number of individuals in the population and over an entire lifetime. Thus the relatively small 

cardiovascular effects of PM translate into a serious and large public health impact.  

The smaller sized particles, that is, fine (PM2.5) and ultrafine particles (UFP) (particulate matter with 

a mass median aerodynamic diameter ≤ 2.5 µm and 0.1 µm, respectively), primarily produced from 

combustion sources, have been shown to be especially toxic [9,15,16]. While the precise biological 

mechanisms linking PM exposure with CVD is yet unclear, likely mechanisms include systemic 

inflammation subsequent to pulmonary inflammation, alterations of the autonomic nervous system that 

lead to changes in heart rate and heart rate variability, and translocation of particles (specifically UFP) or 

soluble components (e.g., transition metals) from the lungs directly into the systemic circulation [17].  

Despite a large body of evidence of the deleterious effects of ambient PM exposures on the 

cardiovascular system, relatively little attention has been given to the effects of occupational exposures, 

which differ from general ambient exposures in both particle type (e.g., composition), as well as 

exposure frequency (e.g., environmental exposures are relatively constant while occupational exposures 

are more variable), duration (e.g., a work-shift and working lifetime vs. an entire day and lifetime), and 

intensity or concentration (i.e., occupational exposures are generally higher than ambient levels). These 

differences in exposure composition, duration, frequency and population exposed may have 

implications on how occupational PM exposures impact CVD and how these associations are studied. 

For example, intense exposures may act as an acute trigger of acute coronary events for individuals with 

pre-existing cardiovascular disease. At the same time, differences between the general population and 

working populations may also have implications on how particulate exposures impact workers’ 
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cardiovascular health. For example, working individuals are healthier than the general population and 

may be less responsive to particulate exposures, but over a working lifetime chronic insults may lead to 

pathophysiologic responses. Globally, millions of workers are occupationally exposed to PM, and the 

regular, frequent, and prolonged exposure may increase the risk of adverse cardiovascular health effects 

in exposed workers. 

The relatively few published studies that address the association between occupational PM exposure 

and CVD vary greatly in terms of the specific types of PM exposures, confounding co-pollutants present, 

and outcomes investigated. To date, one 1997 narrative review of the association between occupational 

exposure to PM and CVD has been published [18] which focused on case-control studies of a wide 

variety of PM exposures (quartz, asbestos, PAH, arsenic, beryllium, and lead, and work as farmers, pulp 

and paper workers, sawyers, and welders) in relation to ischemic heart disease (IHD), citing some 

evidence of an association. However, to our knowledge, a formal systematic review has not been 

performed. For this reason, we conducted a systematic review, including meta-analysis where 

appropriate, of the epidemiologic evidence on the association between occupational particulate 

exposures and CVD. As the types of PM exposures in the workplace are historically and geographically 

varied, this review focused on exposures germane to modern industrialized countries and was limited to 

solid non-fibrous particles found in inorganic dusts and fumes. In addition, this restriction on particle 

type was chosen because although the potential cardiovascular effects and mediating mechanisms may 

vary within this broad category of PM, they are likely to be more similar than the effects of fibers (e.g., 

asbestos fibers) and organic dusts (e.g., wood dust and other vegetable dusts), the latter which generally 

contain endotoxin, a known potent inflammatory stimulus [19] . 

2. Methods 

2.1. Search Strategy  

Observational studies investigating the association between particulate exposures in the workplace 

and cardiovascular outcomes, including both clinical (fatal and non-fatal) and intermediate outcomes 

were identified in PubMed (www.ncbi.nlm.nih.gov/pubmed) and EMBASE (www.embase.com) by 

searching free text and key words (Appendix). Search terms for occupational particulate exposures 

included “particulate matter” as well as specific types of PM exposures (silica, styrene, diesel exhaust, 

asphalt fumes, and metal or welding fumes), which contain particles in the fine or ultrafine size range 

[20-24]. The literature search was restricted to articles published in the English language from January 1, 

1990 through April 2009. We also used secondary references cited by the articles identified in the 

primary search. 

Because few mortality studies specifically investigated occupational PM exposures and CVD 

mortality, we chose to include general all-cause mortality studies where CVD was among the 

cause-specific associations presented. However, we excluded mortality studies that explicitly stated that 

the objective was to investigate an outcome other than CVD (e.g., cancer or respiratory disease) because 

not all such studies presented CVD mortality in findings. Hence, even if CVD mortality were presented 

in the findings, such studies were excluded. In addition, we excluded studies set in industries or among 

occupations for which PM was not the exposure of interest, or in which exposure to PM was not the 
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predominant exposure. We also excluded publications that did not contain original research (e.g., 

reviews, editorials, and letters), studies not carried out in humans (e.g., animal and other experimental 

studies), and case reports and case series.  

Additionally, for studies conducted in the same cohort with the same outcome and exposure, we 

chose the cohort with largest sample size. We included studies that re-analyzed data in the same cohort 

to identify specific components of PM responsible for health effects and also included studies that aimed 

to identify effect modifiers. 

2.2. Data Extraction 

For each study that met the study criteria, we extracted information on the study characteristics 

(authors, year of publication, country, study design), population characteristics (inclusion criteria, age, 

industry, gender), exposure assessment, outcome ascertainment, and measures of association. Measures 

of association extracted or derived from the published data were standardized mortality ratios (SMR), 

incidence rate ratios (IRR), odds ratios (OR), proportional mortality ratios (PMR), regression 

coefficients (ß), and their standard errors. Where there were more than one analytical comparison group 

(i.e., external and internal), both measures of association were extracted. For mortality studies, data were 

extracted for the major categories of IHD (ICD–9 410–414), cerebrovascular disease (ICD–9 430–438), 

and overall CVD (ICD–9 390–459) when presented. For morbidity studies, we extracted data on any 

cardiovascular outcome presented, and for intermediate outcomes we investigated measures including 

systemic inflammation, blood pressure, cardiac abnormalities, heart rate and heart rate variability. 

Additional study characteristics, which may be used to assess the strengths and weaknesses of each of 

the mortality studies, were extracted and are included in the Appendix. 

2.3. Statistical Methods  

For mortality outcomes, pooled estimates of the SMR and IRR, “meta-SMR” and “meta-IRR”, 

respectively, with associated 95% confidence intervals were obtained when the study designs and 

contrasts were comparable. Formal tests for heterogeneity were conducted; however all meta-analyses 

were performed using random effects meta-analysis of the natural log transformed effect estimates 

regardless of the test result. For each of the major cardiovascular mortality outcomes, sub-group 

analyses were performed by type of particulate exposure where possible (SMR studies only). All 

analyses were performed with STATA Version 10.1 (College Station, TX, US). Meta-analyses were not 

performed for the morbidity studies or studies of intermediate outcomes because of the 

non-comparability in study designs. 

Because of the small number of studies available for meta-analyses, no further analyses were 

performed to assess the influence of individual studies on the overall pooled estimates, from either the 

main analyses or sub-group analyses. Also because of the small number of studies, publication bias was 

not assessed formally.  
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3. Results 

3.1. Literature Search 

Figure 1 presents the selection process for identifying original articles for the systematic review of 

occupational particulate exposures and CVD. The literature search identified 697 citations (Figure 1), of 

which a large majority was excluded based on review of the title and abstract. The full text of 58 articles 

were retrieved and reviewed, and 21 articles were subsequently excluded, including 6 studies of 

particulate exposures not considered to be germane to this review. A total of 37 articles were identified 

for review: 12 mortality studies; 5 studies considering morbidity due to CVD, two of which also 

included mortality [25,26]; and 20 studies concerning intermediate cardiovascular outcomes in relation 

to acute (17 studies) and/or chronic exposure (4 studies). 

Figure 1. Selection process for identifying original articles for the systematic review of the 

association between occupational exposure to particulate matter and cardiovascular disease. 

 

 



Int. J. Environ. Res. Public Health 2010, 7          

 

1778

4. Occupational Particulate Exposures and Cardiovascular Disease Mortality  

4.1. Study Characteristics  

Study characteristics from each of the twelve mortality studies are presented in Table 1. All but two of 

the mortality studies [27,28] had a specific objective to study a cardiovascular endpoint. The studies 

were conducted in a large range of industries and occupations, such as gold mining, trucking, and 

synthetic rubber industry workers, and others. Mortality due to overall CVD was assessed in seven 

studies [27,29-34], IHD in ten studies [28,30-33,35-38], and cerebrovascular disease in five studies 

[29,30,31,35,38] (Table 1). The sample sizes were large, ranging from 3,431 to 176,309 workers, 

excluding external and internal control groups, and were primarily male. Almost all studies used an 

external reference group for statistical comparison (Table 2), though some used an internal reference 

only [32,33,38] (Table 3), and some used both [28,29,34,35,37] (Table 3). Half of the studies estimated 

exposure [30,32,33,35,37,38] however few actually presented estimates of exposure [32,35,37]. 

Exposure-response relationships using continuous exposure was presented in only one study [35]. Most 

studies obtained cause of death from death certificates [27,30,31,33,36-38] (Appendix) and most coding 

was performed with the International Classification of Disease (ICD) system, with the exception of a 

study of ceramics workers in China exposed to silica dust [29]. Additional study characteristics are 

presented in a table in the Appendix. 

4.2. Effect Estimates and Meta-Analyses of Mortality Studies Using External Comparisons 

Studies that used external comparison groups standardized the effect estimates (SMRs) to typical 

population characteristics such as age and calendar year and in some cases race. Effect estimates varied 

widely across the cohorts and by major outcome (Tables 2). The SMR ranged from 0.90 [37] to 1.41 [31] 

for IHD; 0.69 [31] to 1.09 [35] for cerebrovascular disease; and 0.73 [31] to 1.06 [29] for overall CVD, 

with some statistically significant positive associations observed for IHD [31,35,36], none for 

cerebrovascular disease, and none for CVD. Significantly increased risk of IHD mortality was observed 

in miners and other workers exposed to silica and trucking industry workers exposed to diesel exhaust 

particles [31,35,36]. While studies that used an external comparison groups could not control for 

confounding by co-exposures or other risk factors for CVD such as smoking, one study of asphalt 

workers, in which a non-statistically significant increase in risk of IHD was found, compared smoking 

rates in a subset of the study population finding that they were similar to rates in the general male 

population, suggesting that confounding by smoking habits was minimal [30].  

The SMR from seven studies that presented findings for IHD were combined [28,30,31,35-37], 

giving a slight but non-significant, excess in deaths due to IHD (meta-SMR = 1.09; 95% CI: 0.92, 1.30) 

(Figure 2). No excess in deaths due to cerebrovascular disease were found when the SMRs from four 

studies were combined [30,35-37] (Figure 2) or for overall CVD when the SMRs from four studies were 

combined [27,29-31] (Figure 2). There was statistically significant (p < 0.05) heterogeneity between 

studies in the three meta-analyses.  

In sub-group meta-analyses, we were able to perform analyses for silica and styrene only (Figure 2). 

Excess deaths due to IHD mortality were observed in the silica-exposed cohorts [35,36] while a 

decreased risk of IHD mortality was found in the styrene exposed cohorts [28,37]. No associations were 
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observed for silica and cerebrovascular disease or overall cardiovascular disease in the sub-group 

meta-analyses. 

Figure 2. Random effects meta-analysis of mortality due to (A) ischemic heart disease, (B) 

cerebrovascular disease; and (C) overall cardiovascular disease associated with occupational 

exposure to particulate matter and by type of particle. Effects estimates are standardized 

mortality ratios (SMR) based on comparisons with external reference groups. 
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Table 1. Epidemiologic cohort studies of particulate exposures and cardiovascular mortality included in systematic review. 

Reference  Country Population and sample size Exposure Study period Outcomes 
investigated 

Cooper, 1992 [27] US Iron miners and millers (taconite) employed for 3+ months 
in 2 companies (n = 3,431 males) 
 

Silica  1959–1988 CVD 

Reid, 1996[35] South Africa  White gold miners who had visited the Medical Bureau for 
Occupational Diseases (n = 4,925 males).  
 

Silica 1970 –1989 IHD, cerebrovascular 
disease 

Boffetta, 1998[28] 8 European countries Reinforced plastics industry workers (n = 14,207 males 
employed 1+ years) 
 

Styrene 1940–1992 IHD 

Randem, 2003[30] Norway  Asphalt workers employed 1+ days by 13 employers (n = 
8,610 males) 
 

Asphalt fumes 1970–1996 CVD, IHD, 
cerebrovascular 
disease 

Finkelstein, 2004[34] Canada  Heavy equipment operators (n = 16,321) and other 
unionized workers (n = 90,675) 
 

Diesel exhaust  1975–2000 CVD, IHD, 
cerebrovascular 
disease 

Koskela, 2005[33] Finland  Current and former workers from 6 established cohorts 
exposed to dust (n = 6,022) 

Silica, cotton, 
sand, quartz, 
metal, solvents 
 

1940–1992 CVD, IHD 

Delzell, 2005[37] US and Canada Synthetic rubber industry workers from 8 plants employed 
for 1+ years (n = 16,579 males) 
 

Styrene 1944–1998 IHD 

Burstyn, 2005[32] Denmark, Finland, France, 
Germany, Israel, Netherlands, 
Norway 

Asphalt workers from 217 companies employed 1+ season 
(n = 12,367 males) 

Asphalt fumes 1953–2000 CVD, IHD 

Laden, 2007[31] US Unionized trucking industry workers employed for 1+ days 
(n = 54,319 males) 

Diesel exhaust 1985– 2000 CVD, IHD, 
cerebrovascular 
disease 

Toren, 2007[38] Sweden  Construction workers identified via Swedish construction 
industry organization medical program (n = 176,309 
exposed & n = 71,778 unexposed males) 
 

Inorganic dust, 
fumes, diesel 
exhaust, 
asphalt fumes, 
metal fumes 
 

1971–2002 IHD, cerebrovascular 
disease 

Weiner, 2007[36] Sweden  Miners, well borers, dressing plant workers and stone 
worker identified by occupational codes in the Swedish 
National Census of 1970 (n = 11,896 males) 
 

Silica 1970– 1995 IHD 

Zhang, 2008[29] China  Ceramics factory workers from 3 plants (n = 4,851 males 
and females) 

Silica 1972–2003 CVD, 
cerebrovascular 
disease 

CVD: cardiovascular disease; IHD: ischemic heart disease. 
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Table 2. Findings from SMR and PMR studies of particulate exposures and cardiovascular mortality included in 

systematic review. 

Exposure type Reference External 

comparison group 

Population 

characteristics 

standardized to 

CVD  

 

SMR (95% CI) 

IHD 

 

SMR (95% CI) 

Cerebrovascular 

disease 

SMR (95% CI) 

Silica  Cooper, 1992 [27]  

 

General male 

population 

Age and calendar year 0.91 (0.83–1.00) NA NA 

 Reid, 1996 [35]  

 

General white male 

population 

Age and calendar year  NA 1.24 (1.15–1.34) 1.09 (0.89–1.31) 

 Weiner, 2007[36]  Employed male 

population 

Age and calendar year NA 1.31 (1.24–1.38) NA 

 Zhang, 2008[29]  General male and 

female population 

Age and calendar year 1.06 (0.94–1.19) 

 

NA 0.81 (0.71–0.93) 

Styrene Boffetta, 1998[28]  

 

General male 

population 

Age and calendar year  NA 0.94 (0.85–1.04) NA 

 Delzell, 2005[37]  

 

General male 

population 

Race, age, calendar year NA 0.90 (0.85–0.95) 

 

NA 

Asphalt fumes Randem, 2003[30]  General male 

population 

Age and calendar year 0.86 (0.75–0.98) 

 

1.14 (0.89–1.43) 

 

0.93 (0.83–1.03) 

Diesel exhaust Laden, 2007[31]  

 

General male 

population  

Race, age, calendar year 0.73 (0.69–0.76) 

 

1.41 (1.33–1.49) 

 

0.69 (0.59–0.80) 

    PMR (95% CI) PMR (95% CI) PMR (95% CI) 

 Finkelstein, 2004[34]  General population Age and calendar year 1.00 (0.90 – 1.1) 1.09 (0.96 – 1.2) 0.86 (0.60–1.2) 

CVD: cardiovascular disease; IHD: ischemic heart disease; *case control analysis also conducted; *reported as an OR. 
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Table 3. Characteristics and main findings from mortality studies of occupational PM exposure and cardiovascular disease using internal 

analyses. 

Exposure type Reference Controlled confounders Comparison Cardiovascular 
disease 

IRR (95% CI) 

Ischemic heart 
disease 

IRR (95% CI) 

Cerebrovascular 
disease 

IRR (95% CI) 
Silica Reid, 1996 [35]  

 
Smoking, blood pressure, obesity Unit increase in 

cumulative dust 
exposure lagged 
5 yrs (mg-yr/m3) 

NA 0.97 (0.83–1.10) NA 

 Zhang, 2008[29]  None reported High vs. low 
cumulative 
exposure 

0.77 (0.61–0.98) 
 

NA NA 
 

Styrene Delzell, 2005[37]  
 

Time since hire, cumulative 
exposure to 1,3-butadiene 

High vs. low 
cumulative 
exposure  
 
High vs. low 
lifetime average 
intensity 

NA 
 
 

NA 

1.07 (0.90–1.27) 
 
 

1.14 (0.96–1.35) 

NA 
 
 

NA 

Asphalt fumes Burstyn, 2005[32]  
 

None High average 
coal tar exposure 
vs. unexposed 

1.85 (1.17–2.91) 1.64 (1.13–2.38) 
 

NA 

Silica, sand, 
quartz, metal, 
solvents 

Koskela, 2005[33]  Age High vs. low 
exposed granite 
workers 
 
High vs. low 
exposed foundry 
workers 
 
High vs. low 
exposed metal 
workers 

1.10 (0.89–1.29) 
 
 

1.00 (0.79–1.14)  
 
 

1.20 (1.04–1.35) 
 

1.20 (0.94–1.58) 
 
 

0.90 (0.71–1.16) 
 
 

1.40 (1.19–1.74) 

NA 
 
 

NA 
 
 

NA 
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Table 3. Cont. 

Inorganic 
dust, fumes, 
diesel 
exhaust, 
asphalt 
fumes, metal 
fumes 
 
 

Toren, 2007[38]  Smoking, age, hypertension, and body mass index Any 
occupational 
PM exposure 
vs. none 
 
Any exposure 
to inorganic 
dust vs. none 
 
Any exposure 
to fumes vs. 
none 
 
Any exposure 
to diesel 
exhaust vs. 
none 
 
Any exposure 
to asphalt 
fumes vs. none 
 
Any exposure 
to metal fumes 
vs. none 
 

NA 
 
 

NA 
 
 
 

NA 
 
 

NA 
 
 
 

NA 
 
 
 

NA 
 

 

1.12 (1.10–1.14) 
 
 

1.13 (1.10–1.16) 
 
 
 

1.12 (1.0–1.16) 
 
 

1.18 (1.13–1.24) 
 
 
 

1.12 (0.96–1.30) 
 
 
 

1.01 (0.95–1.08) 
 

0.97 (0.93–1.01) 
 
 

0.97 (0.9–1.02) 
 
 
 

1.03 (0.95–.11) 
 
 

1.09 (0.99–1.20) 
 
 
 

1.18 (0.86–1.58) 
 
 
 

0.92 (0.80–1.05) 
 

Diesel 
exhaust 
particles 

Finkelstein, 2004 [34] Age Heavy 
equipment 
operators vs. 
other workers 
 

NA 1.23 
(1.00–1.51)* 

 
 

NA 

*Reported as an odds ratio. 



Int. J. Environ. Res. Public Health 2010, 7          

 

1784

4.3. Effect Estimates and Meta-Analyses of Mortality Studies Using Internal Comparisons 

 

Ischemic Heart Disease 

 

Six studies investigated the association between increasing occupational PM exposure and IHD using 

internal analyses [32,33,35,37,38] (Table 3). The comparisons used in the analyses varied, precluding a 

direct comparison of all the IRRs, which ranged from 0.90 to 1.64. While most studies compared IHD 

mortality in high or medium exposed workers to low or unexposed workers, different exposure metrics 

were used (e.g., cumulative exposure, lifetime average intensity, average exposure) [32-34,37]. The 

other studies compared a unit increase in cumulative exposure [35], any versus no exposure [38], and job 

title [34]. In most of these studies, positive effect estimates for IHD were observed, though not all were 

statistically significant, and adjustment for smoking [35,38] and other important potential confounders, 

such as co-pollutants [37], was limited.  

In a large study of construction workers by Toren et al. a significantly increased risk of IHD was 

observed (IRR = 1.12; 95% CI: 1.10–1.14) when those with occupational exposure to any dust were 

compared to those with no exposure [38]. When evaluated by type of particulate exposure, increased risk 

of IHD was observed in association with inorganic dust, fumes, and diesel exhaust particles (Table 3). 

The authors controlled for baseline category of smoking, age and baseline body mass index, potentially 

important confounders. Time-varying data on exposure was not available, as well as smoking and body 

mass index, which may co-vary with exposure over time. However, the authors reported that job 

mobility was limited during the study period and that exposure levels remained high at the end of the 

study period, and thus the lack of time-varying exposure data should not have been a major limitation. 

While the authors found similar results when restricting to baseline never smokers, this does not rule out 

uncontrolled confounding by changes in smoking patterns over time which could have biased the effects 

in either direction. It is also possible that the associations were partially due to increasing body mass 

index over time if this were correlated with exposure, but changes in BMI are unlikely to account for all 

of the observed effects since the authors noted that the exposures remained steady at the end of the study 

period. The authors also controlled for hypertension as controls had a slightly lower rate of hypertension 

than the exposed population. However hypertension, may be an intermediate between occupational PM 

exposure and IHD [39], and controlling for it in the model may attenuate the potential association 

between occupational PM exposure and IHD, biasing the effects towards the null. An analysis stratified 

by hypertension would have been more useful.  

Significant increases in risk of IHD were also observed in heavy equipment operators compared to 

other unionized workers (OR = 1.23; 95%CI: 1.00–1.51) controlling for age [34], metal workers 

exposed to high levels of dust compared to low exposed workers (IRR = 1.40; 95% CI: 1.19–1.74) 

controlling for age, and asphalt workers exposed to high average coal tar exposures compared to low 

exposed workers (IRR = 1.64; 95% CI: 1.13–2.38) [32] (Table 3). No adjustment for smoking was 

performed, but in the study of asphalt workers, the authors conducted a sensitivity analysis utilizing the 

distribution of smokers in a subset of the population, concluding that confounding by smoking was not a 

major limitation. The authors did acknowledge however that the increased risk of IHD could be due to 

polycyclic aromatic hydrocarbons (PAH) or carbon monoxide (CO) exposures from other occupations 
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outside of asphalt work, but this could not be determined because of lack of complete occupational 

histories [32].  

In a study of gold miners exposed to silica dust, in which cumulative exposure was treated as a 

continuous variable, [35] no associations were observed with IHD while adjusting for smoking patterns. 

Notably, in this same study, a significant SMR for IHD was obtained when using the general population 

as a reference group. These contradictory findings may be explained by the fact that exposure was 

lagged by five years in the cumulative exposure models to account for the latent period between 

exposure and disease. If more recent PM exposures were critical in the onset of IHD or triggering of an 

acute event, then lagging the exposure would have masked an effect of PM. This study also adjusted for 

blood pressure, which may be an intermediate outcome on the pathway between PM exposure and IHD. 

Another study investigated risk of IHD in plastics industry workers exposed to styrene particles finding 

no association when comparing category of average intensity and cumulative exposure, but the authors 

noted that exposures estimates were not validated and exposure misclassification was likely. In addition, 

the authors did not control for smoking or other potential confounders [37]. In contrast to the null IRR, 

the SMR from this study was significantly lower than unity, suggesting a protective association, which 

may reflect a bias from the healthy worker effect in the external analysis.  

When the IRRs from the four studies that compared high or any verses low or no exposure 

[32,33,37,38] were combined in a meta-analysis, there was a 15% increased risk of IHD mortality 

(meta-IRR = 1.15; 95% CI: 1.06–1.26) (Figure 3). While the result suggests a significantly increased risk 

of IHD mortality with higher exposure, control for confounding factors was limited in the original 

studies, with only one study having controlled for smoking [38]. No significant heterogeneity between 

studies was observed. Fixed-effects meta-analysis did not alter the meta-IRR for IHD appreciably 

(meta-IRR = 1.12; 95% CI: 1.10–1.14). Meta-analyses by type of particle exposure could not be 

performed for studies using internal analyses because of lack of comparability in the study designs by 

exposure. 

 

Cerebrovascular Disease 

 

Only one study investigated cerebrovascular mortality using an internal comparison finding no 

association with any dust exposure [38]. This was investigated by Toren et al. in the study of 

construction workers. Since the authors controlled for blood pressure, it is possible that an effect was 

masked by controlling for an intermediate variable. 

 

Overall Cardiovascular Disease 

 

Three studies investigated overall CVD mortality using internal analyses. Mortality was compared by 

categories of exposure, as measured by cumulative exposure and average exposure and findings were 

mixed with positive and inverse association. The IRRs varied from 0.77 [29] to 1.85 [32] comparing 

high to low exposure. Bustyn et al. reported a significant increase in CVD mortality in asphalt fume 

workers exposed to high average coal tar (IRR = 1.85; 95% CI: 1.17–2.91) [32]. However, as with their 

analysis for IHD mortality, adjustment for confounding was not performed so it is possible that the 

increase in risk was due to exposure to PAHs or CO from other occupations. In the study by Koskela et 
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al. an increased risk of overall CVD was observed for metals workers with high exposure compared to 

those with low exposure (IRR = 1.20; 95% CI: 1.04–1.35), adjusting for age, but not smoking or other 

risk factors. Zhang et al. found a significantly decreased risk of overall CVD in ceramics workers 

exposed to high cumulative exposures as compared to low exposed workers in crude analysis [29]. 

Notably, coding of cause of death was not based on the ICD system and thus it is difficult to compare the 

findings from this study to others. In addition, the apparently protective effect of exposure may reflect a 

healthy worker survivor effect, in which healthier workers are able to withstand work in dustier jobs. No 

additional analyses were conducted to control for potential confounders. When the IRRs from these 

three studies were combined, the meta-IRR for CVD mortality was 1.17 (95% CI: 0.50 to 2.75) for those 

with high exposure versus low exposure (not presented). Significant heterogeneity between studies was 

observed in the CVD meta-analysis. Meta-analyses by type of particle exposure could not be performed 

for studies using internal analyses because of lack of comparability in the study designs by exposure. 

Figure 3. Results of random-effects meta-analysis of IHD mortality using internal analysis 

and occupational exposure to particulate matter. 

 

 

In summary, a number of positive associations with IHD mortality were observed in the studies that 

used external comparison groups. While these studies are limited by the lack of control for important 

cofounders such as smoking and co-pollutants, the lack of a healthy worker effect bias which typically 

manifests as a protective association for IHD argues for a potentially real association between 

occupational PM exposure and IHD. In fact, only one study of styrene exposed workers observed a 

significantly reduced SMR [37].  

Using an internal comparison group helps to minimize the healthy worker effect and is preferential 

over the use of external comparisons for this reason. Findings from the mortality studies that used 

internal analyses also revealed positive associations with IHD. While confounding by lifestyle and 

demographic habits is minimized in internal analyses where the population is more similar, the findings 

here are still limited by lack of adequate control for confounding in most studies. Only one study with a 

positive association between any occupational exposure to PM among construction workers and IHD 

controlled for smoking and age in the analysis [38].  
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5. Occupational Particulate Exposures and Cardiovascular Morbidity  

5.1. Study Characteristics 

The study characteristics and major results of the five morbidity studies are presented in Table 4. All 

but one study, which evaluated IHD and overall CVD prevalence [40], specifically assessed incidence or 

prevalence of MI [25,26,41,42]. The study populations were also relatively large, ranging from 2,993 to 

153,807 individuals and mostly male. All of the study populations were drawn from the general 

population. In general, hospital data were used to ascertain outcome. Job title [25,40,42] and exposure 

estimates [26,41] (lifetime average intensity and duration) were used to assign exposure. Several studies 

adjusted for smoking as a confounding factor of cardiovascular morbidity [40,41]. One study collected 

information on smoking but it was unclear if this was adjusted for in the analysis [26]. In the study of 

occupations exposed to traffic-related particles [25], the authors indirectly evaluated the impact of 

smoking and body mass index on the association between occupations exposed to PM and MI using 

varying distributions.  

5.2. Effect Estimates 

In a cross-sectional study, IHD and CVD prevalence rate ratios among transport workers compared to 

the general employed population were below unity and null [40]. While smoking and age were 

appropriately controlled for, the study included individuals as young as 16 years of age, who would be 

less likely to have any type of CVD. In another cross-sectional analysis, the prevalence of MI was found 

to be increased in individuals with long-term exposure (greater than five years) to welding and soldering 

fumes compared to those without long-term exposure. However smoking and other potential 

confounders did not appear to be controlled for in the analysis, although the authors did report collecting 

information on smoking [26]. In this same study, the incidence of MI was also studied prospectively 

finding an elevated risk of MI in individuals exposed to soldering fumes long-term, but not those 

exposed to welding fumes. Again it was unclear whether potential confounders were controlled for in the 

analysis. 

In the three case-control studies that investigated the incidence of MI, positive effect estimates were 

observed in almost all seven comparisons that were included in this review though not all associations 

were statistically significant (Table 4). In a study of urban males employed in occupations exposed to 

traffic-related particles, statistically significant effect estimates for risk of MI ranged from 1.31 to 1.53 

for bus drivers, taxi drivers and long distance lorry drivers as compared to gainfully employed men in the 

general population while controlling for age and other potential confounders. Smoking and BMI were 

not adjusted for, but the authors were able to indirectly evaluate the impact of these factors, finding that 

smoking and obesity were unlikely to account for all of the increased risk in MI, especially in taxi and 

bus drivers.  

In a subsequent study by the same authors [41], male and female workers exposed to high levels of 

respirable combustion-related PM as determined from a lifetime occupational history questionnaire 

experienced a more than two-fold increased risk of MI compared to unexposed individuals, while 

controlling for smoking and a number of other covariates, including age , diabetes and overweight. The 

authors did control for hypertension however, a factor which may be on the causal pathway between 
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exposure and MI and which therefore may attenuate the effect estimate when included in the model. In 

the third case-control study by Bigert et al. [42] of subway drivers exposed to underground particulate 

matter, no increased risk of MI was found when workers were compared to gainfully employed men in 

the general population or other manual workers. The authors were only able to control for age and 

calendar year in this analysis.  

Control for confounding factors and use of appropriate comparison groups (i.e., gainfully employed 

individuals as opposed to the general population) was in general better in these morbidity studies. 

However the lack of information on co-exposures such as CO and direct measurements of particulate 

exposures to estimate long-term exposure and evaluate exposure-response relationships remain as 

important limitations to these studies, which otherwise suggest an association between occupational PM 

exposure and MI. 

6. Occupational Particulate Exposures and Intermediate Cardiovascular Outcomes  

6.1. Study Characteristics  

The major study characteristics and results for the 20 studies concerning intermediate cardiovascular 

outcomes in relation to acute (17 studies) (Tables 5 and 6) and/or chronic exposure (4 studies) (Table 7) 

are presented in Tables 5–7. The studies were conducted in underground railroad workers [43], 

boilermaker construction workers [44-53], highway toll collectors [54], vehicle maintenance workers 

[55], highway patrol officers [56], traffic policemen [57], automobile mechanics [58], and a panel of 

healthy volunteers exposed to welding fumes [59]. Three studies focused on identifying effect modifiers 

[44,50,51] (Table 5) and four re-analyzed data to identify PM2.5 sources and components responsible for 

observed associations [47,53,60,61]. In general, the studies of intermediate cardiovascular endpoints 

were conducted in small sample sizes (9 to 79 participants) using either short-term prospective study 

designs (Tables 5 and 6) with repeated measurements or cross-sectional (Table 7) designs, and were 

mostly male. A number of intermediate cardiovascular outcomes were studied—most commonly heart 

rate variability (HRV) (Table 5) and circulating markers of systemic inflammation (Table 6). Direct 

personal measurements of airborne PM concentrations were used to assign exposure in the boilermaker 

construction workers [44-53], vehicle maintenance workers [55], and highway patrol officers [23], while 

controlled exposures were studied in the panel of healthy volunteers exposed to welding fumes [59]. Job 

title was used in the other cohorts which were studied using a cross-sectional design [43,54,57,58] 

(Table 7). Because of the smaller number of participants, which generally makes it more feasible to 

collect more detailed information on a larger number of covariates, control or evaluation of important 

potential confounders such as smoking was conducted in all of the studies of intermediate cardiovascular 

outcomes, either through study design or in analysis. In addition, a number of other important potential 

confounders were considered in the vast majority of these studies, including co-pollutants such as CO 

[55,56]. 
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Table 4. Study characteristics and findings of studies on occupational particulate exposures and cardiovascular morbidity. 

Reference and 
country 

Study population, size, ages, study 
period 

Outcome and 
ascertainment 

Exposure and 
assessment 

Controlled 
confounders 

Comparison MI IRR (95% CI) Other (95%CI) 

Cross-sectional studies 

Fleming, 
2001[40] 
England 

 Employed males in the Fourth 
National Morbidity Survey 
Participants (n = 93,692 men) 

 Ages 16–64 year 
 1991–1992 

IHD and CVD 
identified from 
questionnaire 

Traffic-related 
particles, assessed 
via self-reported 
job title  

Smoking and 
age 

Transport worker vs. 
general employed male 
population 

NA IHD prevalence RR = 
0.93 ( 0.72–1.15) 
 
CVD prevalence RR = 
0.99 (0. 90–1.08) 

Suadicani, 
2002[26] 
Denmark 

 The Copenhagen Male Study 
Population (n = 3,321men) 

 Ages 53–74 year 
 1985–1993 

MI identified from 
national registers of 
hospital admissions 
and death certificates 

Welding and  
soldering fumes, 
assessed via 
questionnaire 

None reported Exposure to welding fumes 
several times/wk >5 yrs 
(yes/no) 
 
Exposure to soldering 
fumes several times/wk >5 
yrs (yes/no) 

1.1 (0.6–2.2)*  
 
 
 
1.8 (1.0–3.2)* 

MI prevalence OR = 
2.1(1.05–4.2)  
 
 
MI prevalence  
OR = 3.0 (1.6–5.8) 

Case control studies 
Gustavsson, 
1996[25] 
Sweden 

 Males in Stockholm same job for ≥5 
yrs (n = 4,105 cases and 13,066 
controls) 

 Ages 30–74 year 
 1976–1984 

1st fatal and nonfatal
MI identified from 
registers of hospital 
admissions and 
causes of death 

Traffic-related 
particles, assessed 
via National 
Census job titles  

Age, calendar 
year, county of 
residence  
 
Smoking, 
overweight 
were indirectly 
evaluated 

Bus driver vs. gainfully 
employed men  
 
Taxi driver vs. gainfully 
employed men 
 
Long distance lorry driver 
gainfully employed men 
 
Short distance lorry 
gainfully employed men 

1.53 (1.15–2.05) 
 
 
1.65 (1.30–2.11) 
 
 
1.31 (1.05–1.64) 
 
 
1.06 (0.69–1.65) 

NA 

Gustavsson, 
2001[41] 
Sweden 

 Male and female residents without 
history of MI (n = 1,335 cases and 
1,658 controls) 

 Ages 45–70 year 
 1992–1994 

Fatal and non-fatal 
MI identified fro 
coronary or intensive 
care units and 
hospital discharge 
register 

Combustion 
products (i.e., 
respirable PM), 
assessed via 
lifetime 
occupational 
history 
questionnaire 

Smoking, age, 
sex, year of 
enrollment, 
hospital 
catchment area, 
alcohol, 
hypertension, 
overweight, 
diabetes, 
physical 
inactivity 

High annual average 
exposure intensity (≥2.5 
mg/m3) vs. unexposed 

2.11 (1.23–3.60) NA 

Bigert, 2007[42] 
Sweden 

 Male residents of Stockholm (n = 
22,311 cases and 131,496 controls). 

 Ages 40–69 year 
 1976–1996 

1st MI identified from 
hospital discharge 
records 

Particulate 
exposures among 
subway driver , 
job title 
determined from 
National Census 
job titles 

Age and 
calendar year 

Subway drivers vs. other 
gainfully employed men  
 
Subway drivers vs. other 
manual workers  
 
 

1.06 (0.78–1.43) 
 
 
0.92 (0.6–1.25) 
 
 

NA 

* Reported as odds ratio (OR); CVD: cardiovascular disease; IHD: ischemic heart disease; MI=myocardial infarction; IRR=incidence rate ratio; NA=not applicable. 
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Table 5. Study characteristics and findings of prospective epidemiologic studies of short-term occupational particulate exposure and 

cardiac outcomes assessed by ambulatory ECG. 

Reference and country 
Population and 
size Outcomes measured Exposure Comparison 

Controlled/evaluated 
confounders Main associations with exposure 

Short duration HRV measures obtained with resting protocol 
Riediker, 2004 [56] 
US 

9 non-smoking 
male highway 
patrol troopers  

HR and HRV over 10 minutes, with 
resting protocol, before and after 
shift (before bed and after waking) 
(MCL, SDNN, PNN50, LF, HF, TP, 
LF/HF, ectopic beats) 

In-vehicle PM2.5 ↑ in in-vehicle 
work-shift PM2.5 

Smoking, temperature, RH, 
work load, average speed 
during the shift 

↑ HRV (SDNN, pNN50, HF) next 
morning 
↑ MCL 
↑ Ectopic beats next morning 

Riediker, 2004* [61] 
US 

9 non-smoking 
male highway 
patrol troopers 

HR and HRV over 10 minutes, with 
resting protocol, before and after 
shift (before bed and after waking) 
(MCL, SDNN, PNN50, LF, HF, TP, 
LF/HF, ectopic beats) 

In vehicle PM2.5 from 
“speed change” 
factors (Cu, S, 
aldehydes) 

↑ in in-vehicle 
work-shift PM2.5 

source factor 

Smoking, CO, NO2, RH, 
stress 

↑ HRV 
↑ MCL 
↑ supraventricular ectopic beats 
 

Eninger, 2004 [55] 
US 

5 male vehicle 
maintenance 
workers  

HRV over 5 minutes with resting 
protocol at end of shift, (SDNN, 
rMSSD, TP, HF)  
 

Vehicular PM2.5 ↑ in TWA 
work-shift PM2.5 

Smoking, age, heart rate, CO None 

Scharrer, 2007 [59] 
Germany 

20 non-smoking 
male and female 
healthy volunteers  

HRV over 10-min with resting 
protocol, (SDNN, TP, HF, LF) 

Welding fume Exposed 
condition vs. 
unexposed 
condition 

Smoking, time of day, airway 
disease, CVD 

None 

Riediker, 2007* [60] 
US 

9 non-smoking 
male highway 
patrol troopers  

HR and HRV over 10 minutes, with 
resting protocol, before and after 
shift (before bed and after waking) 
(MCL, SDNN, PNN50, LF, HF, TP, 
LF/HF, ectopic beats) 

In vehicle PM2.5 

components 
↑ in in-vehicle 
work-shift PM2.5 

component 

Smoking, CO, NO2 ↑ ventricular ectopic beats with S 

Short duration HRV measures obtained from continuous ECG monitoring 

Magari, 2001[52] 
US 

40 male 
boilermakers 

HRV over 24 hours, short-duration 
measures (5-min SDNN) 

Welding fume and 
ROFA PM2.5 

↑ in 4-hr 
moving average 
PM2.5 

Smoking , age, time of day ↓ HRV (5-minute SDNN) 
 

Chen, 2006** [51] 
US 

10 male 
boilermakers 

HRV over 24 hours, short-duration 
measures (5-min SDNN, HF) 
 
Modifiers: Coronary risk profile 

Welding fume PM2.5 ↑ in 4-hr 
moving average 
PM2.5 

Framingham score, body mass 
index, drinking habits, 
smoking, time of day, eating, 
coffee and alcohol 
consumption, exercising, 
sleeping, heart rate 

↓ HRV (5-min SDNN and HF), greater 
in high CVD risk individuals  

Chen, 2007** [50] 
US 

18 male 
boilermakers 

HRV over 24 and 48 hours, 
short-duration measures (5-min 
SDNN) 
 
Modifiers: Obesity 

Welding fume PM2.5 ↑ in 4-hour 
moving average 
PM2.5 

Smoking, age, drinking, 
calendar year, blood pressure, 
obesity, time of day, eating, 
coffee and alcohol 
consumption, exercising, 
sleeping, workday  

↓ HRV (5-min SDNN), greater in 
obese individuals 
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Table 5. Cont. 
Fang, 2009** [44] 
US 

23 male 
boilermakers 

HRV over 24 hours  
short duration 
 
Modifiers: AIx, MAP, PP, CRP 

Welding fume PM2.5  ↑ in 1-hour 
moving average 
PM2.5 

Smoking, age, time of day, 
coffee and alcohol 
consumption 

↓ HRV (5-min SDNN) greater in 
individuals with decreased vascular 
function and increased systemic 
inflammation 

Intermediate and long-duration HRV measures obtained from continuous ECG monitoring 

Cavallari, 2008[48] 
US 

36 male 
boilermakers 

HRV over 24 hours, intermediate 
duration 

Welding fume and 
ROFA PM2.5 

↑ in work-shift 
PM2.5 

Smoking, age, non-work 
HRV 

↓ HRV (hourly SDNNi) up to 14 hours 
post work 
 

Magari, 2002* [53] 
US 

39 male 
boilermakers 

HRV over 24 hours, long duration 
measures (SDNNi) 

Welding fume and 
ROFA PM2.5 metal 
components 

↑ in work-shift 
PM2.5 metal 
component 

Smoking, age, time of day ↑ HRV (SDNNi) associated with Pb 
and V 

Cavallari, 2007[46] 
US 

36 male 
boilermakers 

HRV over 24 hours, long duration 
measures (24-hr, daytime, and 
nighttime rMSSD, SDNN, and 
SDNNi) 

Welding fume PM2.5  ↑ in work-shift 
PM2.5 

Smoking, age, and non-work 
HRV 

↓ HRV (24-hr, daytime, and nighttime 
rMSSD, SDNN, and SDNNi) 

Cavallari, 2008*[47] 
US  

26 male 
boilermakers 

HRV over 24 hours, long duration 
measures (nighttime rMSSD) 

Welding fume PM2.5 

metal components 
↑ in work-shift 
PM2.5 metal 
component 

Smoking, age, non-work 
HRV 

↓ HRV as measured by nighttime 
rMSSD associated with Mn 

CVD: cardiovascular disease; ECG: electrocardiogram; HF: high frequency (HRV index that reflects parasympathetic autonomic nervous system control); HRV: heart rate variability; LF: low frequency (; MAP: 
mean arterial pressure; MCL: mean cycle length; PM2.5: particulate matter with a mass mean aerodynamic diameter ≤ 2.5 µm; pNN50: Percentage of differences between adjacent NN intervals that are >50 msec; 
PP: pulse pressure; rMSSD: root mean square of successive differences (HRV index that reflects relative influence of parasympathetic nervous system activity); ROFA: residual oil fly ash; SBP: systolic blood 
pressure; SDNN: standard deviation of normal of normal beats (HRV index that reflects total HRV, sympathetic and parasympathetic components, over a specified time); SDNNi: SDNN index; TP: total power 
(HRV index that reflects total HRV over a specified time). 
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Table 6. Study characteristics and findings of prospective epidemiologic studies on short-term occupational particulate exposures and 

inflammation, coagulation, and vascular function. 

Reference and country Population and size Outcomes measured Exposure Comparison 
Controlled 
confounders Main associations with exposure 

Riediker, 2004 [56] 
US 

9 non-smoking male highway 
patrol troopers  

Inflammation: circulating CRP, lymphocytes, 
neutrophils, vWF, RBC indices  
 

In vehicle PM2.5 ↑ in PM2.5 Smoking, 
temperature, RH, 
workload, and 
average speed  

↑ in RBC indices, neutrophils, CRP, 
and vWF  
↓ lymphocytes  

Riediker, 2004* [61] 
US 

9 non-smoking male highway 
patrol troopers  

Inflammation: circulating CRP, lymphocytes, 
neutrophils, vWF, RBC indices  
 

In vehicle PM2.5 

from “speed 
change” 

↑ in PM2.5 source 
factor 

Smoking, CO, NO2, 
RH, stress 

↑ in neutrophils, RBC volume 
MCV, and vWF 
↓ lymphocytes 

Kim, 2005 [49] 
US 

37 male boilermakers Inflammation: circulating CRP, fibrinogen, 
neutrophils, WBCs 

Welding fume 
PM2.5  

↑ in work-shift 
TWA PM2.5 

Smoking, age, time 
of day 

↑ absolute neutrophil counts in 
non-smokers  
↑ CRP levels in non-smokers and 
smokers 

Scharrer, 2007[59] 
Germany 

20 non-smoking male and 
female healthy volunteers  

Inflammation: circulating antithrombin III, 
ristocetin cofactor,CRP, ENA78, ET-, factor VIII, 
fibrinogen, IL-6, IL-8, ristocetin, sICAM-1, 
TNF-a vWF 

Welding fume Exposed condition 
vs. unexposed 
condition 

Smoking, time of 
day, airway disease, 
CVD 

↓ ET-1 

Riediker, 2007[60]*  
US 

9 non-smoking male highway 
patrol troopers  

Inflammation: circulating IL-6 PAI-1 vWF, 
WBCs 
 

In-vehicle PM2.5 

components 
↑ in in-vehicle 
PM2.5 component 

Smoking, CO, NO2 ↑ vWF and uric acid with Ca 
↑ WBCs and IL-6 with Cr 
↑ vWF, MCL 
↓ PAI-1 with Cu 

Bigert, 2008 [43]  
Sweden 

79 non-smoking male and 
female Stockholm 
underground workers  

Inflammation and coagulation: circulating 
PAI-1 
 

Underground 
railroad PM2.5  

48 hour change 
from start of 
work-shift in low, 
medium, and high 
exposure groups 

Smoking, 
anti-coagulation 
medication  

↑ PAI-1 and fibrinogen after 2 days 
of work in lower exposed workers  

Fang, 2009[62]  
US 

26 male boilermakers Inflammation, coagulation, and endothelial 
function: circulating 
sICAM-1, sVCAM-1, and vWF, 

Welding fume 
PM2.5 

↑ in TWA 
work-shift PM2.5 

Smoking, age, time 
of day  

↑ vWF post-shift 
↓ sVCAM-1 post-shift and next 
morning 

Fang, 2008[45]  
US 

26 male boilermakers Vascular function: augmentation index Welding fume 
PM2.5 

↑ in TWA 
work-shift PM2.5 

 

Smoking, age, time 
of day 

↑ augmentation index post-shift  
 

CRP: C-reactive protein; ENA78: Epithelial cell-derived neutrophil-activating peptide 78; ET-1: endothelin-1; IL-6: interleukin 6; IL-8; interleukin-8; PAI-1: plasminogen activator inhibitor-1; PM2.5: particulate matter with 
a mass mean aerodynamic diameter ≤ 2.5 µm; RH: relative humidity; sICAM-1: soluble inter-cellular adhesion molecule-1; sVCAM-1: soluble vascular cell adhesion molecule-1; TNF-a: tumor necrosis factor alpha; vWF: 
von Willebrand factor; WBC: white blood cell. 
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Table 7. Study characteristics and findings of cross-sectional epidemiologic studies of chronic occupational particulate exposure and 

intermediate outcomes. 

Reference and 
country 

Population and 
size Outcomes measured Exposure Comparison 

Controlled 
confounders 

Main associations with 
exposure 

Sharman, 2002 [58] 
Australia 

16 automobile 
mechanics and 13 
white collar 
workers  

Pre-clinical atherosclerosis: Plasma 
susceptibility to oxidation (lag time, 
change in absorbance, slope of linear 
time trend) 

Automobile 
pollutants 

Automobile 
mechanics vs. 
white collar 
workers 

Smoking, age, 
CVD, 
hyperlipidemia, 
hypertension, 
obesity, 
antioxidants, 
aerobic capacity  
 

↑ change in absorbance at 
234 nm 
↑ linear slope of oxidation 
curve  
 
 

Volpino, 2004 [57] 
Italy 

68 male traffic 
policemen and 62 
office workers  

Vascular function: diastolic and 
systolic blood pressures 
Cardiac function and abnormalities: 
heart rate, ECG abnormalities (ST 
segment alterations, arrhythmia)  

Traffic-related 
air pollution  

Traffic 
policemen vs. 
office workers  

Smoking, age, 
residence, 
duration of 
employment  

↑ diastolic blood pressure at 
rest and with exercise 
↑ ST segment alterations 
with exercise  
↑ Arrhythmia with exercise 
 

Memisogullari, 
2007[54]  
Turkey 

22 male 
non-smoking 
highway toll 
collectors and 24 
controls  

Pre-clinical atherosclerosis: 
circulating homocysteine levels and  
ocular blood flow velocities (measured 
by Doppler ultrasonography) 

Motor exhaust 
particles  

Toll collectors 
vs. controls 

Smoking, 
cholesterol, 
glucose, acute 
and chronic 
inflammatory 
disease, 
medications and 
vitamins, 
creatinine, 
caffeine  

↑ homocystiene levels  
↑ OA RI 
↓ ocular blood velocity 
 
 

Bigert, 2008 [43] 
Sweden 

79 non-smoking 
male and female 
Stockholm 
underground 
workers 

Inflammation and coagulation: 
circulating PAI-1, CRP, factor VII, 
IL-6, fibrinogen, vWF 

Underground 
railroad PM2.5 

High vs. 
medium and 
low exposed 
workers 

Smoking, BMI, 
and 
anti-coagulation 
medication 

↑ PAI-1 and CRP in high 
exposed workers  
 

CRP: C-reactive protein; CVD: cardiovascular disease; OA RI: resistivity index of the ophthalmic artery, an indirect measure of arterial resistance and the atherosclerotic 
process; PAI-1: plasminogen activator inhibitor-1; PM2.5: particulate matter with a mass mean aerodynamic diameter ≤ 2.5 µm. 



Int. J. Environ. Res. Public Health 2010, 7          

 

 

1794

6.2. Acute Effects 

Heart rate variability (HRV), a widely-used indicator of cardiac autonomic nervous system function 

measured by ambulatory electrocardiogram (ECG), was measured in four cohorts (boilermakers, 

healthy volunteers exposed to welding fumes, vehicle maintenance workers, and highway patrol 

officers). HRV can be characterized using a number of indices (e.g., short duration measures such as the 

5-min SDNN and long duration measures such as the SDNNi), reflecting different components of the 

autonomic nervous system. Decreased HRV is associated with increased risk of mortality in the general 

population and the development of non-fatal cardiac events [63,64]. Both the HRV indices as well as 

the conditions for ECG ascertainment varied between these studies (Table 5). Findings also varied by 

cohort.  

In the boilermaker cohort, an inverse association between increasing PM2.5 exposure from welding 

fume and residual oil fly ash (ROFA) and decreasing HRV was first reported in 2001 using a repeated 

measures study design [52]. This study found a 2.66% (95%CI: −3.75% to −1.58%) decrease in 5-min 

SDNN for every 1 mg/m3 increase in the personal 4-hour moving average PM2.5 concentration, while 

controlling for smoking, age, and diurnal variation, suggesting an acute adverse effect of PM2.5 on the 

autonomic nervous system, a potential mechanism by which PM may be associated with adverse 

clinical cardiovascular events. Subsequently, consistent inverse associations between personal PM2.5 

measurements and other measures of HRV were observed in additional boilermaker studies while 

controlling for smoking, age, and diurnal variation [46,48,51]. These studies strongly suggest acute 

adverse cardiovascular health effects of PM2.5 exposure from welding fumes and residual oil fly ash. 

Presence of co-pollutants was reported to be minimal and uncorrelated with PM2.5 in these cohorts, 

providing further support that the observed effects were due to PM2.5. Re-analyses of some of these 

studies using PM2.5 components showed that nighttime root mean square successive differences 

(rMSSD) in heart period series, a high-frequency component of HRV that reflects the relative influence 

of the parasympathetic nervous system, was inversely associated with manganese [47]. In an earlier 

study, the mean of the standard deviations of all normal to normal intervals (SDNNi) for all five minute 

segments of the ECG recording, an HRV measure that reflects overall contributions of the 

parasympathetic and sympathetic nervous system, was positively associated with lead and vanadium 

[53], a finding that suggests that these PM2.5 metal components are not the responsible constituents for 

observed deceases in HRV with increasing PM2.5 [53]. Additional studies in this cohort showed that 

obesity, poorer cardiovascular disease risk profile as measured by the Framingham heart score, as well 

poorer vascular function and greater systemic inflammation aggravate the PM2.5-HRV association up to 

four-fold [44,50,51].  

In contrast to the boilermaker studies, using a repeated measures study design, associations between 

PM2.5 and a number of HRV indices immediately after a work-shift were generally null in non-smoking 

highway patrol officers [56], though positive associations with a number of HRV parameters were 

observed the morning after work (e.g., 11.7% change in next-morning SDNN per 10 µg/m3 increase in 

PM2.5, p = 0.006) (Table 3). Because the study participants were young and in good physical health, the 

authors suggested that the positive associations may reflect a healthy physiologic response to PM 

exposure in comparison with older and less healthy individuals and workers. The effects of 
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co-exposures from CO, NO2, and relative humidity were assessed, giving minimal changes in the 

results, but because of the correlation with PM2.5 potentially confounding effects from these 

co-exposures could not be entirely ruled out. In subsequent analyses, PM2.5 associated with vehicular 

“speed change” (e.g., engine emissions and break wear) which include the components of copper and 

sulfur were associated with the increased HRV indices in the patrol officers [61]. In studies of healthy 

volunteers exposed to welding fumes and in vehicle maintenance workers [55,59] null associations 

between exposure and HRV were also observed. .  

Circulating markers of inflammation, coagulation, and vascular function were investigated in the 

cohorts of underground railways workers [43], boilermaker construction workers[49,62], healthy 

volunteers exposed to welding fumes [59], and highway patrol troopers [56] in relation to short-term 

PM exposure. The types of markers measured and their associations varied from study to study, 

however positive associations with inflammatory markers were more consistently observed than HRV 

across cohorts. For example, C-reactive protein (CRP), a commonly measured biomarker of systemic 

inflammation, was measured in four studies [43,49,56,59]. A positive baseline to next morning change 

(24 hours) in CRP (mg/L) was observed in boilermaker construction workers exposed to welding fume 

PM2.5 for approximately six hours, after adjusting for smoking and time of day (β = 0.95; 95% CI: 

0.23–1.67) [49] . Similarly, in non-smoking highway patrol officers exposed to in-vehicle PM2.5 during 

a full work shift, CRP (mg/L) measured 14 hours after a shift increased 32% (p = 0.02) per 10 µg/m3 

increase in PM2.5 [56]. No associations however were found in healthy volunteers exposed to welding 

fume using a crossover study design [59] or in underground railroad system workers with 

measurements taken two days apart [43]. The short duration of exposure in the healthy volunteers 

and/or the timing of the outcome measurements may explain the lack of effects observed in this study. 

An increase in absolute neutrophil counts from baseline to post-shift (× 103/µl), another indicator of 

systemic inflammation, was also associated with increasing PM2.5 exposure in non-smoking 

boilermakers (β = 0.3; 95% CI: 0.02–0.6) [49]. In the non-smoking highway patrol officers, a 6.2% 

increase in percent neutrophils per 10 µg/m3 increase in PM2.5 was observed 14 hours post-shift [56]. 

The increase in percent neutrophils in the highway patrol officers was also linked with copper and 

sulfur in PM2.5 from vehicular “speed change”. In contrast, to these findings, no changes were observed 

in circulating levels of inflammatory cytokines (tumor necrosis factor [TNF]-α, interleukin-6 [IL-6], or 

interleukin-8 [IL-8]) in healthy volunteers exposed to welding fumes for two hours [59], which may be 

due to the short duration of exposure and/or timing of outcome measurements. 

Soluble adhesion molecules, which relate to both inflammation and endothelial function, were also 

measured in relation to PM2.5 exposure in some studies [59,62]. Soluble inter-cellular adhesion 

molecule-1 (sICAM-1) was measured in boilermakers [62] and healthy volunteers exposed to welding 

fumes [59], but no associations with exposure were observed in either cohorts. An acute decrease in 

soluble vascular cell adhesion molecule-1 (sVCAM-1) however was associated with increasing PM2.5 

exposure in boilermakers [62]. This may reflect an initial down-regulation followed by an up-regulation 

in VCAM-1 as explained by the authors. Von Willebrand factor (vWF), a coagulatory molecule, also 

related to endothelial function and inflammation, was found to increase in the highway patrol officers in 

relation to increasing personal PM2.5 exposures [56]. An acute increase in vWF across a work-shift was 

also observed in the cohort of boilermaker construction workers in association with personal PM2.5 
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levels [62]. Higher levels of vWF were also observed in healthy volunteers after exposure to welding 

fumes as compared to a control day, though this difference was only marginally statistically significant 

[59]. 

Plasminogen activator inhibitor-1 (PAI-1) and fibrinogen, which characterize a pro-thrombotic state, 

were measured in the underground railroad system workers, and acute increases were observed in the 

low-exposed workers but not the higher exposed workers [43], which could indicate a greater reactivity 

to occupational PM among lower exposed individuals who may have a lower baseline inflammatory 

state. In the healthy volunteers exposed to welding fumes, however, no differences in fibrinogen levels 

were observed under exposed conditions versus unexposed conditions [59].  

In the boilermakers cohort, acute vascular effects of PM exposure were also assessed non-invasively 

with aortic pulse wave analysis derived from radial waveforms [45]. An acute alteration in vascular 

function was observed in relation to PM2.5 exposure as measured by the augmentation index (AIx), a 

correlate of arterial stiffness, while adjusting for smoking, age, and diurnal variation. Increasing AIx is 

an independent marker of coronary artery disease and correlates with risk of developing coronary artery 

disease [65,66]. 

6.3. Chronic Effects 

To assess the chronic effects of exposure, four cross-sectional studies investigated the association 

between exposure as measured by job title and levels of circulating inflammatory markers [43], 

cardiovascular abnormalities [57], and measures of pre-clinical atherosclerosis [54,58] while 

controlling for smoking and a number of potentially important confounders (Table 7). In underground 

railway workers with relatively high exposure to PM2.5, increased baseline levels of PAI-1 and CRP 

were found as compared to low-exposed workers, suggesting a chronic systemic inflammatory effect of 

PM exposure [43]. In traffic policemen exposed to traffic-related PM, increased resting diastolic blood 

pressure, alterations in the ST segment of the electrical activity of the heart and arrhythmias with 

exercise were observed in comparison with office workers [57]. Increased homocystiene levels and 

decreased ocular blood flow velocity, indicators of pre-clinical atherosclerosis were observed in toll 

collectors versus non-exposed controls in Turkey, suggesting an effect of chronic PM exposure on the 

development of atherosclerosis [54]. Increased plasma susceptibility to oxidation in automobile 

mechanics as compared to white collar further supports a potential effect of chronic occupational PM 

exposure on pre-clinical atherosclerosis [58]. While these studies controlled for a number of potential 

confounders, a limitation was the lack of data on co-pollutants such as CO. 

7. Discussion 

Findings from this systematic review suggest a possible association between occupational PM 

exposure and IHD and stronger associations with intermediate outcomes such as heart rate variability 

systemic inflammation. In meta-analyses of mortality studies, risk of IHD was slightly increased, 

though not statistically significantly, in comparison with general populations. However, the risk of IHD 

among highly exposed workers compared to low exposed workers was significantly increased in pooled 

meta-analysis. Though adequate control for confounding factors was lacking, this finding is consistent 
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with the fact that using internal analysis minimizes the healthy worker effect that arises when 

comparing relatively healthy working populations to the general population which includes unhealthy 

individuals unable to work. In sub-group analyses, silica-exposed cohorts in particular were found to be 

at increased risk of IHD mortality. No associations were found with cerebrovascular disease or overall 

CVD mortality. The internal analyses helped to overcome the limitations of SMR studies; however the 

findings remain limited because of the lack of control for smoking habits, and other potential 

confounders, such as age and co-pollutants, in the analyses. The review of individual morbidity studies 

also suggested an association with IHD as associations were observed with MI, but were also limited by 

lack of adequate measurement and control for co-pollutants, as exposure was primarily assessed by job 

title. However the findings are consistent with ambient air pollution studies which have found increases 

in MI with increasing particulate exposure [5,67-69].  

Moreover, this review found stronger evidence of associations between acute and chronic 

occupational PM exposure and circulating markers of inflammation and coagulation, including CRP, 

neutrophils, and vWF, a plausible biological mechanism linking occupational PM exposure with IHD 

and MI. In addition, there was also evidence of an association between short-term occupational PM 

exposures and decreased HRV. All of these intermediate studies were able to control for confounding 

by smoking and other important risk factor either through data collection and analysis of study design. 

Though in the studies of chronic exposures on intermediate outcomes, in which exposure was assessed 

primarily by job title, lack of data on co-pollutants is of concern. The clinical significance however of 

short-term and even long-term effects of occupational PM exposures on intermediate pre-clinical 

outcomes remains to be understood and future research should focus on clarifying the clinical 

significance. 

A number of studies in the ambient particulate air pollution literature also support a link between PM 

exposure and systemic inflammation [70-76], which is recognized to play an important role in the 

development and aggravation of IHD. The early upstream effect of PM on systemic inflammation itself 

may be explained by an initial localized inflammatory response in the lungs once PM is inhaled and 

deposited in the alveoli [77,78]. The finding that silica in particular was associated with IHD is 

intriguing as silica has a well-established effect on pulmonary inflammation [79].  

While systemic inflammation appears to be an important intermediate outcome between exposure 

and adverse clinical cardiovascular outcomes, it is likely that biological mechanisms are extremely 

complex, involving a number of different pathways. Alterations in autonomic nervous system function 

have also been proposed as a biological mechanism and have been widely studied in the air pollution 

literature [80-82]. There is considerable evidence for a link between alterations in autonomic nervous 

system function and changes in particulate air pollution exposure patterns [4], and some evidence for 

this link for some of the types of exposures in this review, suggesting differences in the toxicity of PM 

by source and/or a healthy worker effect. For example, in the cohort of boilermaker construction 

workers, exposure to PM2.5 contained in welding fumes and residual oil fly ash (ROFA) was 

consistently associated with decreased heart rate variability (HRV), an indicator of poor cardiac 

autonomic nervous system function. In highway patrol troopers, positive associations were found with 

some HRV parameters and no associations with others. Moreover, no association between personal 

occupational exposure to PM2.5 from automobile emissions and HRV were observed in a small group of 
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vehicle maintenance workers. Differences are likely to be due to differing types of particles as well as 

the timing of responses. Further research in other occupational cohorts with differing particle exposures 

and a panel of intermediate outcomes will help elucidate the biological mechanisms.  

We acknowledge that this systematic review is not without limitations and potential biases, some of 

which are common to systematic reviews in general. For example, publication bias, which is the 

tendency for manuscripts with positive findings to be published more than those with null findings, is a 

potential limitation of all systematic reviews. Because of the small number of studies included in the 

meta-analysis portion of this review, however, it was not possible to formally assess publication bias. 

Given the mix of positive and null effects found in the studies included in this review, however, 

publication bias should not be a major concern. Of greater concern are the biases and confounding 

factors inherent in the individual studies. For example, uncontrolled and residual confounding by 

factors such as smoking and co-exposures, particularly in the mortality and morbidity studies are a 

major concern. Only two mortality studies controlled for smoking habits. However both these studies 

also controlled for potential intermediate health effects which may lie on the pathway between exposure 

and IHD, and thus it is possible that some of the effects of exposure on IHD were blocked. In addition, 

a wide range of exposure assessment methods was used in the different studies, with few directly 

measuring PM concentrations. Unlike ambient particulate air pollution studies, which can utilize 

routinely collected environmental monitoring data to study large populations with relatively similar 

exposures, thereby increasing statistical power; occupational cohort studies are limited to smaller 

populations with varying exposure levels within and between workers and workplaces, depending on 

factors such as tasks, workplace practices and engineering controls. Thus, while the exposure type is 

relatively homogenous, exposures are difficult to estimate and assign, and therefore exposure is often 

assigned to study participants by job title. This can lead to exposure misclassification which typically 

biases effect estimates towards the null. Another concern is the healthy worker effect in mortality and 

morbidity studies, which manifests as a protective association when disease rates in relatively healthy 

workers are compared with that of the general population. This can be particularly strong for 

symptomatic diseases such as IHD and may explain why an inverse association was observed in the 

styrene-exposed cohorts, which both used general populations as a reference. Finally, we could only 

evaluate the effect of particle type on cardiovascular-related mortality, and not non-fatal events, or 

intermediate events due to an inadequate number of studies for each outcome by type. Moreover, only a 

limited number of particle types could be evaluated (i.e., silica and styrene) because of the lack of 

studies on other particle types.  

Despite these limitations, the collective evidence from a broad range of studies and cardiovascular 

outcomes suggests an association between occupational PM exposure and adverse cardiovascular 

events. Future studies on the association between occupational PM exposure and CVD should attempt 

to overcome the limitations noted above. Specifically, validated detailed exposure assessment methods 

should be utilized in future studies to reduce exposure misclassification and increase sensitivity to 

detect underlying associations. These methods should measure biologically relevant PM size fractions 

such as PM2.5 or UFP, in order to better characterize exposure-response relationships with 

cardiovascular outcomes. This can facilitate the standardization of measurements for future 

meta-analyses of a larger number of studies and aide in conducting risk assessments. In addition, studies 
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that employ comparisons with an external population should attempt to control for the healthy worker 

effect by restricting the external population to gainfully employed individuals. Moreover, collection of 

data that will allow one to adjust for smoking habits and co-exposures in the population should be 

prioritized. Where this is not possible, efforts should be made to formally evaluate the impact of 

potential confounders in a sub-set of the population, or to use population-level data on smoking 

prevalence for instance to assess confounding. Appropriate adjustment for covariates in statistical 

models should consider mechanistic pathways and factors which may lie on this pathway as to not over 

adjust for intermediate factors, such as blood pressure or hypertension.  

In conclusion, occupational PM exposure may be associated with IHD mortality and MI. There is 

also evidence that occupational PM exposure is associated with decreased heart rate variability, a risk 

factor for CVD mortality and which may be a potential mechanism of PM-associated adverse 

cardiovascular events and stronger evidence across study cohorts of an association with systemic 

inflammation, also a potential mechanism for PM-associated IHD. Though data is currently lacking to 

determine causality, findings from this review justify a greater recognition of the risk of both the 

development and aggravation of CVD from occupational exposure to PM. Future work should further 

assess the magnitude of the risks, including elucidation of biological mechanisms, and contribution of 

occupational PM exposures to the overall burden of CVD. 
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Appendix 

 

Search Terms 

 

(Crystalline Silica OR Diesel Exhaust Emissions OR Engine Emissions OR Styrene OR Metal Fumes 

OR Welding Fumes OR Asphalt) AND (Cardiovascular Disease[32] OR Mortality OR Myocardial 

Infarction OR Peripheral Arterial Disease OR Peripheral Vascular Disease OR Hypertension OR Blood 

pressure OR Systolic OR Diastolic OR Atherosclerosis OR Arteriosclerosis OR Electrocardiography 

OR Heart Rate OR Ventricular Hypertrophy OR Heart Failure OR Ischemic Heart Disease) AND (Job* 

OR Work* OR Occupation*). 
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Table A. Additional characteristics of epidemiologic studies of occupational PM exposure and fatal cardiovascular 
disease included in review. 
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Exposure assessment                           

Estimated individual-level PM exposure (e.g. based on job title) N Y N Y Y Y Y N Y N Y  N 

Estimates of PM concentrations presented N Y N N N Y Y N N N Y  N 

Outcome assessment                           

Vital status determined for ≥95% of the population U Y Y U U Y Y U Y U N  U 

Ascertainment of vital status based on national/ regional registry(s) Y Y U Y Y Y U Y Y Y N  Y 

Cause of death based on death certificate Y Y U Y Y Y U Y Y Y N  Y 

Statistical Analysis                           

External comparison presented Y Y Y Y N Y N Y N Y Y  Y 

Analysis minimized confounding by HWE N Y Y N Y Y Y N Y Y Y  Y 

 External comparison restricted to working population N N N N -- N -- N -- Y N  N 

 Internal comparisons presented N Y Y N Y Y Y N Y N Y  Y 

Exposure-response relationship presented for CVD N N N Y N Y Y N N N Y  N 

Authors adjusted for smoking in internal comparisons N Y N N Y N N N Y N N  N 

If smoking not adjusted for, authors evaluated potential impact N -- N Y -- N Y Y -- N N  N 

Authors presented a case control analysis N Y N N N N N N N N N   Y 

-- = not applicable; U=unknown              
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