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Abstract

Genetic variation is the basis upon which natural selection acts to yield evolutionary change.

In a rapidly changing environment, increasing genetic variation should increase evolutionary

potential, particularly for small, isolated populations. However, the introduction of new

alleles, either through natural or human-mediated processes, may have unpredictable con-

sequences such as outbreeding depression. In this study, we identified a contact zone and

limited gene flow between historically separated genetic lineages of American pikas (Ocho-

tona princeps), representing the northern and southern Rocky Mountain subspecies, within

Rocky Mountain National Park. The limited spatial extent of gene flow observed may be the

result of geographic barriers to dispersal, selection against hybrid individuals, or both. Our

fine-scale population genetic analysis suggests gene flow is limited but not completely

obstructed by extreme topography such as glacial valleys, as well as streams including the

Colorado River. The discovery of two subspecies within this single protected area has impli-

cations for monitoring and management, particularly in the light of recent analyses suggest-

ing that the pikas in this park are vulnerable to fragmentation and local extinction under

future projected climates. Future research should focus on the fitness consequences of

introgression among distinct genetic lineages in this location and elsewhere, as well as

within the context of genetic rescue as a conservation and management strategy for a cli-

mate sensitive species.

Introduction

Intraspecific genetic diversity is the most fundamental element of biodiversity and provides

the basis for natural selection to yield evolutionary change [1–3]. When confronted with rapid

environmental change, populations must either adapt in situ to new conditions, shift their dis-

tribution to more favorable environmental conditions, or face extinction [4]. Therefore,
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understanding patterns of genetic diversity and population structure is essential for developing

and implementing effective conservation and management strategies for at risk populations

[5, 6]. Local, regional, and historical processes all contribute to contemporary patterns of

genetic diversity and population differentiation. Populations at the extremes of a species’

range, either geographic or climatic, may be most vulnerable to rapid, contemporary climate

change. However, they may also represent reservoirs of adaptive potential if there is local adap-

tation to extreme environmental conditions [5–7].

Anthropogenic manipulation of genetic structure, whether intentional or accidental, also

may influence adaptive potential. Translocations and augmentations, whereby individuals

from one locality are moved to another location to found a new population or to supplement

an existing population [8, 9] have been used to combat declining populations for decades.

There are many well-known examples of mammalian reintroductions stemming from translo-

cations, including wolves [10] and bighorn sheep [8, 11], as well as augmentations including,

panthers [12] and bighorn sheep [8]. In addition to traditional attempts at demographic rescue

by increasing population numbers, some more recent interventions have focused on genetic

rescue which aims to increase population resilience by increasing overall genetic diversity and

or targeting specific traits such as resistance to disease [12]. Best practices dictate that translo-

cated individuals should come from closely-related genetic stock to avoid admixture among

distinct evolutionary units that may have negative consequences such as maladaptation and

outbreeding depression [11, 13]. Yet, some have raised the question of whether, in the face of

extinction, more dramatic interventions such as interbreeding distantly related populations

with different biogeographic history could prove beneficial [9]. For example, interbreeding

with distantly related genetic lineages could introduce novel alleles or reintroduce ancestral

alleles that were lost through drift, possibly having positive consequences for fitness [14]. Evo-

lutionary rescue [15] and the potential genetic consequences of translocations [11, 16] are

active and extensive areas of research. Nevertheless, these are difficult processes to study

empirically outside a laboratory setting.

Naturally-occurring hybrid zones among distinct and formerly isolated genetic lineages

provide opportunities to learn more about introgression, such as how genes spread through

admixed populations and the subsequent effects on physiology and behavior [17, 18]. Among

the well-studied natural hybrid zones, many are the result of secondary contact that occurred

following the last ice age and thus occur in geographic clusters sometimes referred to as

“suture zones” [17, 19–23]. Well-studied zones include mountain ranges in Europe and west-

ern North America [17, 19], and such taxa as grasshoppers in the French Alps [21] and

gophers in the Rocky Mountains [24]. These studies shaped our early understanding of genetic

introgression in hybrid zones. Barton and Hewitt [25, 26] argued that many hybrid zones are

clines maintained by a balance between dispersal and selection against hybrids, which they

refer to as “tension zones”. The characteristics of the cline (e.g., steepness and width) are there-

fore determined by the rate of gene flow, dispersal distance, and relative fitness of alleles

between the two genetic sources [25, 26]. Recent developments in sequencing technologies

and the inclusion of population genomic data into studies of hybrid zones has greatly increased

our understanding of the evolutionary consequences of hybridization, but the increase in stud-

ies and associated data has also illuminated the complexity and variability of possible outcomes

of hybridization [18].

In this study, we describe a previously undocumented hybrid zone between two distinct

genetic lineages of American pikas, Ochotona princeps, within Rocky Mountain National Park

(ROMO) and discuss the implications for conservation of the species within this management

unit and elsewhere. American pikas are often considered a sentinel species with respect to cli-

mate change due to numerous observations of local extinctions, particularly in lower, drier,

Contact zone between two American pika (Ochotona princeps) subspecies
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and hotter habitats [27–30]. Recent extirpations at higher elevations among habitat thought to

be more favorable to pikas have further worried biologists and managers [31]. Pikas are small

lagomorphs (121–176 g, Fig 1) found throughout much of the intermountain western United

States [32]. They are restricted to fractured rock habitats, such as talus slopes and lava flows,

which provide refuge from predators and thermal buffering [32–36]. They cannot tolerate pro-

longed exposure to high temperatures and are therefore typically found at high elevations, but

may persist at lower elevations and in hotter climates if there are suitable microclimatic refugia

[37–40]. Predictive modeling has suggested widespread losses in the species’ distribution par-

ticularly in, but not limited to, low elevations [41]. More recently, models accounting for shifts

in functional connectivity as well as climatic variables suggest a highly variable and idiosyn-

cratic response to climate change [42]. Some populations are likely to persist, while others

such as those in ROMO may be at high risk of extirpation [42]. American pikas are therefore

considered a climate indicator species [43] and were petitioned to be listed under the Endan-

gered Species Act in 2007. In 2010, the United States Fish and Wildlife Service (USFWS) con-

cluded that listing of the species, or any portion of the species, was not currently warranted

due to lack of scientific information [44]. Thus, understanding the factors that shape the distri-

bution, genetic diversity, and adaptive potential for American pikas is of immediate conserva-

tion concern and underscores the need to explore innovative management strategies.

Previous work based on morphology, dialect, and both mtDNA and nuclear coding

sequence data identified a potential historic contact zone between the northern and southern

Rocky Mountain lineages in the vicinity of ROMO [45–47]. Establishing the existence of such

a contact zone within a single protected area would inform management of the species within

ROMO and, potentially, encourage investigation of such contact zones for other species.

Fig 1. American pika (Ochotona princeps) in Rocky Mountain National Park, Colorado. Photo credit: Dick Orleans.

https://doi.org/10.1371/journal.pone.0199032.g001
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Furthermore, as conservationists are increasingly exploring genetic rescue as a management

option [9, 48], natural hybrid zones present an opportunity to evaluate concerns around

anthropogenic manipulation of genetic structure. Previous phylogeographic studies of Ameri-

can pikas utilized a combination of molecular markers that reflect historical gene flow [47, 49],

whereas the current study investigates contemporary gene flow among historically separated

populations using markers with mutation rates that are relatively moderate (mtDNA) and

high (microsatellite loci) as compared to nuclear coding sequences. Here we present a fine-

scale population genetic study evaluating this potential contemporary contact zone and evi-

dence for gene flow between the Northern Rocky Mountain (O. p. princeps) and Southern

Rocky Mountain (O. p. saxatilis) lineages [50]. Given the spatial distribution of behavioral evi-

dence for a hybrid zone [45], the American pika’s philopatric behavior and low dispersal abil-

ity [32, 51, 52], as well as the potential for extreme topography and streams to limit dispersal

[53], we expect any gene flow among the two lineages to be limited to locations separated by

no more than a few kilometers and shaped by landscape features.

Methods

Study sites and genetic sampling

In this study, we focus on ROMO as the context for contact between the two Rocky Mountain

subspecies, in comparison with data from two additional study sites, Grand Teton National

Park (GRTE) and Great Sand Dunes National Park (GRSA). GRTE and GRSA fall within the

geographic range of the northern and southern Rocky Mountain lineages, respectively [47]

(Fig 2). ROMO, however, does not fall within either subspecies range as defined in Galbreath

et al. [47] (Fig 2). Detailed study design and microsatellite genotype data for these and other

sites were previously reported for related studies [53]. Briefly, we collected fecal samples for

genetic analyses between June 2010 and August 2014 through a combination of random, tar-

geted, and opportunistic sampling. We collected random samples during standardized occu-

pancy surveys conducted for other related studies [42, 54]. These survey locations were

determined according to a generalized random stratified tessellation design [55] within poten-

tial pika habitat identified via remote sensing [54]. In addition to random sampling, we col-

lected fecal samples opportunistically while traveling between survey locations, as well as

through targeted searches of areas found to have pikas. We avoided collecting old fecal pellets

by preferentially collecting pellets with green plant material inside to avoid degraded DNA.

The color of the plant material fades from green to yellow within a few weeks to months [56].

We only collected distinct clusters of fecal pellets that were not contacting other previously

deposited pellets to avoid contamination with DNA from other individuals. We collected fecal

samples in paper coin envelopes and stored them dried until extraction. All field work was

conducted as part of the Pikas in Peril? Project (PMIS #163377) and collections made under

Scientific Research and Collection Permits (ROMO-2011-SCI-0032, GRSA-2010-SCI-0004,

GRTE-2010-SCI-0079).

Laboratory methods

We extracted genomic DNA from fecal samples using a modified AquaGenomic DNA extrac-

tion protocol (MultiTarget Pharmaceuticals LLC, Salt Lake City, UT, USA). We genotyped

individuals at 24 microsatellite loci in four multiplex polymerase chain reactions (PCR) using

a Qiagen Multiplex PCR kit (Qiagen, Valencia, CA, USA). Detailed PCR protocol, primer

sequences, and methods for calling and screening microsatellite genotypes are provided in

Castillo et al. [53]. In order to compare with previous phylogenetic analyses, we used the two

primer pairs described in Galbreath et al. [49] to amplify the cytochrome-b oxidase (Cyt-b)

Contact zone between two American pika (Ochotona princeps) subspecies
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and D-loop mtDNA region for a subset of our samples from ROMO, plus one from GRSA and

GRTE. Due to the low quality and quantity of fecal DNA template as compared to fresh tissue,

we designed an additional five primers to amplify smaller regions ranging from 483–566 bp

Fig 2. Map of major genetic lineages of American pikas and study sites. Study sites (numbered) and major mitochondrial lineages (black outlines) redrawn from

Galbreath et al. 2010. Predicted distribution of American pikas (gray shading) derived from Kuchler potential natural vegetation [57, 58] according to Hafner and

Sullivan [46]. Numbers refer to localities from Galbreath et al. 2010 and correspond to Table B in S1 File. Stars labeled with letters refer to sites from this study and

correspond to Table B in S1 File. They are as follows: C) Grand Teton National Park, D) Rocky Mountain National Park north, F) Rocky Mountain National Park south,

and G) Great Sand Dunes National Preserve.

https://doi.org/10.1371/journal.pone.0199032.g002
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(Table A in S1 File). All fragments were amplified in 10.5 μl reactions with final reagent con-

centrations of 2.25 mM MgCl2, 0.1 nM primers, 0.16 mM each dNTPs, 0.7 U Taq polymerase,

and 0.5 μl template DNA. All reactions included a 15 minute (95˚C) initial denaturation; 39

cycles of 30 sec. denaturation (95˚C), 45 sec annealing (60˚C), and 30 sec (72˚C) extension;

and a final 5 minute (72˚C) extension. We sequenced all DNA fragments in both directions

and visually inspected sequence alignments using GENEIOUS 6.1.2 [59].

Genetic structure within Rocky Mountain National Park

We performed a Bayesian clustering analysis in program STRUCTURE [60] to infer population

structure within ROMO. We ran 10 replicates for each inferred number of populations (K = 1

to 10) totaling 100 replicates, with 100,000 MCMC steps each of burnin and run steps. We

used eight regions within the national park, identified by geographic features, as sampling

localities for location prior information in the admixture model, as well as correlated allele fre-

quencies among populations as run parameters. We analyzed the model output using STRUC-

TURE HARVESTER [61] according to the ΔK method proposed by Evanno et al. [62]. We

compared the optimal K from both ΔK and mean Ln Pr(X|K) methods to determine the best K

value. We then used program CLUMPP [63] to determine the optimal assignment of individuals

across the ten runs for the best supported value of K. Finally, we visualized the output from

CLUMPP spatially using ArcMap 10.0 (ESRI, Redlands, California).

Given the limitations of STRUCTURE and methods to interpret such analyses, particularly in

the case of two genetic clusters [64], we also performed a principal components analysis (PCA)

and discriminant analysis of principal components (DAPC) [65] using the package “adegenet”

[66] in R [67]. DAPC maximizes variation between groups while minimizing variation within

groups and has the benefit of not relying on assumptions of Hardy-Weinberg proportions

[65]. We performed the DAPC on all individual genotypes with no prior population assign-

ment information by using the successive K-means approach, implemented by the find.clusters
function, to identify the optimal number of groups based on Bayesian Information Criterion

(BIC).

Phylogenetic analysis

We obtained previously published sequence data covering the Cyt-b and D-loop region of the

mitochondrial genome (c. 1650 bp) for 112 Ochotona princeps individuals, plus one O. collaris,
from GenBank (Table B in S1 File). For Bayesian analysis, we selected the best data partition-

ing scheme and substitution models for each partition using a greedy algorithm in Partition-

Finder 2.1.1 [68] with four a priori partitions for each codon of Cyt-b and one for D-Loop. We

implemented the BIC corrected for small sample sizes to identify the best substitution model

scheme (Table 1). We performed a Bayesian phylogenetic analysis of the partitioned matrix

with MrBayes 3.1.2 [69] using the partitioning and models as detailed in Table 1. We per-

formed two runs of four independent Markov chain Monte Carlo (MCMC) chains with 10M

Table 1. Partitioning scheme and nucleotide substitution models used in Bayesian (MrBayes) phylogenetic analy-

sis of two genes.

Partition Substitution Model

CytB codon position 1 K80 + I

CytB codon position 2 HKY + I

CytB codon position 3 GTR + I + Γ

D-loop HKY + I + Γ

https://doi.org/10.1371/journal.pone.0199032.t001
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replicates each, sampling every 1000 generations or until the standard deviation of split fre-

quencies between the two runs was less than 0.01. We discarded the first 25% of generations as

burn-in for each run and then concatenated tree files. We found a maximum credibility tree

(MCC), the tree with the highest product of posteriors for all nodes, using TreeAnnotator

v1.8.2 [70]. We then edited the MCC tree in FigTree v.1.4.0 (http://tree.bio.ed.ac.uk/software/

figtree/).

Population differentiation and genetic diversity

Once we identified two genetic clusters within ROMO (see results), we quantified genetic

diversity and differentiation among the two groups, as well as GRTE and GRSA, from micro-

satellite genotypes. To measure deviation from panmixia assuming Hardy-Weingerg propor-

tions, we calculated pairwise FST [71] using the “hierfstat” package [72] in R. Additionally, to

measure population differentiation we calculated D [73, 74] using the “mmod” [75] package in

R. We calculated geographic distance among study sites from the centroid of genotyped sam-

ples within each study site. We calculated expected heterozygosity (He) and allelic richness

(Ar) corrected for sample size using the “hierfstat” package [72] in R. Finally, we calculated

haplotype diversity (h) and nucleotide diversity (π) for the ROMO mtDNA dataset using

DnaSP [76].

Geographic cline analysis and hybrid detection

We fit the admixture proportion values from the STRUCTURE analysis for K = 2 to equilibrium

cline models using the Metropolis-Hastings Markov chain Monte Carlo algorithm imple-

mented in the R package HZAR [77]. We fit 15 candidate models that varied in the number of

cline shape parameters estimated and selected the best model according to AIC corrected for

small sample size. We were thus able to estimate the geographic center and width of the cline.

Finally, we performed a hybrid detection analysis to estimate the probability that individual

genotypes reflect genotype frequency categories corresponding to pure individuals, F1 or F2

hybrids, or backcrosses. We categorized individuals with Q> 0.99 in either northern or south-

ern cluster as “pure” individuals and categorized all others as of unknown origin. We per-

formed the hybrid detection analysis using the program NEWHYBRIDS [78], implemented in the

R package PARALLELNEWHYBRID [78], with 100,000 burnin reps and 500,000 sweeps. We per-

formed ten replicate runs and averaged the posterior probabilities for each individual across

all ten runs.

Results

Genetic data

After removing individual samples that either failed to amplify, were contaminated (contained

more than 2 microsatellite peaks at any locus), or gave inconsistent genotypes, our final dataset

included 230 genotyped individuals from ROMO, 194 from GRTE, and 54 from GRSA. After

screening loci for significant deviations from expected Hardy Weinberg proportions and

removing loci that failed to amplify consistently across sites, we included 22 microsatellite loci.

Number of alleles per locus across all four sites ranged from 5 to 28 (mean = 14).

Genetic structure

The STRUCTURE analysis supported two genetic clusters within ROMO (K = 2, Fig 3, Table A in

S2 File and Figure A in S2 File). The DAPC likewise identified two clusters (Fig 4). All individ-

uals were assigned to the same population clusters based on the DAPC (posterior membership

Contact zone between two American pika (Ochotona princeps) subspecies
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probabilities > 0.99) and STRUCTURE analysis (Q� 0.6, where Q is the proportion of the

genome that originates from population K, also known as the admixture proportion [60]).

Geographically, the two genetic clusters were roughly segregated into a northern and southern

cluster. The northern cluster included individuals found north of Mt. Chapin or west of the

Colorado River (Fig 3). The STRUCTURE analysis suggested some admixture occurred between

the clusters (Fig 3). This was also supported by the PCA, where individuals identified as

admixed in the STRUCTURE analysis (0.2 < Q< 0.8) had more intermediate values along the

first principal component axis compared to individuals with higher Q values (Fig 5).

Fig 3. Population genetic structure within Rocky Mountain National Park. Individuals are shown as bar plots

representing probability of assignment (q values) from the STRUCTURE analysis for K = 2. Individuals cluster

geographically as a northern and southern population, separated by Mt. Chapin and the Colorado River. Concentric,

black squares and circles indicate the placement of sequenced individuals into the northern and southern mtDNA

lineages, respectively (Fig 6). Red shading indicates potential pika habitat [54]. Inset Figure shows ΔK values,

indicating support for K = 2. Hillshade background was derived from the USGS National Elevation Dataset, streams

and lakes were from the National Hydrography Dataset (https://nationalmap.gov).

https://doi.org/10.1371/journal.pone.0199032.g003
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Fig 4. Results of the DAPC showing BIC support for two genetic clusters (inset) and assignment to either the north (blue) or

south (red) clusters. Darker circles indicate multiple samples from that locality. Hillshade background was derived from the USGS

National Elevation Dataset (https://nationalmap.gov).

https://doi.org/10.1371/journal.pone.0199032.g004
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Fig 5. Principal component analysis of individual pika microsatellite genotypes. Points are color-coded according to geographic location and correspond to sampling

locations in inset map of ROMO. Triangles represent individuals identified from the STRUCTURE analysis as having notably mixed ancestry (0.2� Q< 0.8). Points in

the dashed oval correspond to sampling localities within the dashed oval in the inset map, which in turn correspond to red points in Fig 4. These points separate along PC1

and are geographically isolated by topography. The sampling localities west of the Colorado River (dark green squares west of blue line in inset) partially separate along

PC2.

https://doi.org/10.1371/journal.pone.0199032.g005
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We subsequently performed two separate STRUCTURE analyses for the individuals assigned to

the northern and southern clusters with Q� 0.6. Within the northern group, there was sup-

port for three clusters, with one primarily in the northeast and another mostly restricted to the

west of the Colorado River (Table B in S2 File and Figure B in S2 File). This was supported by

the PCA, where individuals west of the Colorado River segregated along the 2nd principal com-

ponent axis (Fig 5). There was less support for population substructure within the southern

group where there was some support for K = 2 and K = 6 (Table C in S2 File and Figure E in

S2 File). Both results suggest isolation by distance with some restricted gene flow across

streams and steep topography, but no major barriers to gene flow (Figure F in S2 File). Again,

this was supported by a PCA of individuals within the southern cluster showing a latitudinal

gradient along the first PCA (Figure G in S2 File).

Phylogenetic analysis

We included 19 individuals from within ROMO and one from GRSA that resulted in good

quality sequence data covering the 1650 bp target region, along with the 113 individuals from

Galbreath et al. (2009) (Table B in S1 File). PartitionFinder supported the a priori scheme with

substitution models summarized in Table 1. The MrBayes runs achieved convergences within

the first 10M generations. We recovered a MCC phylogeny with strong support (posterior

probability > 0.9) for each of the five previously identified clades of O. princeps (Fig 6).

Among the samples from ROMO, 9 individuals grouped within the northern Rocky Mountain

lineage, O. p. princeps, and 10 individuals were grouped within the southern Rocky Mountain

lineage, O. p. saxatilis (Fig 6). The results were consistent with both the STRUCTURE and DAPC

analyses based on microsatellite genotypes (Fig 3).

Population differentiation and genetic diversity

Pairwise FST calculated from microsatellite genotypes was greater between lineages than within

lineages (Table 2) and increased with geographic distance (Fig 7). FST was greater between

ROMO N and ROMO S, at a distance of<20 km, than within-lineages estimates hundreds of

km apart, but less than between-lineage comparisons involving GRTE or GRSA. Pairwise D
followed the same pattern (Table 2). Microsatellite allelic richness was greater within ROMO

than either GRTE or GRSA, but these differences were not significant (-1.23 < t 1.38, p> 0.1).

Likewise, microsatellite heterozygosity was similar among the study sites (Table 3) and rela-

tively high compared to 9 other sites from a previous study [79]. Haplotype (h) and nucleotide

diversity (π) calculated from mtDNA sequences was similar between ROMO N and ROMO S.

We identified 7 haplotypes in each site. Genetic diversity was slightly higher in ROMO N

(h = 0.00199, π = 0.92) than ROMO S (h = 0.00163, π = 0.91).

Geographic cline analysis and hybrid detection

The cline width for the best supported model was approximately 8.5 km with a two log-likeli-

hood support range of 6.5–11.25 km (Table E in S2 File and Figure H in S2 File). The cline

width estimates from the top 13 models were also within this range (Table E in S2 File). The

estimated cline center was approximately 27.75 km north of the southernmost sampled indi-

vidual, just south of Mt. Chapin (Table E in S2 File and Figure I in S2 File). Admixed individu-

als from the geographic north were characterized as either F2 hybrids or north backcrosses

with posterior probability� 0.6 (Figure J in S2 File). The one admixed individual from the

geographic south was characterized as a south backcross with posterior probability 0.93. There

was some support for backcrosses within the individuals with admixture proportions Q� 0.8

(Figure J in S2 File).
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Discussion

We identified a previously undescribed contact zone between the northern and southern

Rocky Mountain lineages within Rocky Mountain National Park. Our results were consistent

across all three different types of analyses (STRUCTURE, DAPC, and phylogenetic) and there-

fore robust to the K = 2 conundrum common in STRUCTURE analyses [64]. Moreover, we

determined there was contemporary gene flow between the two lineages. Galbreath et al. [47]

identified shared alleles among northern and southern Rocky Mountain populations in

sequences of two nuclear introns (protein kinase C iota and mast cell growth factor) and deter-

mined that this was the result of gene flow since the last glacial maximum when receding mon-

tane glaciers were no longer barriers to dispersal. However, based on more-rapidly mutating

mtDNA loci, they determined that the Colorado River represents a relatively recent barrier

preventing contemporary gene flow between the two lineages [47]. In their taxonomic revi-

sion, Hafner and Smith [50] described the northern and southern subspecies’ ranges as occur-

ring on either side of the Colorado River. The microsatellite markers used in this study have a

considerably higher mutation rate than mtDNA, reflecting evolutionary processes within a few

tens of generations [80–82], as compared to many hundreds to thousands of generations for

mtDNA [82]. We determined that the Colorado River is not an adequate delineation of the

geographic boundary between the two subspecies (Figs 2–4 and S2 File). However, the river

does appear to be at least a partial barrier to gene flow (Fig 5 and S2 File).

Our results indicate contemporary gene flow between the two subspecies within ROMO,

evidenced by intermediate levels of population differentiation as compared to estimates

between populations from different or the same genetic lineage (Table 2), as well as the PCA

and STRUCTURE analyses. However, admixture appears geographically limited to within a<10

km zone (Fig 3, Table E in S2 File, Figures H and I in S2 File). The geographic cline analysis

should be interpreted with caution because 1) the area within and immediately surrounding

the inferred hybrid zone was not exhaustively sampled, and 2) the analysis assumes a linear

cline with minimal variation perpendicular to the cline [77]. We observed genetic structure on

either side of the Colorado River (Figure C in S2 File), therefore this analysis should be

repeated in the future with more extensive sampling and possibly omitting those individuals

west of the Colorado River. Nevertheless, the results of the analysis were consistent with low

dispersal ability further limited by geographic features observed in ROMO and other study

areas [53]. Gaps in pika habitat, the Colorado River, and glacial valleys appear to contribute to

Fig 6. Maximum clade credibility phylogeny for Ochotona princeps. Black circles on branches indicate Bayesian posterior probabilities>95%. Samples

from ROMO appear in both the northern (blue) and southern (red) Rocky Mountain lineages. Numbers and letters in parentheses refer to Fig 2 and are

listed in Table B in S1 File.

https://doi.org/10.1371/journal.pone.0199032.g006

Table 2. Genetic differentiation among study sites for multilocus microsatellite genotypes.

GRSA GRTE ROMO N ROMO S

GRSA - 0.63 0.56 0.38

GRTE 0.21 - 0.33 0.62

ROMO N 0.19 0.13 - 0.48

ROMO S 0.12 0.20 0.16 -

Pairwise population D (Jost 2008, above diagonal) and FST (below diagonal) for 22 microsatellite loci, between Rocky

Mountain National Park north (ROMO N) and south (ROMO S), Grand Teton National Park (GRTE), and Great

Sand Dunes National Park (GRSA). Shaded cells indicate comparisons within major genetic lineages.

https://doi.org/10.1371/journal.pone.0199032.t002
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genetic structure within (Figures C and E in S2 File) and among genetic lineages (Figs 2 and 3)

despite their close geographic proximity. Alternately, the observed restricted gene flow among

genetic lineages may be the result of only relatively recent contact, or possibly selection against

hybrid individuals. This last hypothesis in particular warrants further investigation.

We did not find individuals with notably mixed ancestry in the southern cluster, with the

exception of a single, likely backcrossed individual, collected just east of the continental divide

(Fig 5). This pattern may be the result of more frequent dispersal of individuals from south to

north. Previous research identified hybrid vocalizations at the headwaters of the Colorado

River along the continental divide (Somers 1973), <5 kilometers from where we identified

admixture among individuals. That study suggested that vocalizations were indicative of

ancestry rather than learned behavior; and a subsequent study revealed that hybrid individuals

reared in captivity do in fact produce hybrid vocalizations (Somers, personal communication).

Additional observations of hybrid vocalizations outside ROMO suggest that further

Fig 7. Pairwise FST between study sites plotted against geographic distance. Pairs of sites within the same genetic lineage (filled circles) and

between genetic lineages (open circles).

https://doi.org/10.1371/journal.pone.0199032.g007

Table 3. Sample size for microsatellite genotypes (n), allelic richness (Ar), observed heterozygosity (Ho) and

expected heterozygosity (Hs) for each study site.

Site n Ar Ho Hs

GRSA 54 7.23 0.62 0.73

GRTE 194 7.31 0.64 0.69

ROMO N 69 7.88 0.60 0.69

ROMO S 161 8.03 0.58 0.73

https://doi.org/10.1371/journal.pone.0199032.t003
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investigation should be made into the geographic extent and degree of admixture between

these two genetic lineages. Dispersal is not sex-biased in pikas [83, 84], therefore differences in

observed patterns between mtDNA and microsatellite analyses most likely do not reflect differ-

ences in dispersal between males and females. However, the sex of both parents and offspring

may affect hybrid survival and fitness if for example traits are sex-linked or play a role in mate

choice, such as in chemosensory behavior or vocalizations [14, 85–87]. Future research should

investigate whether there is directional gene flow and if so, is it the result of dispersal patterns

or selection for or against particular hybrid combinations.

Recent research has shown variation in population persistence across the species range over

the past century [36, 88], as well variation in predicted future trends for American pikas that

do not necessarily conform to a “colder is always better” scenario [36, 42, 54]. This may be in

part driven by fine-scale microhabitat characteristics or other factors that are not captured by

most models. Local adaptation and past biogeographic history likely also play important roles

in population persistence such that populations that have experienced hotter climates in the

past may be better prepared to deal with a warming climate in the future. We therefore might

expect different responses to climate change between populations of the northern and south-

ern Rocky Mountain lineages currently living under similar environmental conditions. What

does this mean for hybrid lineages? Our research suggests, based on higher allelic richness,

that gene flow between ROMO N and ROMO S has potentially increased genetic diversity

within ROMO. In general, higher genetic diversity is thought to increase evolutionary poten-

tial in the face of rapid, environmental change [89]. However, gene flow may counteract local

adaptation [90, 91]. Possible future scenarios for ROMO under a changing climate include: 1)

resilience as a result of greater genetic diversity increasing adaptive potential through novel

gene combinations, 2) decreased resilience as a result of the spread of maladapted genes from

one lineage to the other, 3) increased resilience as a result of the spread of adaptive genes from

one lineage to the other, or 4) little or no effect of admixture on resilience. Evidence from

translocated bighorn sheep suggest adaptation to local environmental conditions was a strong

determinant of translocation success in some cases [92], while other examples suggest high

phenotypic plasticity and translocation success even within populations including subspecies

hybrids [11]. Our study relied on neutral genetic markers to describe underlying genetic pro-

cesses, therefore to address these hypotheses future research should seek to identify potential

adaptive variation among these and other pika populations. Such studies could inform the fea-

sibility of management actions such as translocating pikas within ROMO or among popula-

tions separated by greater geographic and environmental conditions, as has been proposed

[93, 94].

The presence of two distinct genetic lineages as well a hybrid zone within a single park

boundary presents some interesting, and potentially complicated, implications for manage-

ment of this species within ROMO. Previous research demonstrated that there are five major

American pika genetic lineages, each with independent evolutionary trajectories [49]. Gal-

breath et al. further suggest that these lineages should be considered distinct evolutionarily sig-

nificant units [95] for management purposes. The 2010 decision by the USFWS to not list the

American pika, or any subpopulations, under the ESA was based largely on subspecies revi-

sions [50] according to these five independent lineages [44]. Should certain subspecies be listed

in the future, pikas in ROMO could, in theory, be subject to different federal regulations,

despite coexisting within a single management unit. One recent study suggested that pika in

ROMO may be at particularly high risk of extirpation [42], but did not consider those subspe-

cies separately. To further complicate this scenario, there are not clear guidelines under the

ESA for treatment of hybrid individuals [96–98]. One example of successful translocations

among subspecies and protection of hybrid offspring under the ESA is the introduction of
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Texas panthers (Puma concolor stanleyana) to populations of Florida panthers (P. c. coryi)
[12]. In contrast, Allendorf et al. [99] recommended only pure Westslope cutthroat trout

(Oncorhynchus clarki lewisi) be protected under the ESA and not hybrids with Yellowstone

cutthroat trout (O. c. bouvieri) or rainbow trout (O. mykiss). While the ESA is a powerful man-

agement tool, it is often challenging to reconcile complex ecological and evolutionary pro-

cesses with structured legal decisions.
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