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Abstract

The rate of recombination impacts on rates of protein evolution for at least two reasons: it affects the efficacy of selection
due to linkage and influences sequence evolution through the process of GC-biased gene conversion (gBGC). We studied
how recombination, via gBGC, affects inferences of selection in gene sequences using comparative genomic and popu-
lation genomic data from the collared flycatcher (Ficedula albicollis). We separately analyzed different mutation cate-
gories (“strong”-to-“weak,” “weak-to-strong,” and GC-conservative changes) and found that gBGC impacts on the dis-
tribution of fitness effects of new mutations, and leads to that the rate of adaptive evolution and the proportion of
adaptive mutations among nonsynonymous substitutions are underestimated by 22–33%. It also biases inferences of
demographic history based on the site frequency spectrum. In light of this impact, we suggest that inferences of selection
(and demography) in lineages with pronounced gBGC should be based on GC-conservative changes only. Doing so, we
estimate that 10% of nonsynonymous mutations are effectively neutral and that 27% of nonsynonymous substitutions
have been fixed by positive selection in the flycatcher lineage. We also find that gene expression level, sex-bias in
expression, and the number of protein–protein interactions, but not Hill–Robertson interference (HRI), are strong
determinants of selective constraint and rate of adaptation of collared flycatcher genes. This study therefore illustrates
the importance of disentangling the effects of different evolutionary forces and genetic factors in interpretation of
sequence data, and from that infer the role of natural selection in DNA sequence evolution.

Key words: dN/dS, distribution of fitness effects, GC-biased gene conversion, gene expression, Hill–Robertson
interference.

Introduction
The relative role of different evolutionary forces and genetic
factors that determine rates and patterns of sequence evolu-
tion is a long-standing question in molecular evolution
(Gillespie 1984; Kimura 1991; Nei 2005). One important factor
is the mutation rate (l), which is the rate at which new
genetic variants enter a population. The fitness effect of a
particular mutation governs the direction and strength of
natural selection acting on it, and is represented by the rela-
tive selection coefficient (s). The effective population size (Ne)
determines the strength of genetic drift, where small popu-
lations will experience stronger drift than larger populations
(Wright 1931). Together, Ne and s affect the fate of new
mutations and, consequently, variation in any of those factors
leads to variation in the rate of sequence evolution
(Charlesworth 2009). In addition, the environment and tem-
poral fluctuations in the environment determine the shape
and stability of the fitness landscape of a population and

hence the distribution of fitness effects (DFE) of new muta-
tions. There is a higher probability that any new mutation is
advantageous if a population is far away from its fitness op-
timum. Conversely, if a population is close to its fitness opti-
mum, the probability that a mutation is advantageous is very
low (Fisher 1930; Orr 2005; Lourenco et al. 2013).

In addition to variation among populations, any regional
variation in l, Ne, and s in the genome will lead to variation in
evolutionary rates among genes (Eyre-Walker and Keightley
2007). One important factor associated with this variation is
the local recombination rate. Variation in recombination rate
along the genome influences the rate of protein evolution
through two distinct processes: GC-biased gene conversion
(gBGC) (Duret and Galtier 2009; Mugal et al. 2015) and Hill–
Robertson interference (HRI) (Hill and Robertson 2007).
gBGC is a process that takes place during meiotic recombi-
nation, at sites heterozygous for one “weak” (W) and one
“strong” (S) allele, and increases the probably of fixation of
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S over W alleles (strong or weak in the sense of the number of
hydrogen bonds between the two nucleotides within base
pairs, i.e., three between G and C and two between A and T).
As a consequence, the W-to-S substitution rate is elevated in
high-recombination regions (since gene conversion is a form
of recombination) at the same time as the S-to-W substitu-
tion rate is reduced. HRI occurs when different targets of
selection are genetically linked, making natural selection less
efficient and leading to an increase in the fixation rate of
slightly deleterious alleles and a decrease in the fixation rate
of advantageous alleles. Recombination breaks up physical
linkage between selected sites and counteracts HRI, and
thereby increases the efficacy of both negative and positive
selection. The effect of HRI is thus most pronounced in ge-
nomic regions with low recombination.

The strength and direction of selection on protein evolu-
tion are further influenced by patterns of gene expression and
individual properties of proteins (Pal et al. 2006; Zhang and
Yang 2015). For example, a correlation between gene expres-
sion level and the strength of purifying selection has been
reported in diverse taxa (Pal et al. 2001; Krylov et al. 2003;
Rocha and Danchin 2004; Drummond and Wilke 2008).
Proteins have been found to evolve under strong selective
constraint if the level of pleiotropy is high (Krylov et al. 2003;
Zhang and Li 2004; He and Zhang 2006). In line with this,
genes that are broadly expressed or whose gene products are
involved in a high number of protein–protein interactions
(PPI) are under stronger negative selection than other genes
(Pal et al. 2006; Drummond and Wilke 2008; Zhang and Yang
2015). In addition, elevated rates of protein evolution have
been reported for genes that show sex-biased expression
(reviewed in Ellegren and Parsch 2007), potentially as a result
of sexual selection (Grath et al. 2009; �Avila et al. 2015).
Nevertheless, the relative importance of the genomic location
and individual protein properties on protein sequence evo-
lution remains an open question. A better understanding of
how these factors interact can ultimately help us to under-
stand how populations respond to environmental changes.

Rates of protein evolution are frequently measured by the
dN/dS ratio (commonly denoted as x), which quantifies the
strength of selection in protein-coding genes as judged from
sequence divergence between two or more lineages
(Goldman and Yang 1994; Muse and Gaut 1994). The incor-
poration of information on the frequency of synonymous and
nonsynonymous polymorphisms within a population in a
McDonald–Kreitman test (MK-test) framework allows to
compute an expected value of x (McDonald and Kreitman
1991). Some methods derived from the MK-test use this in-
formation to estimate the DFE of new mutations (Eyre-
Walker et al. 2006; Eyre-Walker and Keightley 2007;
Keightley and Eyre-Walker 2007; Eyre-Walker and Keightley
2009). Under the assumption that advantageous mutations
reach fixation so fast that they are rarely observed as poly-
morphisms, the DFE provides an expected value of x for
nonadaptive substitutions (xna) (Keightley and Eyre-Walker
2007). The difference between x and xna can then be attrib-
uted to the rate of adaptive substitutions (xa). Further, based
on xna and xa, the proportion of adaptive substitutions (a)

can be derived (Eyre-Walker 2006; Eyre-Walker and Keightley
2009).

It should be noted that a must not be interpreted as the
rate of adaptation, as it depends on both xa and xna. Low a
can simply reflect fast accumulation of effectively neutral
nonsynonymous substitutions (Lourenco et al. 2013;
Williamson et al. 2014; Galtier 2016). Since Ne determines
the efficacy of selection, we expect a negative relationship
between Ne and xna, which should lead to a correlation be-
tween Ne and a irrespective of if the rate of adaptation
increases with Ne. Therefore, xa may be a better measure
of the strength of positive selection than a (Lourenco et al.
2013). If the DFE is independent of Ne, we expect to see a
correlation between Ne and xa. This means that populations
with larger Ne should have higher rates of adaptation, which is
supported by some studies (Gossmann et al. 2010; Strasburg
et al. 2011). However, in large comparisons of animal (Galtier
2016) and plant taxa (Gossmann et al. 2010), no evidence was
found to support the idea that adaptive substitutions would
accumulate faster in larger populations. Further analyses are
needed to clarify these conflicting results and to help eluci-
dating the relative impact of genomic features of genes and of
individual protein properties in determining rates of adaptive
and nonadaptive protein evolution (Pal et al. 2006;
Charlesworth and Campos 2014).

In this study, we investigate the relative importance of
negative and positive selection on protein evolution in an
avian lineage, the lineage leading to collared flycatcher
(Ficedula albicollis) since its split from the zebra finch
(Taeniopygia guttata) lineage �21 Ma (Moyle et al. 2016).
The collared flycatcher is a small bird of the order
Passeriformes (the most species-rich clade of birds) that
mainly breeds in deciduous forests in southeastern Europe
and winters in sub-Saharan Africa. Recent findings indicate
that recombination rate variation, through the process of
linked selection, strongly affects patterns of genetic diversity
and differentiation in the flycatcher genome (Burri et al. 2015;
Dutoit et al. 2017; Kawakami et al. 2017). There is also evi-
dence that recombination rate variation via gBGC has a
strong impact on protein coding sequence evolution in the
collared flycatcher (Bol�ıvar et al. 2016), in agreement with
studies of other birds (Mugal et al. 2013). More specifically,
divergence data showed that both synonymous and nonsy-
nonymous W-to-S substitution rates were positively corre-
lated with recombination rate, while S-to-W rates were
negatively correlated. GC content varies considerably along
the flycatcher genome and is strongly associated with recom-
bination rate. The current GC content is not at its equilibrium
and appears to be increasing at nonsynonymous and, even
more so, at synonymous sites. As a consequence, gBGC has a
higher impact on synonymous than on nonsynonymous sites,
leading to a negative association between dN/dS and recom-
bination rate (Bol�ıvar et al. 2016). Analyses of polymorphism
data showed an excess of high frequency derived alleles
for W-to-S polymorphisms but an opposite trend for
S-to-W polymorphisms. Moreover, polymorphism data
were dominated by S-to-W polymorphisms, and divergence
data by W-to-S substitutions.
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While there is clear evidence that signatures of gBGC are
pronounced in the collared flycatcher genome, it is still
unclear how gBGC interacts with the direction and efficacy
of selection acting on protein-coding sequences, and which
other factors may play a role in protein evolution. To address
these questions we aimed to dissect the interplay between
selection and gBGC in more detail and to investigate the
relationship between the efficacy of natural selection in
protein-coding genes and several genomic factors after ac-
counting for gBGC. These analyses show that gene expression
level, sex-bias in expression and the number of protein–pro-
tein interactions, but not HRI, are strong determinants of
both the rate of protein evolution and the rate of adaptation
in this avian lineage.

Results
Using branch-specific estimates of divergence based on a
three-species-alignment with zebra finch and chicken, and
polymorphism data from resequencing of a population sam-
ple of 20 collared flycatchers, we obtained multiple measures
of selection in the flycatcher lineage. Genome-wide estimates,
based on all mutations, of the ratio of nonsynonymous to
synonymous diversity (pN/pS) and x were 0.160 (99% confi-
dence interval, CI, 0.159–0.162) and 0.144 (0.143–0.144), re-
spectively, where the larger value of pN/pS than of x indicates
a prevalence of slightly deleterious mutations. We computed
the site frequency spectrum (SFS) for synonymous and non-
synonymous polymorphisms in order to estimate the DFE for
nonsynonymous mutations and found that 77.8% (77.7–78.0)
mutations were strongly deleterious (Nes > 10), 8.9% (8.7–
9.0) were deleterious (1<Nes < 10) and 13.3% (13.0–13.6)
were slightly deleterious or effectively neutral (Nes <1). By
contrasting the estimates of the DFE and x, we obtained an
estimate of xa of 0.025 (0.023–0.027) and found that 18%
(16.4–18.8) of nonsynonymous substitutions have been fixed
in the flycatcher lineage due to positive selection (a). A major
question in this study was now if these estimates of selection
may be biased by gBGC.

gBGC Impacts Inferences of Selection of Protein
Coding Sequences in the Collared Flycatcher
The substitution rate at synonymous sites is more strongly
affected by gBGC than the rate at nonsynonymous sites in the
flycatcher lineage (Bol�ıvar et al. 2016). As a consequence, x is
not only given by selection and drift but also by gBGC.
Therefore, it cannot be excluded that gBGC similarly influen-
ces other measures of selection and could lead to biased
conclusions. In order to assess the impact of gBGC on the
inference of selection, we separately estimated pN/pS, the
DFE, x, xa, and a for the three mutation categories S-to-
W, W-to-S, and GC-conservative changes. Figure 1 illustrates
that all measures of selection were strongly influenced by
gBGC, and this was most clear at the time scale of fixed
differences (x, xa, and a exhibited more pronounced differ-
ences between mutation categories than pN/pS or the pro-
portion of effectively neutral mutations). Using results from
GC-conservative changes as a reference, x was higher by 27%

when estimated using all changes (0.144 vs. 0.113), a was 33%
lower (0.180 vs. 0.270), and xa was 22% lower (0.025 vs. 0.032).
In other words, gBGC had the effect of leading to a significant
underestimation of the amount of adaptive evolution.

The effect of gBGC on segregating polymorphisms mir-
rored the effect of demographic changes. This had the con-
sequence that different demographic scenarios were inferred
for different mutation categories despite them obviously shar-
ing the same evolutionary history (fig. 1C; note that Nw is the
weighted change in Ne relative to 100). Specifically, the best-fit
demographic model for the S-to-W mutation category was a
population expansion, which is characterized by a relative
increase of low frequency variants (a left skew of the SFS).
Although the best-fit model for the W-to-S mutation cate-
gory was a constant population size, the one-step model in-
ferred a population contraction (data not shown),
characterized by a relative increase of intermediate and
high frequency alleles (a right skew of the SFS).
Furthermore, the demographic effect was stronger in high
recombination regions for both S-to-W and W-to-S catego-
ries than in low recombination region. The demographic
model for GC-conservative polymorphisms fell between the
demographic model for S-to-W and W-to-S mutations, with
either no or only a modest change in population size (sup-
plementary table S1, Supplementary Material online). These
observations can be explained by that gBGC decreases the
fixation probability of S-to-W while increases it for W-to-S
polymorphisms, and that the effect increases with recombi-
nation rate.

In light of the above, the interpretation of measures of
selection needs careful consideration in the presence of
gBGC. To overcome the effects of gBGC, a safe alternative
should be to base inferences on data from the GC-
conservative mutation category only. We illustrate this by
comparing the outcome of analyses based on GC-
conservative changes with analyses based on all changes in
genomic regions with low, medium, and high recombination
rate, respectively. HRI would predict that selection is more
efficient in high recombination regions. Using GC-
conservative changes, we observed a weak negative relation-
ship between recombination rate and pN/pS, and no relation-
ship between recombination rate and the proportion of
effectively neutral mutations. In contrast, distinct relation-
ships were seen when analyzing all changes (fig. 2A and B).
The relationships between either of x, xa, or a, and recom-
bination rate showed no clear trend for GC-conservative
changes (fig. 2C–E). In contrast, we observed a positive rela-
tionship between all these selection parameters and recom-
bination rate for all changes. Hence, a “conventional” analysis
using all changes would suggest that the efficacy of positive
selection increases with increasing recombination rate in this
avian lineage, following HRI predictions. However, this seems
entirely due to the effect of gBGC (fig. 2D and E). Our results
therefore indicate that the rate of adaptive evolution is not
correlated with local variation in Ne, as this can be approxi-
mated by the recombination rate.
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Identification of Determinants of the Rate of Protein
Sequence Evolution in the Collared Flycatcher
In order to further understand which factors influence esti-
mates of selection in the collared flycatcher, we investigated
the relationship between x and different genomic factors and
protein properties in a multiple linear regression (MLR) anal-
ysis. In these gene-by-gene analyses, we estimated x using all
mutation categories due to an otherwise low signal-to-noise
ratio. First, we assessed the relationship between x and the
level of gene expression in eight different organs. We observed
a significant negative correlation in all organs except of testis
(supplementary table S2, Supplementary Material online),
with the strongest correlation seen for gene expression in
the brain. As expression level between organs was highly cor-
related (data not shown), we focused on brain in all further
analyses. We fitted a MLR model including expression level in
brain, expression breadth, sex-bias in expression, the number

of PPI (an indicator of network centrality), and recombination
rate as candidate explanatory variables. The MLR analysis in-
dicated that expression level, the number of PPI and sex-bias
in expression were the most important determinants of x.
The effect of recombination rate was only marginally signifi-
cant and expression breadth was not significant (table 1).

To account for gBGC, we investigated the relationship
between several measures of selection and the factors that
showed significant effect on x in the MLR analysis for GC-
conservative changes only. To do this and at the same time
obtain a reasonable signal-to-noise ratio, we categorized
genes into a small number of bins based on each explanatory
variable (two or three bins per analysis, supplementary table
S3, Supplementary Material online). Expression level showed
a strong negative relationship with pN/pS (supplementary fig.
S1A, Supplementary Material online) and also with the pro-
portion of sites with Nes ¼ 0–1 (supplementary fig. S1B,
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Supplementary Material online), indicative of an increase of
selective constraint with level of gene expression. In addition,
the strength of positive selection (xa and a) showed a strong
positive relationship with level of gene expression (supple-
mentary fig. S1C and D, Supplementary Material online). We
observed similar trends for groups of genes binned with re-
spect to the number of PPI (supplementary fig. S2,
Supplementary Material online). Furthermore, we explored
the relationship between measures of selection and sex-bias
in gene expression, using data from gonads (supplementary
fig. S3, Supplementary Material online). Male-biased genes,
but not female-biased genes, showed larger pN/pS than un-
biased genes, a larger proportion of sites with Nes¼ 0–1, and
higher estimates of x. Both female- and male-biased genes
showed higher xa and a compared with unbiased genes,
which indicates that sex-biased genes have a higher rate of
adaptation and a larger fraction of adaptive substitutions
than unbiased genes. Overall, these results are in good agree-
ment with the MLR analysis and support the hypothesis that
expression level, PPI, and sex-bias in gene expression influence
protein evolution in the collared flycatcher, both in terms of
constraint and the rate of adaptation.

Detection of Positively Selected Genes
Branch-site tests for genes evolving under positive selection in
the flycatcher lineage were performed on a set of 4,855 genes
based on a 10-species alignment of different bird species (see
Materials and Methods). Based on a FDR of 5%, 79 candidate
genes were identified. This test does not distinguish between
substitutions of different mutation categories. Since, to our
knowledge, branch-site tests that specifically analyze GC-
conservative changes are not available, we supplemented
the analysis by a comparison of measures of selection based
on GC-conservative changes in the candidate genes (fig. 3)
with the genome-wide average (fig. 1). As expected, estimates
of x were on average higher for genes identified as positively
selected using branch-site tests than the genome-wide aver-
age. However, these candidate genes also had higher esti-
mates of pN/pS and a higher proportion of sites with NeS
¼ 0–1, indicative of relaxed selective constraint. Figure 3
shows that putatively positively selected genes had lower
estimates of xa and a for GC-conservative changes than for
all mutations together. This seems to be a result of particu-
larly high estimates of xa and a for S-to-W changes in can-
didate genes. This indicates that putatively positively selected
genes evolve under relaxed selective constraint, and might

actually represent false positives due to biases induced by
gBGC. Evidence for false positives due to gBGC has also
been observed in primates, where the prevalence of W-to-S
substitutions (and not S-to-W substitutions) at lineage-
specific accelerated loci has been identified as a potential
problem (Berglund et al. 2009; Galtier et al. 2009). In light
of our findings, we therefore raise caution that gBGC can bias
inferences of selection in complex ways, and that many in-
ferred positively selected genes may represent false positives
from which misleading interpretations can be made.

Discussion

gBGC Biases Inferences of the Direction and Strength
of Selection
Our results based on diversity and divergence data in an avian
lineage add to a growing body of evidence that gBGC impacts
rates of protein evolution and may bias inferences of the
direction and efficacy of natural selection (Galtier et al.
2009; Ratnakumar et al. 2010; Lartillot 2013; Bol�ıvar et al.
2016; Corcoran et al. 2017). For example, our study illustrates
that the proportion of nearly neutral mutations inferred from
polymorphic data differ for different mutation categories. The
same was true for measures of the strength of selection that
rely on estimates of sequence divergence, such as x, xa, and
a. In general, the observed differences can be explained by
gBGC, but the effect is complex. The underlying model as-
sumption of the different test statistics for selection that rely
on the comparison between nonsynonymous and synony-
mous sites, such as the DFE, x, xa, and a, is that synonymous
mutations evolve neutrally. Prevalence of selection on codon
usage (SCU) could therefore further bias inferences of
selection.

Shifts in the synonymous SFS for different mutation cate-
gories mirrored the effect of demographic changes, with op-
posite effects for W-to-S and S-to-W categories. The
demographic model for GC-conservative polymorphisms
was intermediate to the demographic model for S-to-W
and W-to-S polymorphisms, without strong evidence for
change in population size. A stronger effect was observed
in high than in low recombination regions (both with and
without filtering of CpG-prone sites). These observations are
consistent with gBGC. Moreover, similar shifts were observed
for nonsynonymous mutations (Bol�ıvar et al. 2016), which
provides evidence that shifts in the SFS are not caused by
SCU, but by a mechanism operating to increase GC content
at synonymous and nonsynonymous positions, such as gBGC.
Therefore, if there is SCU, it is masked by a more conspicuous
effect of gBGC as observed in other species (Galtier et al.
2018).

With gBGC, nonsynonymous W-to-S mutations should
show the highest proportion of slightly deleterious alleles,
as these mutations will be “favored” by gBGC. On the con-
trary, nonsynonymous S-to-W mutations should show the
lowest proportion of slightly deleterious alleles segregating
as gBGC decreases the probability of fixation of this category
of mutations. Accordingly, GC-conservative changes should
show intermediate values. However, given that inferences of

Table 1. Results from a Multiple Linear Regression Analysis between
x and Different Explanatory Variables.

Variable Estimate P value

Expression level in brain 24.0731024 <2.2310216 ***
Protein–protein interactions 23.7631025 3.3731024 ***
Female-biased expression 22.0131022 5.1831025 ***
Male-biased expression 2.1131022 1.9431024 ***
Recombination rate 21.0031023 0.08
Expression breadth 1.4131022 0.27
Adjusted R-squared 0.053 <2.2310216 ***

***Statistical significance at P< 0.001 level.
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the proportion of slightly deleterious alleles are based on the
contrast between nonsynonymous and synonymous muta-
tion, the mentioned predictions are only valid under the as-
sumption that synonymous mutations are not affected by
gBGC (within each mutation category and bin). This assump-
tion is not met in the collared flycatcher (Bol�ıvar et al. 2016).
On the contrary, synonymous sites seem to be more strongly
affected by gBGC, as the current GC is farther away from its
equilibrium value. Since synonymous and nonsynonymous
sites are differently affected by gBGC, the demographic cor-
rection either underestimates (in the case of S-to-W) or over-
estimates (in the case of W-to-S) the efficacy of selection.
Therefore, the respective DFE for S-to-W and W-to-S muta-
tions, as well as for all mutations, are biased partly because of
a real effect of gBGC on nonsynonymous mutations and
partly because of an overcorrection due to a stronger effect
of gBGC on synonymous mutations. Tearing these two
aspects apart is not trivial. Similarly, we show that estimates
of x, xa, and a are higher for S-to-W mutations, whereas they
are lower for W-to-S mutations, although the latter effect is
more modest. Estimates of x are higher, and those of xa and
a are lower, based on all mutations compared with estimates
based on GC-conservative changes only. In our study species,
xa and a are thus likely to be underestimated in conventional
analyses using all sequence data. It is reasonable to expect
that similar biases would occur in other organisms where
gBGC is prevalent.

As GC-conservative changes are not affected by gBGC,
they should represent the most appropriate category of sub-
stitutions to use in analyses of selection and, for example, the
relationship between selection and recombination. The neg-
ative relationship between x and recombination rate seen
when implementing a regular codon branch-specific model in
PAML (Bol�ıvar et al. 2016) was less evident when based on the
L95 model implemented in bioþþ, which allows for nonsta-
tionary base composition. This highlights the importance of
the applied models; allowing for nonequilibrium conditions

alleviates biases in evolutionary rate estimation (Kaehler 2017;
Gu�eguen and Duret 2018) and enables more accurate assess-
ment of the impact of gBGC. Moreover, the increased efficacy
of positive selection with increased recombination rate indi-
cated in this study using all sequence data is probably not
correct, as the relationship was not detected with GC-
conservative changes only. Furthermore, genes falling into
the high-recombination bin showed on an average lower
estimates of a for GC-conservative changes than for all muta-
tions together. It thus seems that while a on an average is
larger based on GC-conservative changes, not all genes follow
this trend. Our analysis suggests that the relative contribution
of S-to-W versus W-to-S changes to estimates of a is respon-
sible for the observed difference. The W-to-S contribution can
explain the lower a when analyzing all mutations compared
with GC-conservative changes only (fig. 1). On the other
hand, the genes identified as positively selected using
branch-site tests (fig. 3) showed lower estimates of a for
GC-conservative changes than for all mutations together
due to a strong contribution of S-to-W changes to estimates
of a.

High Degree of Selective Constraint and Low
Proportion of Adaptive Substitutions in Protein
Coding Genes in the Collared Flycatcher
Our results indicate a prevalent role of purifying selection,
that is, a high degree of selective constraint, in gene sequence
evolution in the flycatcher lineage. Only 10% of segregating
nonsynonymous mutations were estimated to be effectively
neutral (based on GC-conservative changes; 13% based on all
mutations). Compared with some well-studied animal model
organisms, this estimate lies in between that observed in D.
melanogaster (5–6%) and humans (21–34%) (Keightley and
Eyre-Walker 2007; Halligan et al. 2010), which is consistent
with long-term Ne of collared flycatchers (�4� 105 in the
study population) (Nadachowska-Brzyska et al. 2016) being
larger than in humans (�104), but smaller compared with
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Drosophila (�106) (Charlesworth 2009; Halligan et al. 2010).
The fraction of effectively neutral mutations in flycatcher is
similar to that estimated for mice (Mus musculus) (10–17%),
which also has similar Ne (�6� 105) (Halligan et al. 2010;
Kousathanas and Keightley 2013).

Our estimate of a indicates that a rather low proportion of
nonsynonymous substitutions have been fixed by positive
selection (a¼ 0.27 based on GC-conservative changes, 0.18
based on all mutations). This value is comparable or lower to
what has previously been estimated for other birds and rep-
tiles (Axelsson and Ellegren 2009; Galtier 2016). It is in the
same range as reported for humans (0.13–0.31), but lower
than for Drosophila (> 0.5) and mice (0.29–0.57) (Halligan
et al. 2010, 2013; Kousathanas and Keightley 2013). It is im-
portant to remember that a is a relative measure and it is
therefore problematic to use it for comparisons of the
strength of positive selection in different lineages. It strongly
depends on xna, which may often differ between species.
However, also the estimate of xa of 0.03 for the collared
flycatcher (based on GC-conservative changes; 0.025 based
on all mutations) is smaller than estimates observed for sev-
eral other species of birds and reptiles, which are all >0.08
(Galtier 2016). Since estimates specifically based on GC-
conservative changes are rarely available, we cannot make
broad-scale comparisons with other species. Variation in
the strength of gBGC and in the temporal stability of the
recombination landscape between species might bias com-
parisons. Conclusions on how the rate of adaptive evolution
varies among species might thus need careful reconsideration.
However, recently reported estimates of selection based on
GC-conservative changes in another passerine bird, the great
tit (Parus major), indicate similar efficacy of selection as in
flycatchers (Corcoran et al. 2017). Estimates of the proportion
of effectively neutral mutations (�10%), xa (�0.03), and a
(�0.22) in the great tit are similar to the collared flycatcher
estimates, consistent with similar Ne of the two species (Laine
et al. 2016).

There are obviously biological factors other than differen-
ces in Ne that may result in differences in the DFE, a, and xa

among species. For example, differences in the shape of the
fitness landscape may cause the DFE to differ between species
even if they have similar Ne. The distance of the population to
the fitness optimum will determine the average selection
coefficient of new mutations, affecting the DFE and therefore
also a and xa (Lourenco et al. 2013; Huber et al. 2017).

Expression Level, the Number of PPI and Sex-Bias in
Expression, but Not HRI, Modulate the Efficacy of
Selection
We found no clear relationship between recombination rate
and either x, xa, or a, when analyzing GC-conservative
changes only. This suggests that HRI plays a minor role in
determining genome-wide rates of protein evolution and that
variation in local Ne does not drive intragenomic variation in
xa or a in Ficedula flycatchers. Alternatively, given a lower
mutation rate for GC-conservative than for other changes
(supplementary table S4, Supplementary Material online),

our power to detect these relationships may not have been
sufficient. Moreover, our binning approach only considered
three recombination categories, where the average recombi-
nation rate of the low recombination regions was 0.77 cM/
Mb. It is therefore possible that HRI occurs in regions with
lower recombination rate, but is not detected by this binning
approach. Our results therefore do not exclude the presence
of HRI, but suggest that gBGC has a stronger impact on
genome-wide patterns of divergence and diversity in flycatch-
ers. Nonetheless, the absence of a strong HRI signal is an
unexpected observation. In contrast to many other organ-
isms, the recombination landscape of avian lineages has been
shown to be stable across millions of years (Singhal et al.
2015). An evolutionary stable recombination landscape
allows for signatures of gBGC to accumulate over time.
Similar, signatures of HRI may be more evident in evolution-
ary stable low-recombining regions. Interestingly, and in con-
trast to our findings in the collared flycatcher, it was suggested
that recombination rate is a key factor that modulates the
efficacy of selection in another passerine bird, the great tit
(Gossmann, Santure, et al. 2014). Evidence for HRI was still
observed after accounting for gBGC (Corcoran et al. 2017).
These conflicting results suggest that the impact of recombi-
nation on the efficacy of selection varies between species (e.g.,
related to changes in Ne through time), and that generaliza-
tions among taxa might not be justified.

Our results indicated strong relationships between all es-
timated measures of selection and gene expression level as
well as the number of PPI. A correlation between functional
constraint and protein properties has been reported for sev-
eral taxa (reviewed in Pal et al. 2006; Zhang and Yang 2015);
genes that are highly expressed or part of several protein
complexes or metabolic pathways accumulate fewer slightly
deleterious alleles compared with other genes. Similar results
have been reported in other passerine bird species
(Gossmann, Santure, et al. 2014). Besides, we observed that
gene expression level and PPI were positively correlated with
xa and a, which suggests that highly expressed genes and
genes part of several protein complexes have a higher rate of
adaptation and a larger fraction of adaptive substitutions.
Alternatively, this may indicate that particularly pronounced
SCU leads to an overestimation of positive selection (xa and
a) in these genes. If SCU is strong in these genes, it could
explain lower estimates of dS in highly expressed genes (sup-
plementary fig. S4B, Supplementary Material online), and
higher values of dN/dS could falsely be interpreted as stronger
signature for adaptive evolution (Matsumoto et al. 2016).
Similar to previous reports across different taxa (Gossmann,
Schmid, et al. 2014; Lipinska et al. 2015; Yang et al. 2016) we
also found that both female- and male-biased genes have
higher rates of adaptation (higher estimates of xa) compared
with unbiased genes. Male-biased genes seemed to evolve
under weaker selective constraint compared with female-
biased and unbiased genes (lower pN/pS). Since sexual selec-
tion is typically more pronounced in males than in females
(Clutton-Brock 2007; Harrison et al. 2015), this could lead to
stronger signatures of sexually antagonistic selection on male-
biased than on female biased genes (Harrison et al. 2015). This
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might explain the observed differences in pN/pS between fe-
male- and male-biased genes.

In summary, we have investigated which factors determine
rates of protein evolution in the temporally stable recombi-
nation environment of the collared flycatcher genome. There
is evidence that rates, and evolutionary conclusions based on
these rates, are strongly impacted by gBGC. Specifically, we
observed that the strength of selection was underestimated
when all sequence data were used and that a more unbiased
picture was given when only analyzing GC-conservative
changes, which are not affected by gBGC. Our study therefore
highlights the importance of taking gBGC into account when
analyzing genome-wide patterns of selection, especially for
making comparison between taxa where the strength of
gBGC may vary. We further show that individual protein
properties—gene expression level, the number of PPI and
sex-biased gene expression—are important determinants of
both the strength of negative and positive selection in the
collared flycatcher.

Materials and Methods

Coding Sequence Divergence
Alignments of one-to-one orthologous sequences between
collared flycatcher, zebra finch, and chicken (Gallus gallus)
were retrieved from Bol�ıvar et al. (2016). Briefly, Ensembl ver-
sion 73 (Flicek et al. 2014) sequences were aligned with
PRANK v.140603 (options: þF, translate) (Loytynoja and
Goldman 2005) and filtered using the GUIDANCE/HOT al-
gorithm (codon model, column cutoff ¼0.99) (Landan and
Graur 2007; Penn et al. 2010). Gene-by-gene estimates of x
were obtained by fitting a free-ratio model in PAML v.4.6
(Yang 1997). In addition, estimates of the number of non-
synonymous and synonymous substitutions for different mu-
tation categories (S-to-W, W-to-S, GC-conservative, as well as
all changes) were based on concatenated alignments (i.e., bins
of genes) using the L95 model (Lobry 1995) implemented in
the package BppML in the Bioþþ suite of programs (Dutheil
and Boussau 2008). In this case, we used 0- and 4-fold degen-
erated sites as proxies for nonsynonymous and synonymous
sites, respectively. We excluded all genes with a coding se-
quence length shorter than 200 base-pairs, genes with un-
known genomic location, sex-linked genes, and genes in
microchromosomes with <5 Mb of assembled sequence
(chromosomes LGE22, 25, and Fal35) according to the
FicAlb1.5 assembly version of the collared flycatcher genome
(Kawakami et al. 2014). This resulted in a set of 7,919 genes. In
order to compute the number of divergent sites and the
number of sites per mutation category, we first computed
the total number of GþC and, Aþ T sites, as well as the total
number of 0- and 4-fold degenerated sites in the collared
flycatcher. The number of S-to-W, W-to-S, and GC-
conservative sites is equal to the number of GþC, Aþ T,
and total number of nucleotides, respectively. This is because
the number of possible S-to-W and W-to-S changes is deter-
mined by the GC and AT content, respectively. The number
of divergent sites of each mutation category was then calcu-
lated by multiplying the number of sites of the respective

category by the respective substitution rate estimated by
BppML. The number of divergent sites in each mutation
category is provided in supplementary table S4,
Supplementary Material online.

Coding Sequence Diversity
We obtained single-nucleotide polymorphisms (SNP) from
these 7,919 genes based on whole-genome resequencing
data from 20 unrelated individuals of an Italian collared fly-
catcher population; information regarding data collection
and processing is described in detail in (Burri et al. 2015).
Briefly, whole-genome Illumina reads were mapped to the
collared flycatcher genome assembly (version FicAlb1.5) using
BurrowsWheeler Aligner 0.7.4 (bwa-mem) (Li and Durbin
2009). The Genome Analysis Toolkit (GATK) 2.8-1
(McKenna et al. 2010) was used for variant calling. Base
Quality Score Recalibration and variant quality score recali-
bration were applied. In addition to the variant calling and
filtering criteria described in Burri et al. (2015), we removed
sites with a mean mapping quality <20 or variant quality
<15, sites from overlapping transcripts, and sites that showed
more than two alleles. We discarded genotypes with lower
coverage than 5� per individual and sites for which we had
<12 genotypes (i.e., 24 allele copies) sampled. To estimate the
site frequency spectra (SFS) and pN/pS, we randomly sampled
24 alleles at every site to make sample size equal among sites.
We restricted our analysis to over 2.6 million 0-fold and 0.4
million 4-fold degenerated sites as representatives for non-
synonymous and synonymous sites, respectively. This
resulted in a set of 9,528 SNPs, that is, an average of 1.2
SNPs per gene.

The number of SNPs in each mutation category is provided
in supplementary table S4, Supplementary Material online.
For polarization of W-to-S and S-to-W polymorphisms we
used available genotype information from two outgroup fly-
catcher species, Ficedula parva and F. hyperythra (Burri et al.
2015). Following Bol�ıvar et al. (2016), we defined the ancestral
state as the allele shared by at least two out of the three
species, discarding sites where more than one species was
polymorphic. The number of 0- and 4-fold degenerate sites
of each mutation category was calculated from the ancestral
Ficedula sequence. Specifically, the number of S-to-W, W-to-S,
and GC-conservative sites is equal to the number of GþC,
Aþ T, and total number of 0- and 4-fold degenerate sites,
respectively.

We excluded 22,212 CpG and CpG-prone sites (i.e., CA,
TG, and CG, as well as potential CpG sites such as NG and
CN) from the ancestral sequence in order to avoid problem-
atic polarization and inferences based of sites affected by
CpG-hypermutability (Hernandez et al. 2007); the impact of
CpG filtering is illustrated in supplementary figure S5 and
table S1, Supplementary Material online. Moreover, signa-
tures of negative selection on synonymous and/or nonsynon-
ymous CpG-prone sites could be confounded with the
signature of gBGC on S-to-W changes, making the interpre-
tation of the results more difficult. Since we were interested in
the relative impact of gBGC between different mutation cat-
egories, it was therefore reasonable to exclude CpG-prone
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sites. Furthermore, selective constraint on CpG sites may also
affect GC-conservative mutations. Note that the relative pro-
portion of CpG sites overlapping with synonymous and non-
synonymous sites may differ and may vary among genes
(Suzuki et al. 2009; Ying and Huttley 2011), which could
lead to biases in the selection statistics that are based on
the comparison between the two site classes.

Estimation of the Distribution of Fitness Effects, xa,
and a
The DFE was estimated using the DFE-alpha software v2.16
(with default parameters) (Keightley and Eyre-Walker 2007;
Eyre-Walker and Keightley 2009), which is based on a maxi-
mum likelihood framework to model the DFE of nonsynon-
ymous mutations assuming a gamma distribution of fitness
effects on the negative real line. The program estimates the
DFE by comparing the folded SFS of mutations that are neu-
trally evolving to mutations that are under selection. The SFS
of neutrally evolving mutations is used to estimate the pop-
ulation mutation rate (Nel) allowing for simple demographic
scenarios that may equally influence the neutral and the se-
lected SFS. The null model assumes a constant Ne (constant
model) through time, while the alternative model allows for a
one-step change in Ne (one-step change model). We com-
pared the two models using a LRT with a 0.01 significance
level and show the results for the best-fit model for every
mutation category and bin. The parameters of the demo-
graphic model for each mutation category and recombina-
tion rate bin were estimated using only synonymous sites of
that respective category and bin. Hence, the “selected” SFS
was normalized by the “neutral” SFS of the same genomic
region and mutation category, a normalization procedure
that corrects for variation in mutation rate along the genome.
Importantly, it also accounts for variation in the degree of
linkage between sites and hence the strength of background
selection and genetic draft in different genomic regions
(Messer and Petrov 2013; Huber et al. 2017). To assess the
goodness of fit statistically, we estimated r2 between the ob-
served and expected SFS for each mutation category
(Keightley and Eyre-Walker 2007); the fit is shown in supple-
mentary figure S6 and table S5, Supplementary Material
online.

The estimation of xa and a was performed with the DFE-
alpha software v2.16 (Keightley and Eyre-Walker 2007; Eyre-
Walker and Keightley 2009), and based on the total number
of nonsynonymous and synonymous substitutions retrieved
for the different mutation categories using the L95 model in
the bioþþ suite (as described earlier) and the respective DFE.
As the L95 model corrects for multiple substitutions, the
Jukes–Cantor correction made by DFE-alpha was not applied,
neither a correction for ancestral polymorphisms.

Estimates of Recombination Rate
Estimates of recombination rate in cM/Mb for nonoverlap-
ping 200-kb windows of the collared flycatcher genome were
retrieved from Kawakami et al. (2014). Rates were assigned to
each gene according to the window they were located in.
When a gene covered two or more windows, we calculated

a weighted average of the recombination rates in the corre-
sponding windows. We ranked genes and created bins of low,
medium, and high recombination rate, where each bin con-
tained the same number of genes.

RNAseq Data and Expression Patterns
The collection and early processing stages of transcriptome
data from eight different organs (brain, kidney, liver, lung,
muscle, skin, ovary, and testis) of four male and four female
collared flycatchers have been described in previous work
(Uebbing et al. 2013, 2016). For downstream processing of
the data we first used FastQC to check the quality of RNA-seq
reads. All duplicated reads were marked and reduced to a
single copy using Picard v 2.0.1. We mapped untrimmed reads
from each sample to a repeat-masked assembly version using
default parameters in STAR v.2.5.1b (Dobin et al. 2013). Only
uniquely mapped reads were used for further analyses.

We estimated the normalized gene expression level in
transcripts per million (TPM) for every annotated gene and
separately for every organ using RSEM (Li and Dewey 2011).
We discarded the 5% of genes with the highest coefficient of
variation in TPM values within males and within females,
respectively. Genes expressed in less than four individuals
across both sexes and genes with an average TPM <1 were
removed in order to avoid genes with a low signal-to-noise
ratio within and between sexes. Based on ranking we gener-
ated bins of low, medium, and high expression level for each
organ separately. Finally, expression breadth was measured
based on all eight organs as the tissue specificity index (s)
(Yanai et al. 2005) that ranges from 0 (even expression across
all tissues) to 1 (tissue-specific). Ranking was also made based
on s and bins were generated as above.

To assess sex-bias in gene expression we first applied
HTseq v0.6.1 (Love et al. 2014; Anders et al. 2015) to uniquely
mapped reads and computed transcript abundance. We re-
stricted the read counting to reads with a mapping quality of
at least 30, and set the HTseq model to “union” and “reverse
stranded.” Then we used the DESeq2 package (Love et al.
2014) to estimate the fold-change in expression between
male and female gonads, which is the organ with the highest
proportion of sex-biased genes. DESeq2 estimates differential
expression between two groups while accounting for over-
dispersion. HTseq was used for quantification instead of
RSEM, as it is not recommended to use DESeq2 in combina-
tion with RSEM (Love et al. 2014). Genes were subsequently
grouped into three categories based on their fold-change
between sexes: genes with a male-to-female expression ratio
(log2male�log2female) <�1 were assigned as female-biased
and genes with a ratio>1 were assigned as male-biased, while
the remaining genes were considered unbiased.

Protein–Protein Interactions
The number of protein–protein interactions for chicken
genes was retrieved from FunCoup v.3.0 (Schmitt et al.
2014) and limited to 1:1 flycatcher-chicken orthologs. In
FunCoup different evidence types for protein–protein inter-
actions result in a probabilistic confidence score (pfc) that
ranges from 0 to 1, reflecting the amount of evidence for the
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interaction, for which we chose a threshold of 0.5. We ranked
genes and created bins of low, medium, and high number of
PPI as above.

Concatenation of Genes and Estimation of
Confidence Intervals
For binning we only included genes for which we had both
divergence and diversity data. CIs were obtained by indepen-
dently estimating parameters for 100 bootstrap replicates by
sampling genes with replacement within each bin. Note that
resampling of genes instead of sites resulted in larger CIs since
sites within genes might be dependent on each other due to
the effect of linkage. The standard error of the mean (SE) for
each test statistic was estimated as the standard deviation of
the resampling distribution divided by 10. CIs were defined as
the product of the SE and the 0.5th and 99.5th percentiles of
the Student’s t-distribution.

Branch-Site Test for Positive Selection
Orthologous sequences of zebra finch, chicken, budgerigar
(Melopsittacus undulates), crested ibis (Nipponia nippon), lit-
tle egret (Egretta garzetta), emperor penguin (Aptenodytes
forsteri), turkey (Meleagris gallopavo), duck (Anas platyrhyn-
chos), and ostrich (Struthio camelus) were retrieved from the
Avian Phylogenomic Project Database (Zhang et al. 2014).
Collared flycatcher sequences were retrieved from the
Ensembl database and added based on 1:1 orthology with
chicken (Yates et al. 2016). In case of splicing isoforms, the
longest transcript was kept. The species were chosen follow-
ing three main criteria: i) to include a sufficient number of
species in the tree to have power to detect positive selection
using branch-site tests (McBee et al. 2015), ii) the topology of
the tree needed to be well supported (Jarvis et al. 2014), and
iii) species with the lowest proportion of gaps in a 48-avian
species alignment from the avian phylogenomics project
(Jarvis et al. 2014); a large fraction of gaps could indicate
assembly problems. Sequences were aligned with PRANK
v.140603 and filtered using the GUIDANCE/HOT algorithm
as above. The alignments were further filtered using
GBLOCKS (Castresana 2000) with stringent parameters (min-
imum number of sequences for a conserved position¼ 7,
minimum number of sequences for a flanking position¼ 9,
maximum number of contiguous nonconserved position-
s¼ 6, minimum length of block¼ 10). In total, data for
4,855 orthologs were available.

We conducted branch-site tests for signatures of positive
selection using the codeml program in the PAML4.7 package
on a gene-by-gene basis, where the flycatcher branch was
specified as the only foreground branch in the tree. We
used a likelihood ratio test with a 0.05 significance level be-
tween two nested models: the nearly neutral model (M1a),
and a model for positive selection (M2a). P values from the
tests were Bonferroni–Holm corrected. Genes significant after
Bonferroni–Holm correction were considered positively se-
lected, whereas remaining genes were classified as other
genes.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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