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Abstract

Complex systems can fail through different routes, often progressing through a series of

(rate-limiting) steps and modified by environmental exposures. The onset of disease, cancer

in particular, is no different. Multi-stage models provide a simple but very general mathemat-

ical framework for studying the failure of complex systems, or equivalently, the onset of dis-

ease. They include the Armitage-Doll multi-stage cancer model as a particular case, and

have potential to provide new insights into how failures and disease, arise and progress. A

method described by E.T. Jaynes is developed to provide an analytical solution for a large

class of these models, and highlights connections between the convolution of Laplace trans-

forms, sums of random variables, and Schwinger/Feynman parameterisations. Examples

include: exact solutions to the Armitage-Doll model, the sum of Gamma-distributed variables

with integer-valued shape parameters, a clonal-growth cancer model, and a model for cas-

cading disasters. Applications and limitations of the approach are discussed in the context

of recent cancer research. The model is sufficiently general to be used in many contexts,

such as engineering, project management, disease progression, and disaster risk for exam-

ple, allowing the estimation of failure rates in complex systems and projects. The intended

result is a mathematical toolkit for applying multi-stage models to the study of failure rates in

complex systems and to the onset of disease, cancer in particular.

1 Introduction

Complex systems such as a car can fail through many different routes, often requiring a

sequence or combination of events for a component to fail. The same can be true for human

disease, cancer in particular [1–3]. For example, cancer can arise through a sequence of steps

such as genetic mutations, each of which must occur prior to cancer [4–8]. The considerable

genetic variation between otherwise similar cancers [9, 10], suggests that similar cancers might

arise through a variety of different paths.

Multi-stage models describe how systems can fail through one or more possible routes.

They are sometimes described as “multi-step” or “multi-hit” models [11, 12], because each
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route typically requires failure of one or more sequential or non-sequential steps. Here we

show that the model is easy to conceptualise and derive, and that many specific examples have

analytical solutions or approximations, making it ideally suited to the construction of biologi-

cally- or physically-motivated models for the incidence of events such as diseases, disasters, or

mechanical failures. A method described by E.T. Jaynes [13] generalises to give an exact analyt-

ical formula for the sums of random variables needed to evaluate the sequential model. This is

evaluated for specific cases. Moolgavkar’s exact solution [14] to the Armitage-Doll multistage

cancer model is one example that is derived surprisingly easily, and is easily modified. The

approach described here can incorporate simple models for a clonal expansion prior to cancer

detection [5–7], but as discussed in Sections 8 and 9, it may not be able to describe evolution-

ary competition or cancer-evolution in a changing micro-environment without additional

modification. More generally, it is hoped that the mathematical framework can be used in a

broad range of applications, including the modelling of other diseases [15–18]. One example

we briefly describe in Section 8 is modelling of “cascading disasters” [19], where each disaster

can substantially modify the risk of subsequent (possibly different) disasters.

Conventional notation is used [20], with: probability densities f(t), cumulative probability

distributions FðtÞ ¼
R t

0
f ðtÞ, a survival function S(t) = 1 − F(t), hazard function h(t) = f(t)/S(t),

and cumulative hazard function HðtÞ ¼
R t

0
hðyÞdy. Noting that f(t) = −dS/dt, it is easily seen

that HðtÞ ¼
R t

0
f ðyÞ=SðyÞdy ¼ � logSðtÞ, h(t) = −d log S(t)/dt, and SðtÞ ¼ expð�

R t
0
hðyÞdyÞ.

2 Failure by multiple possible routes

Imagine that we can enumerate all possible routes 1 to n by which a failure can occur (Fig 1).

The probability of surviving the ith of these routes after time t is Si(t), and consequently the

probability of surviving all of these possible routes to failure S(t) is,

SðtÞ ¼ Pn
i¼1
SiðtÞ ð1Þ

or in terms of cumulative hazard functions with SiðtÞ ¼ e� HiðtÞ,

SðtÞ ¼ exp �
Xn

i¼1

HiðtÞ

( )

ð2Þ

The system’s hazard rate for failure by any of the routes is,

hðtÞ ¼ �
d
dt

log S tð Þð Þ

¼ �
Pn

i¼1

d
dt

log SiðtÞð Þ

¼
Pn

i¼1
hiðtÞ

ð3Þ

and HðtÞ ¼
Pn

i¼1
HiðtÞ. In words, if failure can occur by any of n possible routes, the overall

hazard of failure equals the sum of the hazard of failure by all the individual routes.

A few notes on Eq 2 and its application to cancer modelling. Firstly, if the sth route to fail-

ure is much more likely than the others, with Hs�Hj for s 6¼ j, then S(t) = exp{−Hs(t) + (1 +

O(∑i6¼s Hi/Hs))}’ exp{−Hs(t)}, which could represent the most likely sequence of mutations in

a cancer model for example. Due to different manufacturing processes, genetic backgrounds,

chance processes or exposures (e.g. prior to adulthood), this most probable route to failure

could differ between individuals. Secondly, the stem cell cancer model assumes that cancer

can occur through any of ns equivalent stem cells in a tissue, for which Eq 2 is modified to,
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S ¼ expf� ns

Pn
i¼1

HiðtÞg. So a greater number of stem cells is expected to increase cancer

risk, as is observed [21, 22]. Thirdly, most cancers are sufficiently rare that S* 1. As a conse-

quence, many cancer models (implicity or explicitly) assume S ’ 1 � ns
Pn

i¼1
HiðtÞ and

f ¼ � dS=dt ’ ns
Pn

i¼1
hiðtÞ, a limit emphasised in the Appendix of Moolgavkar [14].

3 Failure requiring m independent events

Often failure by a particular path will require more than one failure to occur independently.

Consider firstly when there are mi steps to failure, and the order of failure is unimportant (Fig 2).

Fig 1. In a complex system, failure can occur through many different routes (Eq 1).

https://doi.org/10.1371/journal.pone.0216422.g001

Fig 2. Failure by the ith path at time t requires mi independent failures to occur in any order, with the last failure at time t (Eq 5).

https://doi.org/10.1371/journal.pone.0216422.g002
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The probability of surviving failure by the ith route, Si(t) is,

SiðtÞ ¼ Pðsurvive any one or more; necessary step for failureÞ

¼ 1 � Pðfail all the stepsÞ

¼ 1 � Pmi
j¼1
FijðtÞ

ð4Þ

where Fij(t) is the cumulative probability distribution for failure of the jth step on the ith route

within time t. Writing Sij(t) = 1 − Fij(t), this can alternately be written as,

SiðtÞ ¼ 1 � Pmi
j¼1
ð1 � SijðtÞÞ ð5Þ

4 Relation to recent multi-stage cancer models

It may be helpful to explain how Eqs 1 and 4 are used in recently described multi-stage cancer

models [23–25]. If we take a rate of mutations μj per cell division for each of the rate-limiting

mutational steps 1 to j, and di divisions of cell i, then the probability of a stem cell surviving

without the jth rate limiting mutation is Sij ¼ ð1 � mjÞ
di . Similarly, the probability of a given

stem cell having mutation j is Fij ¼ 1 � ð1 � mjÞ
di . This is the solution of Zhang et al. [24] to

the recursive formula of Wu et al. [23] (see Appendix of Zhang et al. [24] for details). Using Eq

4, the survival of the ith stem cell is described by,

Si ¼ 1 � Pmi
j¼1
ð1 � ð1 � mjÞ

diÞ ð6Þ

Now assuming all n stem cells are equivalent and have equal rates μi = μj for all i, j, and con-

sider only one path to cancer with m mutational steps, then,

Si ¼ 1 � ð1 � ð1 � mÞ
d
Þ
m

ð7Þ

and,

S ¼ Pn
i¼1
Si

¼ ð1 � ð1 � ð1 � mÞ
d
Þ
m
Þ
n

ð8Þ

The probability of cancer within m divisions, often referred to as “theoretical lifetime intrinsic

cancer risk”, is,

F ¼ 1 � ð1 � ð1 � ð1 � mÞ
d
Þ
m
Þ
n

ð9Þ

This is the equation derived by Calabrese and Shibata [25], and that Zhang found as the solu-

tion to the model of Wu et al [23, 24].

Therefore, in addition to the models of Wu and Calabrese being equivalent cancer models

needing m mutational steps, the models also assume that the order of the steps is not impor-

tant. This differs from the original Armitage-Doll model that considered a sequential set of

rate-limiting steps, and was exactly solved by Moolgavkar [14]. Eqs 8 and 9 are equivalent to

assuming: (i) equivalent stem cells, (ii) a single path to cancer, (iii) equivalent divisions per

stem cell, and, (iv) equivalent mutation rates for all steps.

Despite the differences in modelling assumptions for Eq 9 and the Armitage-Doll

model, their predictions can be quantitatively similar. To see this, use the Armitage-Doll

Multi-stage models for the failure of complex systems, cascading disasters, and the onset of disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0216422 May 20, 2019 4 / 19

https://doi.org/10.1371/journal.pone.0216422


approximation of μd� 1, to expand,

ð1 � mÞ
d
¼ expðd logð1 � mÞÞ ’ expðmdÞ ð10Þ

If cell divisions are approximately uniform in time, then we can replace μd with μt, with μ now

a rate per unit time. Then expanding exp(−μt)’ 1 − μt, gives,

F ¼ 1 � ð1 � ð1 � ð1 � mÞ
d
Þ
m
Þ
ns ’ 1 � ð1 � ðmtÞmÞns ’ nsðmtÞ

m
ð11Þ

The incidence rate h = f/S is then h’ nsμmtm−1, the same as the original (approximate) Armi-

tage-Doll solution [2]. This approximate solution is expected to become inaccurate at suffi-

ciently long times.

An equivalent expression to Eq 8 was known to Armitage, Doll, and Pike since at least 1965

[26], as was its limiting behaviour for large n. The authors [26] emphasised that many different

forms for the Fi(ti) could produce approximately the same observed F(t), especially for large n,

with the behaviour of F(t) being dominated by the small t behaviour of Fi(t). As a result, for

sufficiently small times power-law behaviour for F(t) is likely, and if longer times were observ-

able then an extreme value distribution would be expected [4, 26, 27]. However the power-law

approximation can fail for important cases with extra rate-limiting steps such as a clonal

expansion [5–7]. It seems likely that a model that includes clonal expansion and cancer detec-

tion is needed for cancer modelling, but the power law approximation could be used for all but

the penultimate step, for example. A general methodology that includes this approach is

described next, and examples are given in the subsequent section 6. The results and examples

of sections 5 and 6 are intended to have a broad range of applications.

5 Failure requiring m sequential steps

Some failures require a sequence of independent events to occur, each following the one before

(Fig 3). A well-known example is the Armitage-Doll multistage cancer model, that requires a

sequence of m mutations (failures), that each occur with a different constant rate. The proba-

bility density for failure time is the pdf for a sum of the m independent times tj to failure at

each step in the sequence, each of which may have a different probability density function

fj(tj). A general method for evaluating the probability density is outlined below, adapting a

method described by Jaynes [13] (page 569).

Take Ti* fi(ti) as random variables. Then use marginalisation to write Pð
Pm

j¼1
Tj ¼ tÞ in

terms of Pð
Pm

j¼1
Tj ¼ t;T1 ¼ t1; . . . ;Tm ¼ tmÞ, where (A, B, C) is read as “A and B and C”, and

expand using the product rule P(A, B) = P(A|B)P(B),

Pð
Pm

j¼1
Tj ¼ tÞ ¼

R1
0
dt1 � � �

R1
0
dtm Pð

Pm
j¼1

Tj ¼ t;T1 ¼ t1; . . . ;Tm ¼ tmÞ

¼
R1

0
dt1 � � �

R1
0
dtm Pð

Pm
j¼1

Tj ¼ tjT1 ¼ t1; . . . ;Tm ¼ tmÞ

�PðT1 ¼ t1; . . . ;Tm ¼ tmÞ

ð12Þ

Noting that Pð
Pm

j¼1
Tj ¼ tjT1 ¼ t1; . . . ;Tm ¼ tmÞ is zero for t 6¼

Pm
j¼1

tj and

1 ¼
R1

0
dtPð

Pm
j¼1

Tj ¼ tjT1 ¼ t1; . . . ;Tm ¼ tmÞ, indicates that it is identical to a Dirac delta

Fig 3. Failure by the ith path at time t requires an ordered sequence of failures, with the last failure at time t (Eqs 16 and 18).

https://doi.org/10.1371/journal.pone.0216422.g003
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function dðt �
Pm

j¼1
tjÞ. For independent events PðT1 ¼ t1; . . . ;Tm ¼ tmÞ ¼ Pm

j¼1
fjðtjÞ where

fj(tj)�Pj(Tj = tj). Writing f ðtÞ � Pð
Pm

j¼1
Tj ¼ tÞ, then gives,

f ðtÞ ¼
Z 1

0

dt1 � � �
Z 1

0

dtmP
m
j¼1
fjðtjÞd t �

Xm

j¼1

tj

 !

ð13Þ

To evaluate the integrals, take the Laplace transform with respect to t, to give,

L½f � ¼
Z 1

0

e� st f ðtÞdt ¼
Z 1

0

dt1 � � �
Z 1

0

dtmP
m
j¼1
fjðtjÞe

� sðt1þ���þtmÞ ð14Þ

This factorises as,

L½f � ¼ Pm
j¼1

Z 1

0

dtjfjðtjÞe
� stj ð15Þ

Giving a general analytical solution as,

f ðtÞ ¼ L� 1
fPm

j¼1
L½fjðtjÞ�g ð16Þ

where L� 1
is the inverse Laplace transform, and L½fjðtjÞ� ¼

R1
0
dtjfjðtjÞe� stj with the same vari-

able s for each value of j. Eq 15 is similar to the relationship between moment generating

functions MiðsÞ ¼
P1

ti¼0
esti piðtiÞ of discrete probability distributions pi(ti), and the moment

generating function M(s) for t ¼
Pm

i¼1
ti, that has,

MðsÞ ¼ Pm
i¼1
MiðsÞ ð17Þ

whose derivation is analogous to Eq 17 but with integrals replaced by sums. The survival and

hazard functions for f(t) can be obtained from Eq 16 in the usual way. For example,

SiðtÞ ¼
R1
t fiðyÞdy

¼
R1
t L� 1

fPmi
j¼1

L½fijðtijÞ�gdy
ð18Þ

that can be used in combination with Eq 1. A number of valuable results are easy to evaluate

using Eq 16, as is illustrated in the next section.

A useful related result is,

f ðtÞ ¼ L� 1 L f
Xn� 1

j¼1

tj

 !" #

L½fnðtnÞ�

( )

ð19Þ

that can be inferred from Eq 16 with m = 2,

f ðt ¼ t1 þ t2Þ ¼ L� 1
fL½f1ðt1Þ�L½f2ðt2Þ�g ð20Þ

by replacing f1(t1) with f ð
Pn� 1

j¼1
tjÞ and f2(t2) with fn(tn). Eq 20 can be solved using the convolu-

tion theorem for Laplace transforms, that gives,

f ðt ¼ t1 þ t2Þ ¼
Z t

0

f1ðtÞf2ðt � tÞdt ð21Þ

which is sometimes easier to evaluate than two Laplace transforms and their inverse. In gen-

eral, solutions can be presented in terms of multiple convolutions if it is preferable to do so.

Eqs 19 and 21 are particularly useful for combining a known solution for the sum of (n−1)
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samples such as for cancer initiation, with a differently distributed nth sample, such as the

waiting time to detect a growing cancer. A final remark applies to the sum of random variables

whose domain extends from −1 to1, as opposed to the range 0 to1 considered so far. In

that case an analogous calculation using a Fourier transform with respect to t in Eq 13 leads to

analogous results in terms of Fourier transforms, with F ½fiðtiÞ� ¼
R1
� 1

fiðtiÞeimtidti in place of

Laplace transforms, resulting in,

f ðtÞ ¼ F � 1
fPm

j¼1
F ½fjðtjÞ�g ð22Þ

Eq 22 is mentioned for completeness, but is not used here.

A general solution to Eq 16 can be given in terms of definite integrals, with,

f ðtÞ ¼ L� 1
fPm

j¼1
L½fjðtjÞ�g

¼ tm� 1
R 1

0
dy1 � � �

R 1

0
dym� 1y0

1
y1

2
. . . ynm � 1

m� 1

f1ðty1 . . . ym� 1Þf2ðtð1 � y1Þy2 . . . ym� 1Þf3ðtð1 � y2Þy3 . . . ym� 1Þ . . .

fm� 1ðtð1 � ym� 2Þym� 1Þfmðtð1 � ym� 1ÞÞ

ð23Þ

This can sometimes be easier to evaluate or approximate than Eq 16. A derivation is given in

the Supporting Information (S1 Appendix). Eq 23 allows a generalised Schwinger/Feynman

parameterisation [28] to be derived. Writing gjðsÞ ¼ L½fjðtjÞ� and taking the Laplace transform

of both sides of Eq 23, gives,

Pm
j¼1
gjðsÞ ¼

R 1

0
dy1 � � �

R 1

0
dym� 1y0

1
y1

2
. . . ynm � 1

m� 1

L½tm� 1L� 1
fg1ðsÞgðty1 . . . ym� 1ÞL

� 1
fg2ðsÞgðtð1 � y1Þy2 . . . ym� 1Þ . . .

L� 1
fgmðsÞgðtð1 � ym� 1ÞÞ�

ð24Þ

which includes some well known Schwinger/Feynman parameterisations as special cases. This

is discussed further in the Supporting Information (S1 Appendix).

6 Modelling sequential events—Examples

In the following examples we consider the time t ¼
Pm

i¼1
ti for a sequence of events, with pos-

sibly different distributions fi(ti) for the time between the (i − 1)th and ith event. Some of the

results are well-known but not usually presented this way, others are new or poorly known.

We will use the Laplace transforms (and their inverses), of,

L� 1L½tp� ¼ L� 1
½Gðpþ 1Þ=spþ1� ¼ tp ð25Þ

and,

L� 1L½tpe� mt� ¼ L� 1
½Gðpþ 1Þ=ðsþ mÞpþ1

� ¼ tpe� mt ð26Þ
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Sums of gamma distributed samples (equal rates)

Using Eq 16, the sum of m gamma distributed variables with equal rate parameters μ, and

fiðtiÞ ¼ mpi t
pi� 1

i e� mti=GðpiÞ, are distributed as,

f ðtÞ ¼ L� 1
Pm

i¼1
L mpi

tpi � 1

i e� mti
GðpiÞ�

� �� �

¼ L� 1
Pm

i¼1

mpi

ðsþ mÞpi

� �

¼ L� 1 m
Pm

i¼1
pi

ðsþ mÞ
Pm

i¼1
pi

� �

¼ m
Pm

i¼1
pi
t
Pm

i¼1
pie� mt

Gð
Pm

i¼1
piÞ

ð27Þ

For a sum of m exponentially distributed variables with {pi = 1}, this simplifies to

f(t) = μmtm−1e−μt/Γ(m), a Gamma distribution.

Power law approximations

For many situations such as most diseases, you are unlikely to get any particular disease during

your lifetime. In those cases the probability of survival over a lifetime is close to 1, and the

probability density function fi = hi/Si, can be approximated by fi’ hi, that in turn can often be

approximated by a power of time with fi ’ hi ’ mit
pi
i . Then we have,

f ðtÞ ¼ L� 1
fPm

i¼1
L½mit

pi
i �g ¼ L� 1

Pm
i¼1

miGð1þ piÞ
s1þpi

� �

¼ Pm
i¼1

miGð1þ piÞð ÞL� 1 1

smþ
Pm

i¼1
pi

( )

¼ Pm
i¼1

miGð1þ piÞð Þ
t� 1þmþ

Pm

i¼1
pi

Gðmþ
Pm

i¼1
piÞ

ð28Þ

The Armitage-Doll model

A well known example of this approximation Eq 28, is (implicitly) in the original approximate

solution to the Armitage-Doll multi-stage cancer model. Taking a constant hazard at each

step, and approximating fi’ hi = μi, then Eq 28 gives,

f ðtÞ ¼ L� 1
fPm

i¼1
L mi½ �g ¼ Pm

i¼1
mi

� � tm� 1

GðmÞ
ð29Þ

as was used in the original Armitage-Doll paper. Note that an equivalent time-dependence can

be produced by a different combination of hazard functions with hi � tpii and ~m steps, pro-

vided m ¼ ~m þ
P ~m

i¼1
pi. For example, if m = 6, there could be 3 steps with p = 1, or 2 steps

with p = 2, or 3 steps with p1 = 0, p2 = 1, and p3 = 2, or some more complex combination. If the

full pdfs are modelled at each step as opposed to their polynomial approximation, then this

flexibility is reduced, as is the case for Moolgavkar’s exact solution to the Armitage-Doll model

that is described next.
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Moolgavkar’s exact solution to the Armitage-Doll model

Moolgavkar’s exact solution to the Armitage-Doll model is the solution of,

f ðtÞ ¼ L� 1
fPm

i¼1
L mie

� mi ti½ �g ¼ L� 1
Pm

i¼1

mi
sþ mi

� �

ð30Þ

For example, if n = 3 then,

L� 1
fP3

i¼1
L mie

� mi ti½ �g ¼ m1m2m3L
� 1 1

ðsþ m1Þ

1

ðsþ m2Þ

1

ðsþ m3Þ

� �

ð31Þ

Using partial fractions, we can write,

1

sþ m1

1

sþ m2

1

sþ m3

¼
1

sþ m1

1

ðm1 � m2Þðm1 � m3Þ
þ

1

sþ m2

1

ðm2 � m1Þðm2 � m3Þ
þ

1

sþ m3

1

ðm3 � m1Þðm3 � m2Þ
ð32Þ

Allowing the inverse Laplace transforms to be easily evaluated, giving,

f ðtÞ ¼ L� 1
fP3

i¼1
L½mie� mi t�g

¼ m1m2m3

e� m1t

ðm1 � m2Þðm1 � m3Þ
þ

e� m2t

ðm2 � m1Þðm2 � m3Þ
þ

e� m3t

ðm3 � m1Þðm3 � m2Þ

� �
ð33Þ

Note that the result is independent of the order of sequential events, but unlike the approxi-

mate solution to the Armitage Doll model [2], the exact solution allows less variability in the

underlying models that can produce it. Also note that the leading order terms of an expansion

in t cancel exactly, to give identical leading-order behaviour as for a power-law approximation

(with p = 0).

A general solution can be formed using a Schwinger/Feynman parameterisation [28] of,

Pm
i¼1

1

mi
¼ GðmÞ

Z 1

0

dy1

Z y1

0

dy2 � � �

Z ym� 2

0

dym� 1

1

ðm1ym� 1 þ m2ðym� 2 � ym� 1Þ þ � � � þ mmð1 � y1ÞÞ
m ð34Þ

Replacing μi with s + μi in Eq 34, then we can write Eq 30 as,

L� 1
Pm

i¼1

mi
sþ mi

� �

¼ ðPm
i¼1
miÞGðmÞ�

R 1

0
dy1

R y1

0
dy2 � � �

R ym� 2

0
dym� 1L

� 1 1

ðsþ m1ym� 1 þ m2ðym� 2 � ym� 1Þ þ � � � þ mmð1 � y1ÞÞ
m

� �

¼ ðPm
i¼1
miÞtm� 1�

R 1

0
dy1

R y1

0
dy2 � � �

R ym� 2

0
dym� 1e� ðm1ym� 1þm2ðym� 2 � ym� 1Þþ���þmmð1� y1ÞÞt

ð35Þ

(which is simpler, but equivalent in effect, to repeatedly using the convolution formula). Com-

pleting the integrals will generate Moolgavkar’s solution for a given value of m. For example,

taking m = 3 and integrating once gives,

L� 1
P3

i¼1

mi
sþ mi

� �

¼
te� m3t

ðm2 � m1Þ

Z 1

0

dx1 e� x1tðm1 � m3Þ � e� x1tðm2 � m3Þ
� �

ð36Þ

Integrating a second time, and simplifying, gives Eq 33. The relationships between Schwinger/
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Feynman parameterisations, Laplace transforms, and the convolution theorem are discussed

further in the Supplementary Information (S1 Appendix).

Moolgavkar [14] used induction to provide an explicit formula for f(t), with,

f ðtÞ ¼ ðPm
i¼1
miÞ
Xm

i¼1

wiðmÞe
� mi t ð37Þ

where,

wiðmÞ ¼
1

ðm1 � miÞðm2 � miÞ . . . ðmi� 1 � miÞðmiþ1 � miÞ . . . ðmm � miÞ
ð38Þ

For small times the terms in a Taylor expansion of Eq 37 cancel exactly, so that

f ðtÞ ’ ðPm
i¼1
miÞtm� 1, as expected. This feature could be useful for approximating a normalised

function when the early-time behaviour approximates an integer power of time. Further uses

of Moolgavkar’s solution are discussed next.

Sums of gamma distributed samples (with different rates)

A useful mathematical result can be found by combining the Laplace transform of Moolgav-

kar’s solution Eq 37 for f ðt ¼
Pm

i¼1
tiÞ with Eq 30, to give an explicit formula for a partial frac-

tion decomposition of the product Pm
i¼1

1

sþmi
, as,

Pm
i¼1

1

sþ mi
¼
Xm

i¼1

wiðmÞ
sþ mi

ð39Þ

This can be useful in various contexts. For example, consider m Gamma distributions

fiðtiÞ ¼ m
pi
i t

pi� 1

i e� miti=GðpiÞ with different integer-valued shape parameters pi, and

L½fi� ¼ m
pi
i =ðsþ miÞ

pi . Eq 16 gives f ðtÞ ¼ ðPm
i¼1
m
pi
i ÞL

� 1
fPm

i¼1
1=ðsþ miÞ

pig, so firstly use the

integer-valued property of {pi} to write,

L� 1
Pm

i¼1

1

ðsþ miÞ
pi

� �

¼ L� 1
Pm

i¼1

ð� 1Þ
pi � 1

ðpi � 1Þ!

@
pi � 1

@m
pi � 1

i

1

ðsþ miÞ

� �

¼ L� 1
Pm

j¼1

ð� 1Þ
pj � 1

ðpj � 1Þ!

@
pj � 1

@m
pj � 1

j

Pm
i¼1

1

ðsþ miÞ

( ) ð40Þ

where the product of differential operators can be taken outside the product of Laplace trans-

forms because @/@μi(1/(s + μj)) is zero for i 6¼ j. Using Eq 39 we can replace the product of

Laplace transforms with a sum, giving,

L� 1
Pm

i¼1

1

ðsþ miÞ
pi

� �

¼ L� 1
Pm

j¼1

ð� 1Þ
pj � 1

ðpj � 1Þ!

@
pj � 1

@m
pj � 1

j

Xm

i¼1

wiðmÞ
ðsþ miÞ

( )

ð41Þ

The Laplace transform has now been simplified to a sum of terms in 1/(s + μi), whose

inverse Laplace transforms are easy to evaluate. Taking the inverse Laplace transform

L� 1
½1=ðsþ miÞ� ¼ e� mi t, and including the product Pm

i¼1
m
pi
i , gives,

f ðtÞ ¼ Pm
i¼1
m
pi
i

� �
Pm

j¼1

ð� 1Þ
pj � 1

ðpj � 1Þ!

@
pj � 1

@m
pj � 1

j

Xm

i¼1

wiðmÞe
� mi t ð42Þ

as a general solution for sums of Gamma distributed samples with integer-valued shape
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parameters pi (and arbitrary rate parameters μi). Eq 42 is most easily evaluated with a symbolic

algebra package.

If pi = p are equal, then Eq 42 may be simplified further by writing,

f ðtÞ ¼ Pm
i¼1
m
p
i

� �Xm

i¼1

ð� 1Þ
p� 1

ðp � 1Þ!

@
p� 1

@m
p� 1

i

Pj6¼i
ð� 1Þ

p� 1

ðp � 1Þ!

@
p� 1

@m
p� 1

j

wiðmÞe
� mit½ � ð43Þ

and noting that,

Pj6¼i
ð� 1Þ

p� 1

ðp � 1Þ!

@
p� 1

@m
p� 1

j

wiðmÞe
� mi t½ � ¼ wiðmÞ

pe� mi t ð44Þ

because for j 6¼ i there is exactly one factor 1/(μj − μi) in χi(m). This leaves,

f ðtÞ ¼ Pm
i¼1
m
p
i

� �Xm

i¼1

ð� 1Þ
p� 1

ðp � 1Þ!

@
p� 1

@m
p� 1

i

wiðmÞ
pe� mi t½ � ð45Þ

for sums of Gamma distributed samples with the same integer-valued shape parameter p (and

arbitrary rate parameters μi).
For example, if p = 1 then Eq 45 becomes Moolgavkar’s Eq 37. Alternatively, if e.g. p = 2,

then we have,

f ðtÞ ¼ Pm
i¼1
m2

i

� �Xm

i¼1

wiðmÞ
2e� mi t t � 2

X

j6¼i

1

ðmj � miÞ

" #

ð46Þ

for the sum of Gamma distributions with shape parameters p = 2 and arbitrary rate parame-

ters, and χi(m) as defined in Eq 38. If we also let e.g. m = 2, μ2 = μ1 + �, and �! 0, then Eq 46

tends to m4
1
t3e� m1t=3!, for the sum of two Gamma distributed variables with rate μ1 and p = 2, in

agreement with Eq 27.

Sums of samples with different distributions

An advantage of the method described above, is that it is often easy to calculate pdfs for sums

of differently distributed samples. For the first example, consider two samples from the same

(or very similar) exponential distribution, and a third from a different exponential distribu-

tion. The result can be obtained by writing μ3 = μ2 + � in Eq 33, and letting �! 0. Considering

the terms involving exponents of μ2 and μ3,

e� m2t

ðm2 � m1Þðm2 � m3Þ
þ

e� m3t

ðm3 � m1Þðm3 � m2Þ
¼

e� m2t

ðm2 � m1Þ�
� 1þ

e� �t

1þ �=ðm2 � m1Þ

� �

¼
e� m2t

m2 � m1

� 1þ 1 � �t �
�

m2 � m1

þ O �2ð Þ

� �� �

¼ �
te� m2t

m2 � m1

�
e� m2t

ðm2 � m1Þ
2

" #

1þ O �ð Þð Þ

ð47Þ
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Using Eq 33 and letting �! 0, gives,

m1m2m3

e� m1t

ðm1 � m2Þðm1 � m3Þ
þ

e� m2t

ðm2 � m1Þðm2 � m3Þ
þ

e� m3t

ðm3 � m1Þðm3 � m2Þ

� �

! m1m2
2
e� m1t � e� m2t

ðm1 � m2Þ
2
þ

te� m2t

ðm1 � m2Þ

" # ð48Þ

for the sum of three exponentially distributed variables, when exactly two have the same rate.

Taking μ2 = μ1 + � and letting �! 0 in Eq 48, gives a Gamma distribution m3
1
t2e� m1t=2, as it

should for the sum of three exponentially distributed variables with equal rates (see Eq 27 with

{pi = 0}). More generally, it can be seen that a sum of exponentially distributed samples with

different rates, smoothly approximate a gamma distribution as the rates become increasingly

similar, as expected from Eq 27.

Failure involving a combination of sequential and non-sequential steps

If a path to failure involves a combination of sequential and non-sequential steps, then the nec-

essary set of sequential steps can be considered as one of the non-sequential steps, with overall

survival given by Eq 1 and the survival for any sequential set of steps calculated from Eq 18

(Fig 4).

7 Clonal-expansion cancer models

Clonal expansion is thought to be an essential element of cancer progression [29], and can

modify the timing of cancer onset and detection [5–7, 30–32]. The growing number of cells at

risk increases the probability of the next step in a sequence of mutations occurring, and if

already cancerous, then it increases the likelihood of detection.

Some cancer models have a clonal expansion of cells as a rate-limiting step [5–7]. For exam-

ple, Michor et al. [6] modelled clonal expansion of myeloid leukemia as logistic growth, with

the likelihood of cancer detection (the hazard function), being proportional to the number of

cancer cells. This gives a survival function for cancer detection of,

SiðtÞ ¼ exp � a
Z t

0

xðyÞdy
� �

ð49Þ

where,

xðtÞ ¼
1

1þ ðN � 1Þe� ct
ð50Þ

a, c, are rate constants, and N is the total number of cells prior to cancer initiation. Noting that
R t

0
xðyÞdy ¼ logðect þ ðN � 1ÞÞ=c! t, as t!1 and x(t)! 1, then the tail of the survival

curve falls exponentially towards zero with time.

Alternatively, we might expect the likelihood of cancer being diagnosed to continue to

increase with time since the cancer is initiated. For example, a hazard function that is linear in

time would give a Weibull distribution with SðtÞ ¼ e� at2 . It is unlikely that either this or the

logistic model would be an equally good description for the detection of all cancers, although

they may both be an improvement on a model without either. Both models have a single peak,

but differ in the tail of their distribution, that falls as *e−act for the logistic model and� e� at2

for the Weibull model. Qualitatively, we might expect a delay between cancer initiation and

the possibility of diagnosis, and diagnosis to occur almost inevitably within a reasonable time-
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period. Therefore a Weibull or Gamma distributed time to diagnosis may be reasonable for

many cancers, with the shorter tail of the Weibull distribution making it more suitable approx-

imation for cancers whose diagnosis is almost inevitable. (The possibility of misdiagnosis or

death by another cause is not considered here).

For example, noting that Moolgavkar’s solution is a linear combination of exponential distri-

butions, to combine it with a Weibull distribution for cancer detection f1ðt1Þ ¼ � d=dt1ðe� bt
2
1
=2Þ,

we can consider a single exponential term at a time. Taking f2ðt2Þ ¼ ae� at2 , and using the con-

volution formula Eq 21, we get,

f ðt ¼ t1 þ t2Þ ¼ L� 1
fL½f1ðt1Þ�L½f2ðt2Þ�g

¼ a
R t

0
e� aðt� yÞ �

d
dy

e� by2=2

� �

dy

¼ a e� at � e� bt2=2
� �

þ a2e� atea2=2b
R t

0
e�

b
2

y� abð Þ
2

dy

ð51Þ

Fig 4. Overall failure risk can be modelled as sequential steps (e.g. (1, 1) to (1, m1) using Eq 5), and non-sequential steps (e.g. (n, 1) to

(n, mn) using Eq 16), that may be dependent on each other (e.g. Eq 55). For the purposes of modelling, a sequence of dependent or

multiple routes can be regarded as a single step (e.g. (2, 2) or (n − 1, j)).

https://doi.org/10.1371/journal.pone.0216422.g004
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where we integrated by parts to get the last line. This may be written as,

f ðtÞ ¼ aðe� at � e� bt2=2Þ

þa2e� atea2=2b

ffiffiffiffiffi
p

2b

r

erf
ffiffiffi
b
2

r
a
b

 !

þa2e� atea2=2b

ffiffiffiffiffi
p

2b

r
� erf

ffiffiffi
b
2

r
a
b
� t

� �
 !

t <
a
b

þerf
ffiffiffi
b
2

r

t �
a
b

� �
 !

t �
a
b

8
>>>>>>><

>>>>>>>:

ð52Þ

with erfðxÞ ¼ 2ffiffi
p
p

R x
0
e� z2dz. Similarly for a Gamma distribution with f1 = bptp−1e−bt/Γ(p) and an

exponential, f2(t2) = ae−at, then assuming b> a,

f ðtÞ ¼
bpa
GðpÞ

Z t

0

yp� 1e� bye� aðt� yÞdy

¼ bpa
e� at

ðb � aÞp
1

GðpÞ

Z tðb� aÞ

0

up� 1e� udu

¼ bpa
e� at

ðb � aÞp
gðp; tðb � aÞÞ

ð53Þ

where γ(p, t(b − a)) is the normalised lower incomplete Gamma function, which is available in

most computational mathematics and statistics packages. If a> b then f1 and f2 must be

exchanged and the result is most easily evaluated numerically.

8 Cascading failures with dependent sequences of events

Now consider non-independent failures, where the failure of A changes the probability of a

failure in B or C. In general, if the paths to failure are not independent of each other then the

situation cannot be described by Eq 1. Benjamin Cairns suggested exploring the following

example—if step 1 of A prevents step 1 of B and vice-versa, then only one path can be followed.

If the first step occurs at time t1, the pdf for failure at time t is: f(t) = SA(t1)fB(t) + SB(t1)fA(t),
where fA(t) and fB(t) are the pdfs for path A and B if they were independent. This differs from

Eq 1 that has, f(t) = −dS/dt = SA(t)fB(t)+ SB(t)fA(t), that is independent of t1. As a consequence,

Eq 1 may be inappropriate to describe phenomenon such as survival in the presence of natural

selection, where competition for the same resource means that not all can survive. In some

cases it may be possible to include a different model for the step or steps where Eq 1 fails, anal-

ogously to the clonal expansion model [6] described in Section 6. But in principle, an alterna-

tive model may be required. We will return to this point in Section 9.

The rest of this section limits the discussion to situations where the paths to failure are inde-

pendent, but where the failure-rate depends on the order of events. Important humanitarian

examples are “cascading hazards” [19], where the risk of a disaster such as a mud slide is vastly

increased if e.g. a wildfire occurs before it. An equivalent scenario would require m parts to fail

for the system to fail, but the order in which the parts fail, modifies the probability of subse-

quent component failures. As an example, if three components A, B, and C, must fail, then we

need to evaluate the probability of each of the 6 possible routes in turn, and obtain the overall
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failure probability from Eq 1. Assuming the paths to failure are independent, then there are m!

routes, giving 6 in this example. Writing the 6 routes as, 1 = ABC, 2 = ACB, 3 = BAC, 4 = BCA,

5 = CAB, 6 = CBA, and reading e.g. ABC as “A, then B, then C”, the survival probability is,

SðtÞ ¼ P6

i¼1
SiðtÞ ð54Þ

For failure by a particular route ABC we need the probability for the sequence of events,

A&ðB&CÞ, then ðB&�CÞjA, then C|(AB). We can calculate this using Eq 16, for example giving,

fABCðtÞ ¼ L� 1
fL½fA&ðB&CÞðt1Þ�L½fðB&�CÞjAðt2Þ�L½fCjðABÞðt3Þ�g ð55Þ

from which we can construct S1ðtÞ ¼
R1
t fABCðyÞdy.

Although in principle every term in e.g. Eqs 54 and 55 need evaluating, there will be situa-

tions where results simplify. For example, if one route is much more probable than another—

e.g. if it is approximately true that landslides only occur after deforestation, that may be due to

fire, then we only need to evaluate the probability distribution for that route. As another exam-

ple, if all the fi are exponentially distributed with different rates, then fABC will be described by

Moolgavkar’s solution. A more striking example is when there are very many potential routes

to failure, as for the Armitage-Doll model where there are numerous stem cells that can cause

cancer. In those cases, if the overall failure rate remains low, then the fi(t) in Eq 55 must all be

small with S’ 1 and f’ h, and can often be approximated by power laws. For that situation

we have a general result that fi, Fi, and Hi will be a powers of time, and Eq 2 gives,

SðtÞ ’ exp �
Xn

i¼1

ait
pi

( )

ð56Þ

for some ai> 0 and pi> 0. Then F(t) = 1 − S(t), f(t) = −dS/dt, and h(t)’ f(t), can be approxi-

mated by a sum of power series in time. If one route is much more likely than the others then

both f(t) and h(t) can be approximated as a single power of time, with the approximation best

at early times, and a cross-over to different power-law behaviour at later times.

9 Cancer evolution, the tissue micro-environment, and model

limitations

Cancer is increasingly viewed as an evolutionary process that is influenced by a combination

of random and carcinogen-driven genetic and epigenetic changes [2, 3, 21, 29, 33–37], and an

evolving tissue micro-environment [38–41]. Although there is evidence that the number of

stem cell divisions is more important for cancer risk than number of mutations [42, 43], the

recognition that cells in a typical cancer are functionally and genetically diverse has helped

explain cancers’ resistance to treatment, and is suggesting alternative strategies to tackle the

disease through either adaptive therapies [44–47] or by modifying the tissue’s micro-environ-

ment [39, 41, 48, 49]. This highlights two limitations of the multi-stage model described here.

Evolution

As noted in Section 8, Eq 1 cannot necessarily model a competitive process such as natural

selection, where the growth of one cancer variant can inhibit the growth of another. If the pro-

cess can be described through a series of rate-limiting steps, then we could still approximate it

with a form of Eq 16. Otherwise, the time-dependence of a step with competitive evolutionary

processes may need to be modelled differently [30, 31], such as with a Wright-Fisher model

[31, 32], or with an approximation such as the logistic model used to describe myeloid
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leukemia [6]. As emphasised by some authors [39, 50], a large proportion of genetic alterations

occur before adulthood. Therefore it seems possible that some routes to cancer could be deter-

mined prior to adulthood, with genetic mutations and epigenetic changes in childhood either

favouring or inhibiting the possible paths by which adult cancers could arise. If this led to a

given cancer type occurring with a small number of sufficiently different incident rates, then it

might be observable in a population’s incidence data as a mixture of distributions.

Changing micro-environment

Another potential limitation of the model described in Section 5 is that the time to failure at

each step is independent of the other failure times, and of the time at which that step becomes

at risk. If the tissue micro-environment is changing with time, then this assumption fails, and

the failure rate at each step is dependent on the present time. This prevents the factorisation of

the Laplace transform used in Eqs 13–15, that led to Eq 16 for failure via m sequential steps.

We can explore the influence of a changing micro-environment with a perturbative approxi-

mation. The simplest example is to allow the {μj} in the Armitage-Doll model to depend line-

arly on the time
Pj

k¼1
tk at which step j is at risk. Then the Armitage-Doll approximation of

fj(tj)’ μj for μj tj� 1, is replaced by

fjðtjjtj� 1; . . . ; t1Þ ’ mj0 þ mj1
Xj

k¼1

tk ð57Þ

The calculation in Section 5 is modified, with,

PðT1 ¼ t1; . . . ;Tm ¼ tmÞ ¼ fmðtmjtm� 1; . . . ; t1Þ . . . f2ðt2jt1Þf1ðt1Þ ð58Þ

giving,

PðT1 ¼ t1; . . . ;Tm ¼ tmÞ ¼ Pm
j¼1

mj0 þ mj1
Pj

k¼1
tk

� �

¼ a0 þ
Pm

j¼1
ajt

m� jþ1

j

ð59Þ

with a0 ¼ Pm
j¼1
mj0, and {aj} being sums of products of j − 1 factors from {μj0} and m − j + 1 fac-

tors from {μk1}. Replacing Pm
j¼1
fjðtjÞ in Eqs 13 and 14, with the right-side of Eq 59, and evaluat-

ing the m integrals then gives,

L f½ � ¼
a0

sm
þ
Xm

j¼1

aj
Gðm � jþ 2Þ

sm� jþ2

1

sm� 1
ð60Þ

with solution,

f ðtÞ ¼ a0

tm� 1

GðmÞ
þ
Xm

j¼1

aj
Gðm � jþ 2Þ

Gð2m � jþ 1Þ
t2m� j ð61Þ

If the tissue micro-environment is changing rapidly enough that a term ajt
2m� j
j becomes com-

parable to or larger than a0tm−1, then the solution to Eq 61 can behave like a larger power of

time than the usual m−1 for m rate-limiting steps. It is even possible for the incidence rate to

slow or even decrease, if coefficients in Eq 61 are negative. The example illustrates that if the

micro-environment modifies cancer risk and is changing over a person’s lifetime, then it has

the potential to strongly influence the observed rate of cancer incidence. The argument can be

repeated with less generality or greater sophistication, e.g. expanding the coefficients μi in the
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terms exp(−μjtj) that appear in Moolgavkar’s model. Such models will have a complex relation-

ship between their coefficients that might make them identifiable from cancer incidence data.

This goes beyond the intended scope of this paper.

10 Conclusions

The purpose of this article is to provide a simple mathematical framework to describe existing

multi-stage cancer models, that is easily adaptable to model events such as failure of complex

systems, cascading disasters, and the onset of disease. The key formulae are Eqs 1, 4, and 16 or

equivalently 18, and a selection of analytical results are given to illustrate their use. Limitations

of the multi-stage model are discussed in Sections 8 and 9. The examples in Section 6 can be

combined in numerous ways to construct a wide range of models. Together the formulae are

intended to provide a comprehensive toolkit for developing conceptual and quantitative mod-

els to describe failure, disaster, and disease.

Supporting information
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