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MicroRNAs (miRNAs) are small non-coding RNAs, which play important roles in regulating
various biological functions. Many available miRNA databases have provided a large
number of valuable resources for miRNA investigation. However, not all existing databases
provide comprehensive information regarding the transcriptional regulatory regions of
miRNAs, especially typical enhancer, super-enhancer (SE), and chromatin accessibility
regions. An increasing number of studies have shown that the transcriptional regulatory
regions of miRNAs, as well as related single-nucleotide polymorphisms (SNPs) and
transcription factors (TFs) have a strong influence on human diseases and biological
processes. Here, we developed a comprehensive database for the human transcriptional
regulation of miRNAs (TRmir), which is focused on providing a wealth of available
resources regarding the transcriptional regulatory regions of miRNAs and annotating
their potential roles in the regulation of miRNAs. TRmir contained a total of 5,754,414
typical enhancers/SEs and 1,733,966 chromatin accessibility regions associated with
1,684 human miRNAs. These regions were identified from over 900 human H3K27ac
ChIP-seq, ATAC-seq, and DNase-seq samples. Furthermore, TRmir provided detailed
(epi)genetic information about the transcriptional regulatory regions of miRNAs, including
TFs, common SNPs, risk SNPs, linkage disequilibrium (LD) SNPs, expression quantitative
trait loci (eQTLs), 3D chromatin interactions, and methylation sites, especially supporting
the display of TF binding sites in the regulatory regions of over 7,000 TF ChIP-seq samples.
In addition, TRmir integrated miRNA expression and related disease information,
supporting extensive pathway analysis. TRmir is a powerful platform that offers
comprehensive information about the transcriptional regulation of miRNAs for users
and provides detailed annotations of regulatory regions. TRmir is free for academic
users and can be accessed at http://bio.liclab.net/trmir/index.html.
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INTRODUCTION

MicroRNAs (miRNAs) are single-stranded small molecular
RNAs, 21–23 bases in size produced by Dicer processing of
single-stranded RNA hairpin loop precursors. As non-coding
RNAs with regulatory functions, miRNA participate in various
biological processes, including the development, organ
formation, cell proliferation, differentiation, and fat
metabolism (Inui et al., 2010; Li et al., 2018; Wang et al.,
2018). For example, nuclear miR-122 can directly regulate
survival via the regulation of miR-21 at the posttranscriptional
level (Wang et al., 2018). In recent years, more abundant miRNA-
related evidence has provided further insights into miRNAs and
shown that some miRNAs were associated with various diseases
such as cancers (Esquela-Kerscher and Slack, 2006; Shi et al.,
2007; Sylvestre et al., 2007; Siva et al., 2009; Sun et al., 2009; Yang
et al., 2013; Rupaimoole and Slack, 2017). Significant progress has
been made in identifying miRNA targets and their association
with cancers and diseases (Li et al., 2014; Georgakilas et al., 2016;
Li et al., 2018; Palmieri et al., 2018; Wu et al., 2019). It is worth
noting that miRNAs are often regulated by related super- or
typical enhancers in addition to promoters (Duan et al., 2016;
Suzuki et al., 2017; Sin-Chan et al., 2019; Ri et al., 2020). Typical
enhancers, such as distal cis-regulatory DNA elements positively
participate in the regulation of genes in a tissue-specific manner
(Shlyueva et al., 2014). Super-enhancers (SEs) are emerging as
clusters of enhancers that are densely occupied by master
regulators and mediators and are thought to act as switches to
determine the cell identity and fate (Hnisz et al., 2013; Whyte
et al., 2013). From previous literature-based reviews, we found
that typical enhancers/SEs could regulate the adjacent miRNAs
(Matsuyama and Suzuki, 2019). For example, via integrated
analysis of the potential connection between SEs and miRNAs,
Young et al. found that SEs were related to many miRNAs and
master transcription factors (TFs), and they reported on the
relationship between SE-miRNAs and cancers (Suzuki et al.,
2017). The transcription of miR-146a and miR-155, driven by
SEs, in turn downregulates both in vitro and in vivo canonical
inflammatory genes expression by targeting inflammatory
mediators (Duan et al., 2016). Ri et al. found that the
overexpression of miR-1301 induced by the Klf6 SE could lead
to significant inhibition of proliferation in human hepatoma
HepG2 cells (Ri et al., 2020). In addition, recent studies have
suggested that single-nucleotide polymorphisms (SNPs) within
enhancers could affect TF binding sites in the regulation of
diseases (Izzi et al., 2016; Liu et al., 2017). A possible role for
the epigenetic regulation in regulating miRNA expression has
also been reported by some researchers (Ramassone et al., 2018;
Yao et al., 2019). Epigenetic regulation includes DNA
methylation and chromatin/histone modifications, all of which
can participate in regulating miRNA expression. Some studies
have shown that over 100 miRNAs were epigenetically regulated
in different cancers, and the methylation frequency of human
miRNA genes appeared to be much higher than that of protein-
coding genes (Weber et al., 2007; Kunej et al., 2011). Consistent
with these findings, researchers have found that miRNA genes
frequently overlapped not only the cancer-associated genomic T
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regions but also the CpG islands (Calin et al., 2004; Morales et al.,
2017). One study showed that epigenetic modifications within
mir290 enhancers dynamically altered switching, resulting in cell-
to-cell heterogeneity (Song et al., 2019). Zhao et al. highlighted
how chromatin states directed miRNA-mediated network motifs
by integrating the epigenome and regulatome (Zhao et al., 2016).
All of this evidence emphasizes the importance of integrating and
calculating miRNA-related transcription regions and the
regulation of genes within these regions (epi).

Many miRNA databases have been built, such as HMDD (Li
et al., 2014), IMOTA (Palmieri et al., 2018), DIANA-miRGen
v3.0 (Georgakilas et al., 2016), piRTarBase (Wu et al., 2019),
DIANA-TarBase (Vlachos et al., 2015), mirDIP (Tokar et al.,
2018), TFmiR (Hamed et al., 2015), mirTrans (Hua et al., 2018),
and TransmiR v2.0 (Tong et al., 2019). However, these existing
databases only support a small amount of genetic data and
annotation information within miRNA promoter regions.
They ignore the importance of information within the
transcriptional regulatory regions (especially the typical
enhancer/SE/chromatin accessibility regions of miRNAs). With
the development of next-generation sequencing technology, we
can obtain more H3K27ac and ChIP-seq data, which can be used
to identify typical enhancers, SEs, and more ATAC-seq data, and
this can be used to identify chromatin accessibility regions.
Consequently, there is an urgent need to integrate and process
existing resources to establish a database that contains more
comprehensive information about the transcriptional regulation
of miRNAs.

Based on the earlier analysis, we established a database which
could provide more comprehensive transcriptional regulatory
information and annotation information for miRNAs. First,
we collected as many samples as possible and used process
frameworks to identify miRNA regulatory regions from more
than 900 ATAC-seq, H3K27ac ChIP-seq, and DNase-seq
samples. Furthermore, in order to enable researchers to
further understand the transcriptional regulatory mechanisms
of miRNAs, we provided more detailed annotation information
about the transcriptional regulatory regions of miRNAs, such as
TFs collected by ChIP-seq or predicted by FIMO (Grant et al.,
2011) and methylation sites from multiple sources and other
regions. In addition, TRmir provided additional information
about miRNAs including miRNA-related diseases, extensive
pathway analysis, and miRNA expression. It can be seen from
Table 1 that our database was far superior to other databases in
both the number of transcriptional regulatory entries and
annotation information. In conclusion, TRmir was a human
miRNA transcriptional regulation database, which integrated
data storage, friendly interface query, detailed annotation,
online analysis, and other functions.

DATABASE CONTENT AND METHODS

Identification of Transcription Regulatory
Regions
Because the primary miRNA transcription product (pre-miRNA)
is cleaved into a precursor miRNA by RNase Drosha in the

nucleus (Hamed et al., 2015), themechanisms underlyingmiRNA
transcription are unclear due to the lack of experimental methods
for detecting miRNA transcription start sites (TSSs) with high
resolution. Thanks to the recent development of high-throughput
deep sequencing techniques, the identification of miRNA TSSs
has become more accurate (Consortium et al., 2014). Aiming to
more accurately identify miRNA promoter regions, we integrated
TSSs from miRbase (Griffiths-Jones et al., 2008) and microTSS,
which can provide highly accurate TSSs for miRNAs (Georgakilas
et al., 2014). Importantly, we applied microTSS as the first
algorithm on sequenced RNA-, ChIP-, and DNase-Seq data.
Finally, we obtained 12,549 TSSs for 1,684 miRNAs. We
obtained the promoter region by extending the upstream and
downstream sequences from the transcription start site (e.g., 5 kb/
1 kb). Moreover, we integrated the details of miRNAs by referring
to miRBase (Griffiths-Jones et al., 2008) and DIANA-miRGen
v3.0 databases (Georgakilas et al., 2016). For the sake of version
uniformity, we used the liftOver tool of UCSC (Fujita et al., 2011)
to convert the genomic locations of miRNAs.

We collected H3K27ac, ChIP-seq, and ATAC-seq data of
various samples from public databases. Following a unified
and standardized analysis process, we identified the DNA
regulatory elements of all samples, including SEs, enhancers,
and chromatin accessibility regions. Aiming to identify typical
enhancer/SE regions, we collected H3K27ac ChIP-seq sequencing
data from hundreds of different tissues/cells in multiple databases
such as NCBI GEO/SRA (Barrett et al., 2011), Roadmap
(Bernstein et al., 2010), ENCODE (Consortium, 2012), and
GGR (Figure 1; Supplementary Table S1) (Lovén et al.,
2013). We used Bowtie (Langmead et al., 2009; Fujita et al.,
2011; Hnisz et al., 2013) to align the reads to the reference
genome. Next, we used MACS (v1.4.2) (Zhang et al., 2008)
with the command “macs14 -p 1e-9 -w -S --keep-dup =
auto–wig--single-profile --space = 50” to further identify the
enrichment information of H3K27ac, including peak position
information and credibility. Finally, we used ROSE (Lovén et al.,
2013) to identify SEs. In the recognition process, we stitched
together the enhancers with a range of 12.5 kb and then sorted
them according to the signal strength. We distinguished the
threshold between SEs and enhancers based on the signal
value obtained from the tangent point of the tangent with a
slope of 1. DNase-seq and ATAC-seq (Meyer and Liu, 2014) as
the more popular sequencing technologies were used for the
identification of chromatin accessibility regions. For DNase-seq
data, we obtained 290 DNase-seq samples of various cells/tissues
from ENCODE (Consortium, 2012), Roadmap (Bernstein et al.,
2010), and Cistrome (Mei et al., 2017). ATAC-seq data were a
valuable resource for the systematic investigation of gene
regulatory processes and supplied a wealth of information on
the susceptibility, mechanisms, prognosis, and potential
therapeutic strategies of diverse cancer types (Meyer and Liu,
2014). ATAC-seq is a sequencing method that uses Tn5
transposase to capture open regions in nuclear genomic DNA.
We manually collected 128 ATAC-seq samples bed files from
publicly available human ATAC-seq datasets in three resources
including Cistrome (Mei et al., 2017), NCBI (Barrett et al., 2011),
and TCGA (Corces et al., 2018) (Supplementary Table S2). The
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Python script GeneMapper.py from ROSE was used to predict the
related regions using three different strategies. It is worth noting
that these regions have been shown to loop with neighboring
genes (Suzuki et al., 2017). All pipelines were written using the
RefSeq (GRCh37/hg19) human gene annotations. Finally, we
obtained 5,754,414 typical enhancers/SEs and 1,733,966
chromatin accessibility regions associated with miRNAs.

Annotation of Related Regulatory Regions
In order to further explore the function of miRNAs, we provided
detailed annotation information for each transcriptional
regulatory region of miRNAs. First, we obtained more than
7,000 ChIP-seq datasets of 952 TFs from ENCODE
(Consortium, 2012), Cistrome (Mei et al., 2017), Remap
(Chèneby et al., 2018), ChIP-Atlas, and GTRD (Yevshin et al.,
2017). Each database carried out strict quality control on ChIP-
seq data. And then the liftOver tool of UCSC was used to convert
these peak datasets to the latest genome assemblies, and regions
that failed to transfer were discarded. We obtained over
3,000 DNA-binding motifs for ~700 TFs, which were collected
from JASPAR CORE 2014 vertebrates (Mathelier et al., 2014),
Jolma 2013 (Jolma et al., 2013), homeodomains (Berger et al.,

2008), UniPROBE (Robasky and Bulyk, 2011), and Wei 2010
(Wei et al., 2010). At the same time, the FIMO (Grant et al., 2011)
with the command “fimo -verbosity 1 —thresh 1e-6” from the
MEME suite (Bailey et al., 2009) was used to scan the sequences
for inferred motifs. In addition, we downloaded 450 K
methylation array data and whole-genome shotgun bisulfite
sequencing data from ENCODE (Consortium, 2012). Finally,
we obtained 198,468,712 methylation sites in total. We used beta
values as the metric to measure the level of methylation.
Furthermore, we used BEDTools (v2.25.0) with the command
“bedtools intersect -a a. bed -b b.bed” and set all the allowed
overlap fractions from BEDtools intersect defaults to 1 bp
(Quinlan and Hall, 2010) in order to identify the methylation
sites, which overlapped the transcriptional regulatory regions of
miRNAs.

Second, we obtained common SNPs from dbSNP (Sherry
et al., 2001) and calculated the SNPs with a minimum allele
frequency over 0.05 by using VCFTools (v0.1.13) (Danecek et al.,
2011). Finally, we obtained 38,063,729 common SNPs. At the
same time, we calculated LD SNPs (r2 = 0.8) for the five
superpopulations, which contained South Asian, European,
East Asian, Ad Mixed American, and African populations by

FIGURE 1 | Database introduction. Our database provides the most abundant information about human miRNA regulation. In addition to providing four regulatory
regions, we also collected a large quantity of raw data from a variety of resources in order to providemore comprehensive regulation and annotation information. TRmir is
a database platform integrating storage, visualization, analysis, and friendly query.
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using plink (v1.9) (Purcell et al., 2007). In addition, we collected
over 260,000 risk SNPs from the GWAS catalog (Welter et al.,
2014) and GWASdb v2.0 (Eicher et al., 2015). We also obtained
over 2,886,000 human eQTLs and 31,080,000 eQTL-gene pairs
from GTEx v5.0 (Carithers and Moore, 2015), HaploReg (Ward
and Kellis, 2012), and PancanQTL (Gong et al., 2018). Finally, in
order to validate the regulatory relationships predicted by our
database, we directly downloaded 179 samples of Hi-C and ChIA-
PET in BED file format from 4DGenome (Teng et al., 2016) and
OncoBase (Li et al., 2019) (Supplementary Table S3).

Functional Annotations of miRNAs
Aiming to facilitate researchers who wish to perform a systematic
investigation of the transcriptional regulation of miRNAs, we
provided additional miRNA information, including the
expression of miRNAs from multiple cancers, miRNA-related
diseases, and pathway analysis. In order to assist users in
obtaining the expression value of miRNAs in different cancers,
we downloaded the matrix expression data of 33 types of cancers
and pan-cancers, respectively (Corces et al., 2018). The miRNA
target gene data were extracted from miRTarBase (Hsu et al., 2011)
and were subsequently manually curated based on a high-accuracy
text-mining system and aims to accumulate experimentally validated
miRNA–target interactions (MTIs). We collected a large quantity of
miRNA–disease–related information from HMDD v3.0 (Li et a0l.,
2014), including the associated disease name, the confirmed
literature PubMed ID, and the description.

Identification ofmiRNAUpstreamPathways
In order to better understand the regulation mechanism of miRNA,
we provided analysis functions for pathways that regulatedmiRNAs.
Therefore, we collected 2,880 pathways and related information
from our previous work ComPAT (Su et al., 2021). When users
submit anmiRNA, we first identify the relevant TFs that regulate the
miRNA. Then, we use those TFs for pathway enrichment and obtain
significantly enriched pathway information related to themiRNA by
using the hypergeometric test (Quinlan andHall, 2010; Li et al., 2013;
Feng et al., 2016). We calculated the p-value for significant
enrichment using the following formula:

P � 1 −∑x−1
i�0

( k
i
)( n − k

s − i
)

( n
s
)

. (1)

We then used the phyper function to realize the calculation of
Eq. 1 using x as the number of genes involved in the pathway, s as
the number of genes of interest, n as the total number of genes in
the pathway, and k as the number of intersections between the
genes in the pathway and the genes input by the user.

RESULTS

Introduction to Database Usage
Users can search for the transcriptional regulatory information of
miRNAs by five approaches, including “search by miRNA

name(s) of interest,” “search by typical enhancer/super-
enhancer” [input genomic position, sample], “search by TF
name of interest,” “search by a target gene name,” and “search
by chromatin accessibility” [input genomic position, sample]
(Figure 2A–C). Users can obtain brief summary information
of search results in a table (Figure 2E). The statistics in the table
describe the genetic annotation of the three regions (Figure 2D).
If users want to obtain more information about miRNA, they can
click the “miRNA name” (Figure 2F). Users will then quickly see
the general information about miRNA including the miRNA
name, accession, mature sequence, miRNA family, precursor ID,
and genome context. In addition to the general details, the
network diagram intuitively and vividly shows not only the
regulatory relationships among miRNAs (dark blue nodes),
TFs (green nodes), and SEs (red nodes) but also the pathway
name (yellow nodes) and target gene (light blue nodes) associated
with miRNA (Figure 2F). At the same time, TRmir can provide
information about the different regulatory regions of miRNA
including, I: promoter (genomic position, TSS, and cell); II: SE/
typical enhancer (enhancer ID, genomic position, element, size,
rank, ChIP density, and is super, sample ID); and III: chromatin
accessibility (genomic position, sample name, and source). We
also provided more detailed annotation information for the three
regulatory regions mentioned before including common SNPs,
risk SNPs, eQTLs, TFs, and methylation sites (450 K array,
whole-genome shotgun bisulfite sequencing), histone
modifications, and 3D chromatin interactions (Figure 2F). For
example, when users click the “Risk SNP” button within the SE
region, TRmir can provide SNP ID, SNP position, gene, disease,
type, and p-value for risk SNPs (Figure 2F). In the “Histone”
module of the enhancer region, users can obtain the CHR, start,
end, biosample type, biosample name, and source for the histone
associated with the enhancer region (Figure 2F). When users
input hsa-mir-23a and click the “motif” button within the SE
region, TRmir can show the motif sequence, the source of DNA-
binding motifs, TF name, and TF region (Figure 2F). As an
example, when users input hsa-mir-23a (sample type: tissue,
tissue: lung, sample name: lung; Figure 2F), they can find that
the relationship between miRNA and the promoter was validated
by chromatin interaction data from the “Interaction” module.
Importantly, genome-wide identification, detailed annotation,
and regulatory relationships of different regulatory regions are
cell type-specific. Therefore, if users want to see different sample
settings on the details page, they can customize the filter by
clicking the sample option located in the middle of the page
(Figure 2F). TRmir also provides additional information
including miRNA expression, associated diseases, and
target genes.

Online Analysis Tools
To help users interactively analyze and understand the roles of
miRNAs and their regulatory mechanisms in humans, TRmir
provides miRNA pathway analysis. TRmir can identify TFs,
which are downstream from the pathways binding to the
related regions of miRNA. When users search the database by
an miRNA name, TRmir can return those significantly enriched
pathways using the hypergeometric test. The pathway analysis of
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miRNAs should greatly facilitate the study of regulatory
mechanisms. The results table returns the enriched pathways
and the related detailed information list. From the list, the user
can obtain the pathway ID, pathway name, source, annotated

gene of enrichment, annotated gene number, FDR, and p-value of
the enrichment score (Figure 2G). If users want to obtain more
information about the pathway, they can click the “Pathway ID”
to jump to the detailed information page.

FIGURE 2 |Main functions and usage of TRmir. (A) The navigation bar of TRmir. (B) Five query methods: “Search bymiRNA name(s) of interest,” “Search by typical
enhancer/super-enhancer,” “Search by TF name of interest,” “Search by a target gene name,” and “Search by chromatin accessibility.” (C) Advanced search is initiated
by inputting the miRNA name(s) of interest. (D) Figure display of statistics associated with the miRNAs. (E) The table displays the statistics for the detailed (epi)genetic
information of different regulatory regions. (F) Detailed information about the miRNA: general information about the miRNAs and target genes, the expression of
each miRNA, and mean values for each sample, diseases associated with the miRNA and detailed genetic annotations. (G) Pathway analysis: detailed information from
the pathway analysis. (H) Visualization of JBrowser. (I) Statistics of TRmir. (J) Download page of TRmir.
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User-Friendly Data Visualization and
Personalized Genome Browser
To allow users to quickly browse data, we used bootstrap
technology to develop a friendly interface for users to browse.
Furthermore, users can automatically select items to browse by
selecting “Family” and “Disease” from the navigation bar on the
left. Users can easily click the “miRNA name” to further
understand the transcriptional regulatory information for
miRNA. For better visualization of information in the genome,
we used a plugins named JBrowse (Figure 2H), which is
compatible with browsers and built on JavaScript and HTML5

(Buels et al., 2016). Furthermore, TRmir also provides graphic
visualization of chromatin interactions, quantitative statistics of
annotation information within regulatory regions, and especially
supports the relationship between TFs and miRNAs.

Data Download and Statistics
Users can quickly download the file of interest by clicking the
corresponding icon links (Figure 2J). The “Statistics” page on the
website of TRmir provides a detailed statistical table of the
miRNA transcriptional regulatory regions and annotation
information (Figure 2I).

FIGURE 3 | Main functions and usage of TRmir. Relevant validation results were obtained by inputting hsa-mir-31. (A) Search by miRNA. (B) Brief statistics on
genetic annotation of hsa-mir-31. (C) From the perspective of the SE region shown on the details page for hsa-mir-31, we can obtain detailed information about pathway
analysis, and TFs enriched in the regulatory regions. (D) Analysis of hsa-mir-31–related TFs. These related TFs are enriched in the related regulatory regions. The right
panel shows the calculation results for Spearman’s coefficient (p-value = 0.05, the −logP-value cutoff value is 1.301).
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Website Design and Development
We used MYSQL 5.7.17 for storage of the website, a lightweight
database management system run on a Linux-based Web server.
The website was built based on CSS3, PHP 8.0, and HTML5
frameworks, D3 (https://d3js.org), ECharts, and Highcharts.
Aiming to facilitate browsing by users, we used Bootstrap v3.3.
7 and JQuery v2.1.1 to design a friendly visual interface. At the
same time, JBrowse was built for the visualization of data.

Case Study
To further validate the value of using TRmir, we took the small
non-coding RNA hsa-mir-31 as an example, which is associated
with colon cancer (Figure 3A). To validate the search results of
our database, we collected experimental data from high quality
journal literature (Suzuki et al., 2017). When users search the
miRNA name by inputting hsa-mir-31, the results page first
shows the statistics of hsa-mir-31 (Figure 3B). Notably,
detailed information about hsa-mir-31 can be obtained by
clicking the “miRNA name” to view the miRNA-enhancer-
gene network and detailed annotation information within
transcriptional regulatory regions in HCT116 cells (sample
type: cell line, tissue: colon, sample name: HCT116;
Figure 3C). From the “super-enhancer region” of TRmir, we
found 22 SEs associated with hsa-mir-31 and 14 out of 22 SEs
completely overlapped with the results of a study by Richard A
Young (Suzuki et al., 2017). In the “super-enhancer region,” we
found the sample_01_03400028 in the SE of hsa-mir-31, which
was reported to show that the changes of SEs affect the
progression of cancer (Suzuki et al., 2017). Moreover, hsa-mir-
31 with gain of a SE in colon cancer cells displayed an increased
prognostic value relative to miRNAs with SE loss (Suzuki et al.,
2017). To summarize, our database on the transcriptional
regulation of miRNAs provided a new insights for deeply
understanding the transcriptional regulatory mechanism of
miRNAs.

The relationship between SEs and TFs is important for the
study of regulatory mechanisms. When we click the button
named “TF,” TRmir shows hsa-mir-31-associated TF binding
sites within the regulatory regions. We found that these 21 hsa-
mir-31–related TFs were highly consistent with colon
cancer–related TFs, such as APC, ARID1A, MCM2, MYC,
TCF3, TP53, SP1, and TOP1, which were collected from
DisGeNET (Piñero et al., 2017) and PTMD (Xu et al., 2018).
For example, oncogenic MYC expression has been reported to be
promoted byWNT signaling and AHCTF1 through SE-mediated
gene gating and to increase the rate of colon cancer cell
proliferation (Perdikopanis et al., 2021). We also found that
TF ELL2, not reported in existing studies, was associated with
colon cancer. We used the expression data of colon
adenocarcinoma (COAD) from TCGA to calculate Spearman’s
correlation coefficient, with the aim of further exploring the
relationship between the expression of 21 TFs and hsa-mir-31
(Figure 3D). According to the results of the calculations, most of
the TFs aforementioned were closely related. Furthermore, we
used the TFs to identify hsa-mir-31-associated pathways in
TRmir for pathway downstream analysis. From the results of
the analysis, we can see that three pathways including the “Wnt

signaling pathway” and the “colorectal cancer pathway” were
significantly enriched. We have provided this example to help
users understand how to use TRmir. The interaction of TFs and
hsa-mir-31 associated with colorectal cancer indicated the utility
of our database.

Similarly, as another example, we used the miRNA named
“hsa-let-7b” as the input for “Search by miRNA name(s) of
intersect.” hsa-let-7b was significantly enriched in human
pericardial fluid, and enhanced expression of hsa-let-7b has
been experimentally linked to cardiovascular disease (Beltrami
et al., 2017). On the results page, users first obtained the “Detail
information of miRNA.” After clicking the “miRNA name,”
TRmir provided the network diagram of hsa-let-7b and
regulatory information about hsa-let-7b. When we set the
sample name as the heart left ventricle (sample type: tissue,
tissue: heart left ventricle, sample name: heart left ventricle),
we could find an SE named the “sample_00_01400330” from the
“Super-enhancer region.”When users clicked the “TF” button in
the “Super-enhancer region,” we found that GATA4 occupied the
hsa-let-7b related SE region. GATA4 played an important role in
heart development, cardiomyocytes, and cardiovascular disease,
and has been extensively studied (Heikinheimo et al., 1994;
Molkentin et al., 1997). For example, Ang et al. provided the
regulatory landscape regarding GATA4 in human cardiac
development and function. GATA4 widely co-occupied the
cardiac SEs which cause dysregulation of genes, leading to
cellular dysfunction in human cardiomyocytes (Ang et al.,
2016). More importantly, in the section “Diseases associated
with hsa-let-7b,” hsa-let-7b was associated with cardiovascular
disease. These results demonstrated the availability and biological
value of using TRmir for miRNA research (Supplementary
Figure S1).

DISCUSSION

miRNAs are important small non-coding RNAs, which play
important roles in the transcriptional regulation of biological
processes. The regulation of miRNAs is associated with various
regulatory regions and not just the promoters. With the
development of second-generation sequencing, additional
H3k27ac ChIP-seq and ATAC-seq data have become available.
It is important to establish a database, which contains a
comprehensive listing of transcriptional regulatory regions and
extensive genetic annotations. In recent years, many popular
databases including mirTrans (Hua et al., 2018), TransmiR
(Tong et al., 2019), miRTarBase (Hsu et al., 2011), HMDD (Li
et al., 2014), DIANA-TarBase (Vlachos et al., 2015), and DIANA-
miRGen (Georgakilas et al., 2016) have been published to aid
researchers in exploring the valuable resources pertaining to
miRNAs. For example, miRTarBase (Chou et al., 2018) and
DIANA-TarBase (Karagkouni et al., 2018) are miRNA target
gene databases supported by experimental data. In addition,
miRDB (Chen and Wang, 2020) and mirWalk (Sticht et al.,
2018) are both online databases for miRNA target prediction with
machine learning methods. The miRBase (Griffiths-Jones et al.,
2006) database is a searchable database of published miRNA
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sequences and annotations. To improve the understanding of
miRNAs some databases have been established, which describe
the relationship between miRNAs and diseases. HMDD (Huang
et al., 2019), as one of the more popular ones, is a manually
collected miRNA and a disease-related database. However,
compared to the abundance of miRNA target databases and
miRNA–disease databases, resources describing TF-miRNA
regulatory relationships are limited. Therefore, additional
databases about miRNA transcription have been constructed
to provide information about the TF-miRNA regulation, such
as DIANA-miRGen v3.0 (Perdikopanis et al., 2021) and
CircuitsDB (Friard et al., 2010). mirTrans (Hua et al., 2018)
and TransmiR v2.0 (Tong et al., 2019) are both resources for the
transcriptional regulation of miRNAs in human cell lines. In
particular, TransmiR, which manually collected 2,852 TF-
miRNA entries from 1,045 publications, has been upgraded to
version 2.0. Until now, only one database named EnhancerDB
(Kang et al., 2019) has provided a small amount of data on
regulatory relationships between enhancers and miRNAs, but it is
not very comprehensive (Table 1). All of the databases
aforementioned have made great contributions to miRNA
studies, but these studies and databases have only emphasized
the importance of small genetic annotations of miRNAs (Li et al.,
2014; Zhao et al., 2016; Song et al., 2019). None of these resources
were developed to provide the transcriptional regulatory regions
for miRNAs and genetic annotations were also ignored. However,
studies have now increasingly indicated that important factors
affecting the miRNA transcriptional regulation are not only
associated with promoter regions but also with other regions
such as chromatin accessibility regions and super- or typical
enhancers, which play an important role in transcriptional
processes of miRNAs (Duan et al., 2016; Suzuki et al., 2017;
Sin-Chan et al., 2019; Ri et al., 2020). Therefore, we developed the
TRmir database, which can provide more comprehensive
resources for understanding the regulatory mechanisms of
miRNAs. Compared with existing databases, TRmir allows
researchers to easily obtain information about different
regulatory regions. From Table 1, we can find the major
differences between TRmir and other databases, especially in
terms of the number of some terms, such as miRNAs, enhancers,
TSS, and open chromatin regions. Furthermore, it provides the
most abundant annotation information for the above regulatory
regions. We compared the regulatory relationship between TF
and miRNA in TRmir with the experimentally validated
regulatory relationship in Transmir. We found that most of
the TF-miRNA regulatory relationships in TRmir significantly
overlapped with those in TransmiR. For example, GATA1-
miRNA regulations in TRmir are significantly enriched in
GATA1-miRNA regulations from TransmiR (hypergeometric
test; p-value = 2.95e-14). The p-value of the hypergeometric
test for NFYB-miRNA is 1.26e-78 (Supplementary Figure S2;
Supplementary Table S4). The result indicated that the TF-
miRNA regulations in our database are reliable and robust.
Finally, in addition to miRNA-related expression and target
genes, pathway analysis was also provided.

Our motivation to build this database comes from the huge
demand of geneticists and biologists to understand the regulatory

mechanism of miRNAs. The current version of TRmir stores the
most abundant comprehensive transcriptional regulatory
information and (epi)genetic annotations of human miRNAs.
We believe our database will be useful, but it does have some
limitations. For example, a ranking metric would be useful for the
user because there is likely to be a daunting amount of
information coming from most searches. The implementation
of a score may help users focus on specific miRNAs. Therefore, in
future versions, we plan to provide a ranking metric such as a
score to combine expression, TF hits, accessibility, SE annotation,
motif presence, interaction, and other data.

CONCLUSION

TRmir aims to provide a resource with the most informative
transcriptional regulatory regions for miRNAs, and detailed
annotation information within the regions. In order to
facilitate deeper understanding of the transcriptional
regulation of miRNAs, we have provided a large amount of
annotation information located in the regulatory regions. In
particular, we have provided the TFs that are obtained by two
methods: TFs supported by ChIP-seq technology and TFs
predicted by motif. In addition, we also provide information
regarding methylation sites, one based on 450 K array data
and the other based on whole-genome shotgun bisulfite
sequencing. At the same time, TRmir integrates miRNA
expression and related disease information and supports
extensive pathway analysis. TRmir has a friendly interface
to provide a good user experience and is convenient for users
to query and browse, especially as it provides a comprehensive
transcriptional regulation database of miRNAs for users with
detailed regulatory annotation about these regions.
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