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ABSTRACT

The 2009 H1N1 influenza pandemic posed challenges for governments worldwide. Strategies designed to limit community transmission, such as

antiviral deployment, were largely ineffective due to both feasibility constraints and the generally mild nature of disease, resulting in incomplete

case ascertainment. Reviews of national pandemic plans have identified pandemic impact, primarily linked to measures of transmissibility and sever-

ity, as a key concept to incorporate into the next generation of plans. While an assessment of impact provides the rationale under which interven-

tions may be warranted, it does not directly provide an assessment on whether particular interventions may be effective. Such considerations

motivate our introduction of the concept of pandemic controllability. For case-targeted interventions, such as antiviral treatment and post-exposure

prophylaxis, we identify the visibility and transmissibility of a pandemic as the key drivers of controllability. Taking a case-study approach, we suggest

that high-impact pandemics, for which control is most desirable, are likely uncontrollable with case-targeted interventions. Strategies that do not

rely on the identification of cases may prove relatively more effective. By introducing a pragmatic framework for relating the assessment of impact

to the ability to mitigate an epidemic (controllability), we hope to address a present omission identified in pandemic response plans.
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Introduction

Following the emergence of the influenza A(H1N1)pdm in
2009, national governments have been evaluating the strengths
and weaknesses of their pandemic plans.1–5 In Australia, as in
most other jurisdictions, pre-2009 plans focused primarily on
responding to a severe pandemic with a 1918-like signature of
high severity and high clinical attack rate.6–9 The generally mild
nature of the 2009 pandemic posed challenges for targeted
case-based intervention strategies designed to limit transmis-
sion such as antiviral deployment, reactive quarantine and se-
lective school closures.1,5,10,11

Public health agencies including the US Centers for
Disease Control and Prevention (CDC), European CDC,
World Health Organization and the Australian Government’s
Office of Health Protection have identified the concept of
pandemic impact as a key issue for further consideration in
developing the next generation of pandemic plans.12 – 16 The
impact of a pandemic derives from a number of factors,

including the transmissibility17,18 and pathogenicity19 of the
virus, the age-specific incidence of disease,20,21 health and
socio-economic status of the population22 – 27 and timing of
virus introduction relative to the annual seasonal cycle of in-
fluenza.22,28 – 30

Expanding on concepts articulated during the 2009 pan-
demic,31 here we identify an additional epidemiological measure,
controllability, which may be influential in determining response
strategies. We argue that the concept of controllability, comple-
mentary to impact, adds pragmatic value to current revisions
of pandemic plans. Its inclusion will aid decision-makers con-
sidering whether and how to implement alternative responses
to an emergent pandemic.
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Pandemic impact

Influenza pandemics, sporadic in their occurrence over the
course of human history, have varied in their impact on the
human population.32 – 34 The 1918 influenza pandemic was
characterized by high clinical infection counts and high mor-
tality. In contrast, the 2009 H1N1 pandemic had an overall
mortality rate similar to that seen in yearly seasonal epidemics,
while the distinct age profile provided a clear indication of its
non-seasonal nature.35,36 While it is recognized that pan-
demics exact substantial societal and economic costs,37 for
the purposes of this work we will confine the definition of
impact to a consideration of transmissibilityAQ and severity,
respectively, capturing the burden of morbidity and mortality.
Our focus aligns with the recently introduced framework for
the assessment of impact by Reed et al.,16 who mapped past
pandemics onto transmissibility-severity axes and evaluated
the data requirements for real-time estimation of impact.

Virus transmissibility, captured by the basic reproduction
number (R0) (assuming the population is fully susceptible), is
the prime determinant of the total number of individuals
infected over the course of a pandemic. The time course of
infections depends further upon the average time between
onset of symptoms in sequential generations of infection.

Clinical severity may be considered as the risk of severe
outcome [e.g. hospitalization, intensive care unit (ICU) admis-
sion or death] per infected individual. The case-fatality ratio
(CFR), which measures the risk of death given clinical infec-
tion, has been widely utilized as the primary measure of clinic-
al severity,35 but measures such as the infection-fatality ratio
(IFR)36 may also be appropriate, particularly from a transmis-
sion modeling point of view where the number of infections
(clinical or otherwise) is imputed. However, the CFR (and
IFR) has been seen to vary by orders of magnitude, both in
its global average value across pandemics and by geographic
location within pandemics.33

Real-time modeling to assess impact

The 2009 pandemic was the first to occur in the era of ubi-
quitous computational resources, highly developed national
pandemic preparedness plans and with the availability of
detailed virological surveillance data. Although algorithms to
infer the reproduction number from real-time epidemiological
surveillance data were available,38,39 limitations to their use
were rapidly identified,20,40 with extensions to account for
age- and mixing effects developed during or following the
pandemic.11,20,41 Whether robust inferences on transmissibil-
ity can be made during the earliest stages of a pandemic
remain an open challenge.35

Estimation of the CFR in real time is also fraught with
challenges,35,42 based on uncertainties in the estimation of
deaths and cases, inaccurate ascertainment of cause of death,
delays to death from the time of infection and reporting
bias.43 Early estimates of the 2009 pandemic CFR from
Mexico were alarmingly high.44 As methodological flaws were
addressed,45 estimates did indeed decrease.44,46 – 48

Pandemic intervention strategies

Knowledge of the likely impact of a pandemic will clearly mo-
tivate public health officials to implement responses that may
themselves be socially and/or economically costly. These
costs must be balanced against the burden of a high severity
pandemic on medical services, business continuity and social
stability.

Intervention measures designed to save lives and maintain
core health-care facilities and staff—such as the use of anti-
viral agents for treatment—would likely be recommended for
use wherever available. However, it is less clear under what
circumstances, if any, pandemic intervention strategies
designed to modify the course of the outbreak itself may be
effective (and warranted). Lipsitch et al.35 have developed a
decision-making framework that maps transmissibility and se-
verity to the ‘overall scale of response’. Their proposed frame-
work identifies the characteristics of a pandemic that would
conceivably warrant intervention. The estimated effectiveness
of control measures is considered as an additional element
within this framework, but is not directly tied to the drivers of
impact.35 A working group convened during the 2009 pan-
demic suggested that decisions on attempted containment
should be based on worst-case estimates for the CFR and
best-case estimates for R0, noting that the latter is a key driver
of controllability.31

We suggest that the factors that contribute to impact may
also critically determine the controllability of an epidemic and
therefore controllability should be considered as an additional
element in the decision-making process.

Visibility and controllability versus
severity and impact

Identification of the predicted impact of a nascent pandemic
may help guide a decision on whether or not intervention is
warranted, but it cannot directly inform on whether or not an
intervention is likely to succeed. For example, case-targeted
interventions rely on the timely and sustained identification of
a reasonable proportion of all infectious cases10 and so a
primary driver of controllability for this intervention is the visi-
bility of the pandemic.
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Visibility encompasses both sociological and biological
phenomena. The proportion of cases (of a given clinical se-
verity) that choose to present to health authorities and thus
become ‘visible’ and amenable to intervention will vary based
on many factors, including cultural and social factors, the
current (time-dependent) level of public perception of risk
(itself likely positively correlated with the CFR), accessibility
of health-care services and any effect of government infor-
mation campaigns. A successful transmission reducing inter-
vention also requires timely identification of cases, and so
factors such as the proportion of transmission that pre-
and post- dates onset of symptoms will also contribute to
controllability.49

Impact and controllability are distinct but intertwined
concepts. Combined with an assessment of transmissibility,
severity helps to determine impact, while visibility (for case-
targeted interventions) helps to determine controllability.
To further explore this relationship between controllability and
impact, we now take a case-study approach, using a previously
published model of antiviral distribution and school-based
intervention strategies.10,50

Case studies

Background

The Australian Government’s Health Management Plan for
Pandemic Influenza 2008 identified the distribution of antiviral
agents for treatment and post-exposure prophylaxis as one of
a number of strategies designed to reduce the community
spread of influenza.6 Selective school closure was also envi-
saged to play a role in community mitigation. These recom-
mendations were informed, in part, by earlier modeling
studies conducted by the authors.9,51,52 In light of the 2009
experience, the model framework was updated to consider
how varying levels of severity, and crucially, visibility, along
with ‘real-world’ constraints in the health sector’s capacity for
diagnosis and drug delivery, may modify the likely utility of
interventions and the circumstances under which they may be
effective.10

Here we employ that modeling framework to consider the
ability of different interventions to mitigate key characteristics
of epidemics including the total and clinical attack rate and
time to peak incidence. We run the model repeatedly, sam-
pling disease and intervention parameters from appropriate
distributions to simulate a range of possible future pandemic
scenarios of widely varying impact. Model outputs under ap-
plication of interventions are related to baseline epidemic
scenarios to allow the assessment of controllability and how it
varies with different assumptions for transmissibility and

visibility. The sensitivity of model outputs to uncertain epi-
demic and intervention parameters is examined to provide
guidance to public health authorities on key requirements for
real-time decision support and current limitations in response
capability.

Interventions

We consider two contrasting frontline interventions designed
to modify the transmission of an influenza pandemic:
community-based antiviral distribution and ‘school-based
measures’, the latter intended to capture a range of possible
interventions designed to reduce transmission among the
child and adolescent populations. The antiviral strategy is tar-
geted towards identified cases and their contacts, while
school-based measures can be deployed to a segment of the
population without need for identification of particular
infected individuals.

We assume that treatment with antiviral drugs results in a
modest reduction in transmissibility and provision of post-
exposure prophylaxis to suspected contacts of cases results
in a reduced susceptibility.10 Logistical constraints on case
identification and drug delivery are imposed and have im-
portant implications for the overall ability of the response to
modify the course of the epidemic, particularly for higher
values of R0.

School-based measures are employed for a fixed period
(weeks to months) following a delay to their introduction, re-
ducing child–child mixing while active. We consider two
alternative age-mixing models in which to deploy school-
based measures: homogenous mixing and enhanced child–
child mixing.

For both interventions we assume the availability of a
strain-specific vaccine after 18 weeks of transmission, repre-
senting a definitive control measure. Full details of the math-
ematical model are presented in the Supplementary data .

Findings and analysis

Transmissibility, characterized through the basic reproduction
number R0, is a key driver of impact and controllability. Figure 1
plots the association between R0 (sampled from [1.2, 2.0])
and impact, as measured by the overall attack rate (total infec-
tions) with all other parameters (biological, epidemiological
and intervention) co-varied over plausible ranges. An antiviral
intervention (Fig. 1a) is only able to meaningfully reduce the
attack rate if R0 , 1.5. Furthermore, if R0 , 1.25, the inter-
vention may be expected to definitively control the epidemic.
In contrast, a school-based measure (Fig. 1b) implemented
for a period of 12 weeks is never expected to control the
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epidemic, but its modest effect is sustained across a wider
range of values for R0.

Having established that transmissibility is a key driver of
both impact and intervention success, we introduce a second

axis, the visibility of the epidemic, measured as the proportion
of all non-hospitalized infectious cases that present to
medical authorities (am). As detailed in the Supplementary
data, visibility in our model is assumed to be correlated with
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Fig. 1 The distribution of attack rates (all cumulative infections, clinical or otherwise) as a function of transmissibility (R0). Each box plot shows the range of

outcomes from the set of simulations, with the bar indicating the median, boxes covering the inter-quartile range, whiskers extending to the adjacent values

and crosses indicating outliers. The dash-dotted line indicates the median attack rate over all simulations in the absence of intervention. Note that a

strain-specific vaccine is rolled out to the population at Week 18 of the simulation, providing definitive control. (a) A targeted antiviral intervention, providing

treatment to identified cases and post-exposure prophylaxis to contacts of identified cases. For high R0 (.1.5), the box plots are tightly constrained (i.e. all

simulations give roughly the same result) and overlap with the baseline (no intervention) median result. For low R0 (,1.25), the intervention is expected to

significantly reduce the attack rate. For intermediate values of R0, between 1.25 and 1.5 the intervention may reduce the attack rate—the broad inter-quartile

range, and significant tail of outliers extending towards very low attack rates indicates that the utility of the intervention is highly dependent upon other model

parameters that are sampled in the scenarios. (b) A school-based measure (reduced child–child mixing) implemented for 12 weeks from the initiation of

transmission under the baseline assumption that child–child mixing is enhanced compared with adult–adult mixing. The intervention’s effect is less substantial

than in (a), and unable to completely control the epidemic. However, it is maintained over the broad range of R0 values considered. The relative reduction in

intervention success for intermediate values of R0 is a complex result of the interplay between the timing of exponential growth, intervention withdrawal (at 12

weeks) and vaccine introduction (at 18 weeks), and is explored in detail in the Supplementary data.
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Fig. 2 Impact and controllability, assessed by the median clinical attack rate over the LHS sample as a function of R0 (transmissibility) and am (visibility).

(a) Baseline (no intervention) median clinical attack rate. (b) The median clinical attack rate with the antiviral intervention. (c) The mean percentage change in

the median clinical attack rate (calculated from the difference between plots (a) and (b)). The median value for the outcome measure (clinical attack rate) over

the LHS samples increases with increasing R0 and am, indicating higher impact of simulated pandemics in the upper right region of the R0–am plane

(equivalent figures with severity in place of visibility are provided in the Supplementary data). Only for low transmissibility and high visibility scenarios (upper

left) is the antiviral intervention able to modify the course of the pandemic (the larger negative values in plot (c)). Note that the narrow horizontal strip at the

bottom of plot (c) is simply a boundary effect due to the plotting routine, and not an indication of control in this region.
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the underlying severity of the epidemic, in principle allowing
for controllability to be linked to outcomes such as ICU
admissions or death.

Figure 2 demonstrates how impact and controllability may
differ. We consider an antiviral intervention including both
case treatment and post-exposure prophylaxis of contacts and
take the median clinical attack rate as a measure of impact. In
the absence of intervention (Fig. 2a), impact increases with in-
creasing transmissibility (R0) and visibility (am). Figure 2b
shows the median clinical attack rate in the presence of the
antiviral intervention. If we consider the controllability, a mater-
ial change in the outcome is only evident if R0 is low and visi-
bility is high (large negative values in upper left corner of
Fig. 2c). That is, high-impact epidemics are uncontrollable,
whereas lower impact pandemics of high visibility may be con-
trollable. We present equivalent figures with severity in pace of
visibility in the Supplementary data.

While case-targeted interventions may only be effective at
modifying population transmission in high visibility scenarios,
interventions that do not require the identification of individ-
ual infectious cases may have different controllability profiles.
Figure 3 shows how controllability for a school-based
measure maps to the axes of transmissibility (R0) and visibility
(am). Using the time-to-peak incidence as a measure of pan-
demic impact, we find a uniform median percentage delay
may be expected, in particular independent of the visibility
(am). Note however that this finding is critically dependent
upon the assumed mixing pattern in the population, and only
holds if child–child mixing is naturally enhanced compared
with adult–adult and child–adult mixing (Fig. 3a). Where
child–child mixing is not enhanced, school-based measures
are seen to be ineffective (Fig. 3b).

Figures 2 and 3 display median results over many simula-
tions. Parameters other than R0 and am also contribute to
variation in the outcome (Fig. 1). We may explore this vari-
ation in detail using partial rank correlation coefficient ana-
lysis, as discussed in the Supplementary data.

Discussion

Main findings of this study

We have introduced the concept of pandemic controllability to
address a present omission in pandemic response plans identi-
fied following reviews of the 2009 H1N1 influenza pandem-
ic,1–5 arguing that pandemic impact, while an appropriate
measure to assess the likely burden on health-care systems and
the population, is but one part of the equation. Our framework
is designed to support planners with their attempts to charac-
terize the circumstances under which interventions—designed

to minimize societal disruption and reduce the impact of the
pandemic—are both warranted and achievable.

Given that interventions come at a (potentially great) soci-
etal and economic cost, only pandemics of sufficient impact
and for which interventions are anticipated to be both achiev-
able and effective warrant deployment of extensive mitigation
strategies.35,37,53 – 58 The concept of controllability should play a
central role in considering how to intervene. Extending the
concept as introduced in ref. 31 we have argued that different
interventions have different controllability profiles and so the
relationship between impact and controllability is dependent
upon the intervention under consideration.

Furthermore, as the decision to intervene must be made
early, almost certainly before strong evidence on likely future
unmitigated impact is available, our results highlight that the
development of decision algorithms for refocusing of efforts
to provide direct protection to those most at risk is critical for
improving public health response strategies. Such algorithms
should consider multiple measures of severity—e.g. deaths,
ICU admissions, the CFR or IFR—to ensure a precautionary
approach to refocusing interventions.

Taking a case-study approach, we have demonstrated how
two particular intervention strategies—targeted population
distribution of antiviral agents and school-based measures—
may differ in their ability to control epidemics of varying
characteristics. We demonstrated that targeted case-based
intervention strategies, such as wide-scale community provi-
sion of antiviral agents, are only likely to be effective in limit-
ing transmission if an epidemic is of low transmissibility and
high visibility. As such, epidemics of greatest anticipated
impact are likely not controllable (with antivirals alone). This
finding must be considered in relation to the high anticipated
demand from the public for such interventions in high impact
scenarios, and of course, the direct protective effect of anti-
virals for limiting severe outcomes or death.59 In contrast,
strategies designed to reduce transmission in the general
population, or specific sub-populations such as schools, may
be effective whether or not a pandemic is ‘visible’ as the deci-
sion to deploy an intervention and the efficacy of that inter-
vention is less dependent on the identification of individual
cases. Accordingly, such interventions remain effective at ma-
terially reducing transmission over a broad range of assumed
impacts. Any recommendation to deploy such interventions,
targeted or otherwise, must still be weighed against their soci-
etal and economic cost.

What is already known on this topic

The concept of pandemic impact has recently been explored
by multiple independent authorities, including the US
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CDC,15,16 European CDC,14 World Health Organization12

and the authors in conjunction with the Australian
Government.13 All of these assessments have suggested that
the two key elements of impact are transmissibility (e.g. R0)
and severity (e.g. CFR). Gathering the appropriate informa-
tion in a timely manner to assess these two key drivers of
impact has been identified as a priority for national surveil-
lance and real-time data analysis endeavors.

How an assessment of impact relates to the ability to miti-
gate an epidemic has received less attention.31

What this study adds

Our study, by introducing controllability as a context and
intervention-dependent concept, addresses this gap. We have
explored the relationship between impact and controllability
using a case-study approach and suggested a framework under
which to use scenario analysis techniques and mathematical
modeling to develop flexible and proportionate response strat-
egies for incorporation into pandemic management plans.

Our results indicate that rapid assessment of epidemic
growth rates and case ‘visibility’ (i.e. the proportion of all in-
fectious cases that come to the prompt attention of health au-
thorities), as well as case severity, is critical to inform the likely
success of an intervention.

Limitations of this study

Our study has two primary limitations. From a policy and
planning perspective, a formal cost–benefit analysis is still

arguably necessary before a particular course of action could
be recommended in a given pandemic situation, even where
likely to be effective. Given that such an assessment is antici-
pated to be impossible to achieve in real time,11,35 develop-
ment of a fully integrated pre-emptive modeling and scenario
analysis strategy remains a worthy goal.

The second limitation of our study is that we have only
explored a limited set of mitigation strategies using one par-
ticular modeling framework based on knowledge of the
Australian context.10 All models are necessary simplifications
of ‘real-world’ complexities, and should be considered as
useful frameworks within which to explore alternative scen-
arios, to gain key insights into epidemic drivers and potential
mechanisms of disease control. As such, each will differ when
determining scenarios which are controllable or otherwise. For
robust, country-specific policy development, findings from a
suite of modeling analyses drawn from different research
groups and building on independent evaluations of the epi-
demiological literature should be considered.

Supplementary data

Supplementary data are available at the Journal of Public Health
online.
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