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Metformin is not only the first-line medication for the treatment of type 2 diabetes, but it is
also effective as an anti-inflammatory, anti-oxidative and anti-tumor agent. However, the
effect of metformin during viral hepatitis remains elusive. Using an adenovirus (Ad)-induced
viral hepatitis mouse model, we found that metformin treatment significantly attenuated liver
injury, with reduced serum aspartate transaminase (AST) and alanine transaminase (ALT)
levels and liver histological changes, presumably via decreased effector T cell responses.
We then demonstrated that metformin reduced mTORC1 activity in T cells from infected
mice, as evidenced by decreased phosphorylation of ribosome protein S6 (p-S6). The
inhibitory effects on the mTORC1 signaling by metformin was dependent on the tuberous
sclerosis complex 1 (TSC1). Mechanistically, metformin treatment modulated the
phosphorylation of dynamin-related protein 1 (Drp-1) and mitochondrial fission 1 protein
(FIS1), resulting in increased mass in effector T cells. Moreover, metformin treatment
promoted mitochondrial superoxide production, which can inhibit excessive T cell
activation in viral hepatitis. Together, our results revealed a protective role and therapeutic
potential of metformin against liver injury in acute viral hepatitis viamodulating effector T cell
activation via regulating the mTORC1 pathway and mitochondrial functions.

Keywords: mTOR, T cell, mitochondria, metformin, viral hepatitis
INTRODUCTION

Metformin is a biguanide drug that has been used to treat type 2 diabetes mellitus and to help
control blood glucose levels for more than 60 years (1, 2). No significant safety issues from long-
term use of metformin have been identified for diabetes prevention (3), indicating that, as an
affordable medicine, metformin is safe and effective. Recent studies indicate that metformin may
org April 2021 | Volume 12 | Article 6385751
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have additional benefits in several other diseases, such as cancer,
stroke, neurodegenerative diseases, obesity, metabolic syndrome,
and cardiovascular diseases (1, 4–7). The function of metformin
is closely linked to the mitogen-activated protein kinase and
mechanistic target of rapamycin (mTOR) pathway (8–10).
mTOR regulates cell growth, cell proliferation, cell motility,
cell survival, protein synthesis, autophagy and transcription
(11, 12). Signaling through mTOR regulates metabolism and is
an important molecular connection between nutrient signals and
the metabolic processes that are indispensable for cell growth
and function (13).

Viral hepatitis is a major health concern globally and the
main cause of hepatocellular carcinoma (14). Immune responses
play a critical role in fulminant viral hepatitis (15), which can be
observed after acute viral infection accompanied by strong (re)-
activation of the immune response in some patients (16).
Accumulating evidence has showed that metformin may have
therapeutic potential in liver diseases (1), as metformin can
improve the survival of diabetic liver cancer patients (17). In
mice, metformin treatment showed preventative effects in liver
carcinogenesis by downregulating the expression of lipogenic
enzymes and lipogenesis (18). Results from human and animal
studies also showed that the administration of metformin
improves liver function in non-alcoholic fatty liver disease
(NAFLD) subjects (19, 20). Metformin may also suppress
hepatitis B virus and hepatitis C virus (HCV) replication
in vitro (21, 22), potentially through a type I IFN-dependent
mechanism (23). However, it remains unclear as to whether and
how metformin directly modulates T cell responses in
viral hepatitis.

In this study, we challenged mice with a hepatotropic
adenovirus (Ad) type 5 (24), which can cause strong virus-
specific T cell responses and subsequent liver damage. We found
that metformin treatment significantly attenuated liver damage as
judged by serum aspartate transaminase (AST) and alanine
transaminase (ALT) levels, hepatic histological scores, and
proinflammatory cytokine (IFN-g, TNF-a and IL-2) production.
Our in vivo and in vitro data further demonstrated that metformin
restrained T cell activation, inhibited phosphorylation of S6 (p-S6)
in the mTOR signaling pathway, reduced mitochondrial fission,
but increased the production of superoxide in T cells. These results
suggest that metformin can directly modulate T cell responses by
remodeling mitochondrial dynamics.
MATERIALS AND METHODS

Animals and Treatment
Female C57BL/6 (B6) and tuberous sclerosis 1 (TSC1) flox

(#005680) mice were purchased from the Jackson Laboratory
(Bar Harbor, ME). Metformin was purchased from Sigma-
Aldrich (St. Louis, MO). Mice were orally pretreated with
metformin (Sigma-Aldrich, St. Louis, MO, 250 mg/kg/day) for
1 week by gavage, followed by intravenous (i.v.) infection of
adenovirus as described previously (25). Administration of
metformin was continued for another 7 days. Normal saline was
Frontiers in Immunology | www.frontiersin.org 2
used as a control. All mice were euthanized at 7 days post-
infection (dpi). Adenovirus carrying LacZ (AdLacZ) and Cre
(AdCre), purchased from Vector Development Laboratory,
Baylor College of Medicine, were used to infect B6 and TSCl flox

mice in indicated experiments. The dose of 1.8 × 109 pfu/mouse
via i.v. injection route. All mice were maintained and bred under
specific pathogen-free conditions in the animal facility at the
University of Texas Medical Branch (UTMB). Seven- to twelve-
week-old mice were used for all the experiments. All experiments
were reviewed and approved by the Institutional Animal Care and
Use Committees of the University of Texas Medical Branch.

Detection of AdLacZ in Liver Sections
The detection of AdLacZ was performed as previously described
(24). Briefly, following fixation with 0.5% glutaraldehyde for
30 min, frozen liver sections were incubated with 0.2 mg of X-
gal (5-bromo-4-chloro-3-indolyl-b-d-galactopyranoside)/ml at
37°C for 120 min. Infected cells expressing b-gal activity were
stained blue. Eight images of each liver section were randomly
selected and captured with the Olympus BX51 microscope
equipped with the Olympus DP70 video camera (Olympus
Optical, Tokyo, Japan). The images were analyzed by Image-
Pro Plus 6.0 software (Media Cybernetics, MD, USA). Infectivity
of the hepatocytes was expressed as the percentage of positive
staining areas.

Antibodies (Abs) and Reagents
All fluorochrome-labeled mAbs and their corresponding isotype
controls were purchased from Thermo Fisher Scientific (San
Diego, CA), including PE-Cy7-conjugated anti-CD3 (17A2),
Pacific Blue-conjugated anti-CD4 (RM4-5), APC-eFlour780-
conjugated anti-CD4 (RM4-5), PerCp-Cy5.5-conjugated anti-
CD8 (53-6.7), APC-eFlour780-conjugated anti-CD8 (53-6.7),
PerCp-eFlour710-conjugated anti-TNF-a (MP6-XT22), APC-
conjugated anti-IFN-g (XMG1.2), PE- conjugated anti-CD44
(IM7), APC-conjugated anti-CD62L (MEL-14) and FITC-
conjugated anti-IL-2 (JES6-5H4). Purified anti-CD16/32
(2.4G2), anti-CD3 (2C11) and anti-CD28 (37.51) were
purchased from Biolegend (San Diego, CA). Mito Tracker
Green and p-S6 Ribosomal Protein (Ser235/236) (D57.2.2E)
Rabbit mAb (PE Conjugate) were purchased from Cell
Signaling Technology (Beverly, MA). Mitochondrial superoxide
indicator and mouse p-Drp-1 (Ser637) were purchased from
Thermo Fisher Scientific (San Diego, CA). Mouse p-Drp-1
(Ser616) pAb was purchased from Abclonal Technology
(Woburn, MA). Mouse FIS1 Ab was purchased from
Proteintech (Rosemont, IL).

Histological and Serum Biochemical
Analysis
Liver specimens were fixed in 10% buffered formalin. Paraffin-
embedded sections were stained with H&E for histological
evaluation using a Histology Activity Index Score (HAI-
Knodell score) (26). Serum was collected for AST and ALT
measurement by an automatic biochemistry analyzer (Beckman
Coulter) in the Department of Clinical Chemistry, UTMB.
April 2021 | Volume 12 | Article 638575
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Isolation of Intrahepatic Lymphocytes
(IHL)
IHL were isolated according to our previous method (24, 25). In
brief, mouse liver was first perfused with PBS without calcium
and magnesium. Liver tissue was collected and digested in RPMI
1640 containing collagenase IV (0.05%; Roche Applied Science,
Indianapolis, IN) at 37˚C for 30 min. After digestion, cell
suspension was passed through 70-mm nylon cell strainers to
remove aggregates and yield single-cell suspensions. IHL were
purified by centrifugation (400 g) at room temperature for
30 min over a 30/70% discontinuous Percoll gradient (Sigma-
Aldrich St. Louis, MO). The IHL were collected from the
interphase, thoroughly washed, and resuspended in complete
RPMI 1640 containing 10% FBS (Hyclone, Logan, UT). The total
numbers of IHL per liver were counted.

Flow Cytometry Analysis
For surface staining, cells were first incubated with FcgR blocker
(CD16/32) at room temperature for 5 min, followed by staining
with fluorochrome-labeled Abs at 4°C for 30 min in dark. For
intracellular staining, cells were incubated with PMA (50 ng/mL),
ionomycin (750 ng/mL) and Brefeldin A (BD Biosciences) for 5 h.
After incubation, cells were collected for surface staining, followed
by fixation and permeabilization using a fixation/permeabilization
kit (Thermo Fisher Scientific). Incubation of intracellular Abs was
performed at 4°C for 45 min in dark. The phosflow experiments
were performed according to the protocol from BD Biosciences.
Briefly, the cells were stimulated with cytokines at the indicated
times, followed by immediate fixation using a prewarmed Cytofix
Fixation Buffer at 37°C for 12 min. The cells were permeabilized
using chilled Perm Buffer III for 1 h on ice and were then washed
and stained with Cell Signaling Technology phosflow Abs.
Samples were processed on an LSRII FACS Fortessa and
analyzed using FlowJo X software (Tree Star, Ashland, OR).

Quantitative Reverse Transcriptase-PCR
(qRT-PCR)
RNA was extracted using an RNeasy Mini Kit according to the
instructions (Qiagen, Valencia, CA). The synthesis of cDNA was
proceeded using an iScript Reverse Transcription Kit (Bio-Rad,
Hercules, CA). cDNA was amplified in a 10-ml reaction mixture
containing 5 ml of iTaq SYBR Green Supermix (Bio-Rad) and 5
mM each of gene-specific forward and reverse primers. The PCR
assays were denatured for 30 s at 95°C, followed by 40 cycles of
15 s at 95°C, and 60 s at 60°C, utilizing the CFX96 Touch real-
time PCR detection system (Bio-Rad). Relative quantitation of
mRNA expression was calculated using the 2-DDCt method. The
primers are as below. GAPDH Forward 5’ -TGGAAAGCTGT
GGCGTGAT-3’, Reverse 5’ -TGCTTCACCACCTTCTTGAT-3’;
TSC1 Forward 5’ –ATGGCCCAGTTAGCCAACATT, Reverse
5’ – CAGAATTGAGGGACTCCTTGAAG.

Measurement of Mitochondrial Mass and
Superoxide
IHL and splenocytes were cultured in 48-well plates with
metformin at different concentrations (0, 1, 5, 10 nM) for the
Frontiers in Immunology | www.frontiersin.org 3
indicated times (6 and 12 h). Cells were collected for surface
staining, followed by incubation (37°C, 20 min) with 200 nM
Mito Tracker Green and 5 mMMitoSOX for mitochondrial mass
and superoxide, respectively. After incubation, cells were washed
and resuspended in FACS buffer for analysis.

CD8+ T Cell Purification
The spleen was mechanically dissociated and incubated with red
blood cell lysis buffer (Sigma-Aldrich St. Louis, MO) to remove
red blood cells. CD8+ T cells were purified using CD8a+ T Cell
Isolation Kit (Miltenyi Biotech). The purity of CD8+ T cells was
determined by flow cytometry and was higher than 95%.

Western Blot Analysis and ELISA Assay
Cell protein was extracted using a RIPA lysis buffer (Cell
Signaling Technology) in the presence of the phosphatase
inhibitor cocktail (Thermo Fisher Scientific). Protein
concentrations were measured using a BCA Protein Assay Kit
(Pierce). Protein samples were separated by SDS-PAGE (4–15%)
and electro-transferred onto a PVDF membrane, which was then
blocked with 5% BSA for 60 min. The membrane was then
incubated with primary Abs overnight at 4°C. After incubation,
the membrane was washed 3 times with TBST, incubated with
secondary Abs for 60 min at room temperature and developed
using the ECL western blotting substrate reagent (Thermo Fisher
Scientific). The signal intensity was analyzed by Image J and
normalized to b-actin. Hepatic IL-2, TNF-a, and IFN-g protein
levels were assayed using specific ELISA kits (Biolegend)
according to the manufacturer’s instructions.

Statistical Analysis
The difference between two groups was determined using a two-
tailed Student t test. One-way ANOVA was used for multiple-
group comparisons, followed by Tukey’s multiple comparisons
(GraphPad Software v7.0, San Diego, CA). *, **, *** or ****
represent p-values<0.05, <0.01, <0.001 or <0.0001, respectively.
RESULTS

Metformin Treatment Alleviates Liver
Injury in Ad-Induced Viral Hepatitis
To determine whether metformin protects mice from liver injury
in viral hepatitis, we pretreated B6 mice with metformin (250
mg/kg/day) daily for 1 week before i.v. infection of AdLacZ (1.8 ×
109 pfu/mouse). Administration of metformin was continued for
another 7 days. Serum ALT, AST and liver pathological changes
at 7 dpi were used as readouts. Control animals developed
prominent liver inflammation as measured by elevation of
ALT and AST levels and considerable lymphocyte infiltration.
Metformin pre-treatment significantly decreased ALT and AST
levels, together with reduction of lymphocyte infiltration
(Figures 1A–C). No difference of ALT and AST was observed
in naïve mice with or without metformin treatment (Figures 1A,
B). Histological evaluation confirmed lower liver pathological scores
in the metformin-pretreated group compared with those in the
April 2021 | Volume 12 | Article 638575
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control group (Figure 1D). The numbers of intrahepatic
lymphocytes were also lower in metformin-treated mice
compared with that of control mice (Figure 1E). When analyzed
viral load by measuring the area with positive X-gal-staining, we
found that metformin-pretreated mice had much less hepatic viral
load than that of the control group (Figure S1). These results
demonstrate that metformin protected mice from liver damage in
Ad-induced viral hepatitis.
Metformin Limits Pro-Inflammatory
Cytokine Production From T Cells
Hepatic infiltration and activation of T effector cells result in
liver injury in a dose-dependent fashion (27). To determine
whether metformin can regulate T cell functions, we evaluated
splenic and intrahepatic T cell activation at 7 dpi and found
fewer numbers of activated T cells (CD44+CD62L-) in the
spleen of metformin-treated mice, accompanied with a
decreased trend of activated T cells in the liver (Figure S2).
Frontiers in Immunology | www.frontiersin.org 4
More importantly, metformin treatment significantly decreased
percentages of IFN-g+ TNF-a+ and IFN-g+ IL-2+ cells among
CD4+ and CD8+ T cells in the liver and spleen (Figure 2A). As
expected, the numbers of IFN-g+ TNF-a+ and IFN-g+IL-2+ T
cells were also lower in the metformin group than those in the
control group (Figure 2B). These results were further
supported by decreased IFN-g, TNF-a and IL-2 production in
the liver of Ad-infected mice (Figure 2C).

To investigate if metformin can directly regulate T cell
activities in Ad-infected mice, we isolated IHL from infected
mice, followed by metformin treatment in vitro. We first
performed a cytotoxic experiment to determine the dose of
metformin that we will use in the following experiments. Our
result showed that low doses of metformin (less than 10 mM)
had no toxicity within 12 h in vitro (Figure S3). We further
found that metformin inhibited T cell activation in dose- and
time-dependent manners as evidenced by decreased percentages
of IFN-g+ TNF-a+ (Figure 3A) and IFN-g+IL-2+ T cells (Figure
3B). The splenocytes from infected mice showed similar trends
A B

D EC

FIGURE 1 | Metformin treatment alleviates liver injury in Ad-induced viral hepatitis. B6 mice were orally pretreated with metformin (250 mg/kg/day) for 1 week, followed
by infection of adenovirus carrying LacZ (AdLacZ, 1.8 × 109 pfu/mouse). Administration of metformin was continued for another 7 days. Normal Saline was used as a
control. All mice were euthanized at 7 days post injection (7dpi). Uninfected mice were used as controls. (A) Serum ALT. (B) Serum AST. (C) Representative images of
H&E staining for livers. PT, portal tracts; CV, central vein. (D) Liver pathological HAI-Knodell scores. (E) Numbers of intrahepatic lymphocytes. Two-tailed unpaired T test
is used for ALT and AST statistical analysis. Mann-Whitney U test is used for liver pathological statistical analysis. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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(Figure S4). Together, our results demonstrate that metformin
down-regulates T cell activation in vivo and in vitro, limits
intrahepatic infiltration, and inhibits inflammatory cytokine
production in Ad-induced hepatitis.

The TSC1-Dependent mTOR Signaling
Pathways Regulated by Metformin
It is known that while the mTOR signaling pathway is critical for
T cell activation and differentiation (28), mTOR is also a
potential target of metformin (29, 30). We therefore asked
whether metformin can regulate mTOR signaling in T cells of
virus-infected mice. We then treated isolated lymphocytes with
metformin in vitro and analyzed p-S6 levels. We found that
metformin treatment down-regulated p-S6 in both splenocytes
and IHL in a dose-dependent manner (Figure 3C).

The TSC complex is known to be the upstream suppressor of
mTOR complex 1 (mTORC1)-mediated pathway, playing
regulatory roles in naive T cell quiescence (31). To investigate
the mechanism of metformin in regulating the mTOR signaling
pathway, we depleted liver TSC1 by infecting the TSC1flox mice
with AdCre, as we reported previously (32). The qPCR result of
liver tissues showed the significant decreased expression of TSC1
in AdCre-infected TSC1flox mice at 7 dpi (Figure S5). IHL were
isolated at 7 dpi from wild-type and TSC1flox mice infected with
AdCre, followed by metformin treatment in vitro. The
expression of p-S6 in T cells was significantly decreased in WT
Frontiers in Immunology | www.frontiersin.org 5
mice by metformin treatment in a dose-dependent manner;
however, the loss of function in the TSC1flox mice prevented
the effect of metformin. Data also showed TSC1 deficiency
increased p-S6 in both CD4 and CD8 T cells (Figures 4A, B).
Our data suggest that metformin exhibited inhibitory effects on
mTORC1 pathway in T cells following viral infection through
the PI3K/TSC axis.

Metformin Modulates Mitochondrial
Fission in T Cells
T cell proliferation and function are closely associated with its
metabolism process (33, 34). Mitochondria are the most
important organelle with regards to cell metabolism (35, 36).
Importantly, mitochondrial fission and fusion variation can
make a flexible mitochondrial mass change depending on cell
status (37, 38). For example, effector T cells have less
mitochondrial mass than memory T cells, suggesting that
mitochondria in effector T cells are actively undergoing fission
while in memory T cells, these organelles exist in a fused state
(39, 40). Furthermore, it was reported that metformin can target
mTOR and contributes to normalizing mitochondrial function
in T cells (41). We speculated that metformin acts on
mitochondrial function in T cells. To test our hypothesis, we
isolated IHL and splenocytes from Ad-infected mice and
incubated these cells with metformin for 6 and 12 h. Using a
mitochondrial tracker, we found a metformin treatment-induced
A B

C

FIGURE 2 | Metformin limits pro-inflammatory cytokine production from T cells. Mice were infected and treated with metformin as in Figure 1. (A) Lymphocytes
from liver and spleen were stimulated with PMA and ionomycin in the presence of Golgi Stop for 5 h, followed by intracellular staining of IFN-g, TNF-a and IL-2.
(B) Numbers of IFN-g+ TNF-a+ T cells and IFN-g+ IL-2+ T cells in liver and spleen. (C) The protein levels of liver TNF-a, IFN-g and IL-2 were detected by ELISA. The
data are shown as mean ± SEM of n = 3-5 mice/group from single experiments representative of at least three experiments performed. Two-tailed unpaired T test
was used for statistical analysis. *p < 0.05; **p < 0.01.
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increase of mitochondrial mass in IHL (Figures 5A, B) and
splenocytes (Figures 5C, D). Dynamin-related protein-1(Drp-1)
is a cytosolic/mitochondrial outer membrane protein, which is
crucial for mitochondrial fission (40, 42). When phosphorylated
at Ser616, Drp-1 stimulates mitochondrial fission. Conversely,
fission is inhibited when DRP1 is phosphorylated at Ser637 (40,
43). To confirm this, we measured the p-Drp-1 (Ser616 and
Ser637). As we expected, the expression of p-Drp-1 (Ser616) was
decreased, while p-Drp-1 (Ser637) was increased by metformin
treatment in splenic CD8+ T cells compared with that in
the control (Figures 5E, F). Mitochondrial fission 1 protein
(FIS1) is a protein that promotes mitochondrial fission. We
found that metformin treatment also reduced the expression of
FIS1 (Figures 5E, F). Therefore, our results indicate that
Frontiers in Immunology | www.frontiersin.org 6
metformin may regulate T cell responses via modulating
mitochondrial fission.

Metformin Promotes Mitochondrial
Superoxide Production in T Cells
Mitochondria-derived reactive oxygen species (ROS) can
mediate redox signaling, leading to aberrant T cell activation
and increased cell apoptosis/death (43–46). Since metformin can
target mitochondrial functions, we asked whether metformin can
increase superoxide production in T cells. Using the MitoSOX
Red mitochondrial superoxide indicator (47), we found that
superoxide production was significantly augmented in T cells
isolated from the liver (Figures 6A–C) and the spleen (Figures
6D–F) in a dose-dependent manner. Together, these data suggest
A

B

C

FIGURE 3 | Metformin inhibits T cell activation and p-S6 in vitro. Mice were injected i.v. with 1.8 × 109 pfu of AdLacZ and sacrificed at 7 dpi. Lymphocytes from liver
and spleen were isolated and cultured with the indicated concentrations of metformin (0, 5 and 10 mM) for 6 and 12 h. Cells were stimulated with PMA and
ionomycin in the presence of GolgiStop during the last 5 h, followed by intracellular staining of IFN-g, TNF-a, IL-2 and p-S6. (A) Percentages of IFN-g+ TNF-a+ T cells
from livers. (B) Percentages of IFN-g+ IL-2+ T cells from livers. (C) Percentages and mean fluorescence intensity (MFI) of p-S6+ in liver and spleen T cells. Data are
representative of at least three independent experiments. Values are shown as mean ± SEM of n = 3-4 samples/group from single experiments representative of at
least three experiments performed. Two-tailed unpaired T test was used for statistical analysis. *p < 0.05; **p < 0.01; ***p < 0.001.
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that metformin may regulate T cell activity by promoting
mitochondrial superoxide production.
DISCUSSION

It is well known that metformin is not only an anti-diabetic drug,
but also has additional effects in treating cancer, obesity, NAFLD,
polycystic ovary syndrome, and metabolic syndrome (1, 48–52).
A clinical study also suggested that metformin has beneficial
effects in patients with chronic hepatitis C (53), raising the
possibility that metformin can be a therapeutic option for viral
hepatitis. Indeed, metformin inhibits HCV infection in vitro via
down-regulation of the mTOR signals (22, 54–56). In this study,
we demonstrated that metformin treatment ameliorated liver
injury in mice with viral hepatitis as evidenced by decreased
serum ALT and AST levels, and alleviated liver pathological
changes (Figure 1). Further analysis revealed that the attenuated
Frontiers in Immunology | www.frontiersin.org 7
liver injury by metformin treatment results from limited T cells
responses in the liver (Figure 2). Metformin has been reported to
orchestrate T cell responses in autoimmune diseases and
transplant rejection (57, 58). We found that metformin
treatment decreased the expression of TNF-a, which is a
hepatocytotoxic mediator in the liver (24, 59). Our data
highlight the immune-modulatory and anti-inflammatory roles
of metformin in viral hepatitis. Notably, metformin treatment
reduced the viral load in the liver (Figure S1), supporting a
notion that metformin may contribute to antiviral responses,
such as type I interferon (21–23).

Pharmacological effects of metformin are mediated by the
activation of AMP-activated protein kinase (60), which
negatively regulates the mTORC1 activity in T cells, leading to
reduced cell proliferation and cytokine production (61–63).
Here, we showed that metformin inhibited T cell activity as
demonstrated by decreased IFN-g, TNF-a and IL-2 expression
(Figures 3A, B). The p-S6 levels in T cells were reduced
A

B

FIGURE 4 | Metformin inhibits mTOR activity in T cells by a TSC1-dependent manner. TSC1flox and control mice were injected i.v. with 1.8 × 109 pfu of AdCre.
Intrahepatic lymphocytes (IHL) were isolated at 7 dpi and cultured with the indicated concentrations of metformin (0, 5 and 10 mM) for 6 h. Cells were stimulated
with PMA for 30 min, then fixed immediately and analyzed for p-S6 by flow cytometry. Unstimulated cells (0 min) were used as controls. (A) Representative images
of p-S6+ T cells. (B) MFI of p-S6. Data are representative of at least three independent experiments. Values are shown as mean ± SEM of n = 3-4 samples/group
from single experiments representative of at least three experiments performed. One-way ANOVA with Tukey’s multiple comparisons test was used. Metformin
treatment groups (5 and 10 mM) were compared to the control group (0 mM). **p < 0.01. ns, no significant difference.
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significantly by metformin in a dose-dependent manner (Figure
3C). It is known that TSC1-TSC2 complex is a key negative
upstream regulator of mTORC1 signaling (64). To confirm our
in vitro results, we performed the experiment using T cells from
AdCre infected-TSC1flox mice, as we described previously (32).
As expected, metformin failed to down-regulate p-S6 levels in
TSC1 deficient T cells (Figure 4B). In all, our data demonstrated
that metformin inhibited mTOR signals in T cells in a TSC1
dependent manner.

The mTOR signaling pathway plays a critical role in
mitochondrial metabolism (65, 66). More recently, metformin
has been shown to normalize mitochondrial function in T helper
cells and alleviate aging-associated inflammation (41). This led
us to investigate whether metformin contributes to
mitochondrial function in T cells during viral hepatitis. To
answer this question, we measured mitochondrial mass by
flow cytometry (40) and demonstrated that mitochondrial
mass was increased in T cells in a dose-dependent pattern by
metformin (Figures 5A–D). It has been reported that naïve T
cells display fused mitochondria (fusion) with higher mass,
while effector T cells have mitochondria fission with lower
Frontiers in Immunology | www.frontiersin.org 8
mass (40). Our results suggest that metformin treatment
inhibited mitochondrial fission and T effector function
(Figures 5A–D). To confirm our conclusion that metformin
modulates mitochondrial fission, we assessed expression of Drp-
1 (Ser616), Drp-1 (Ser637) and FIS1, which are the key fission-
associated proteins in effector T cells (40). Our data confirmed
that metformin can modulate mitochondrial fission and fusion
dynamics in T cells, leading to compromised T cell functions
during viral infection.

T cell activation and proliferation are associated with
dramatically increased bioenergetic, biosynthetic and redox
demands (67–69). ROS, which are mainly produced by
mitochondrial oxidative metabolism, contribute to T cell
functions in diseases (70). Although moderate levels of ROS
can act as key mediators within T cells to promote cell
proliferation and clonal expansion, high levels of ROS result in
T cell apoptosis through upregulation of Fas ligand, playing a
necessary role in immune resolution (71). Moreover, increased
ROS production in T cells facilitates the development of Th2 cells
(72), while the inhibition of exogenous and endogenous ROS in
T cells causes increased IFN-g production (72, 73). We found
A

B D

E F

C

FIGURE 5 | Metformin modulates mitochondrial fission in T cells. Mice were injected i.v. with 1.8 × 109 pfu of AdLacZ and sacrificed at 7 dpi. T cells from liver and
spleen were isolated and cultured with the indicated concentrations of metformin (0, 1, 5 and 10 mM) for 6 and 12 h. (A) Representative images of Mito Tracker
Green histogram in IHL. (B) MFI of Mito Tracker Green in IHL. (C) Representative images of Mito Tracker Green histogram in splenic lymphocytes. (D) MFI of Mito
Tracker Green in splenic lymphocytes. (E, F) western blot and statistical analysis of p-Drp-1(Ser616), Drp-1(Ser637) and FIS1 expression in CD8+ T cells. Data are
representative of at least three independent experiments. Values are shown as mean ± SEM of n = 3-4 samples/group from single experiments representative of at
least three experiments performed. One-way ANOVA with Tukey’s multiple comparisons test was used. Metformin treatment groups (1, 5 and 10 mM) were
compared to the control group (0 mM). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, no significant difference.
April 2021 | Volume 12 | Article 638575

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xu et al. Metformin Alleviates Liver Injury
that metformin treatment increased superoxide in activated T
cells of infected mice (Figure 6). This result suggests that
metformin may down-regulate excessive Th1 responses via
induction of intrinsic ROS species, leading to better immune
resolution and improved immunopathogenesis. In addition,
metformin-induced superoxide may also contribute to T cell
apoptosis (Figure S3) and limit inflammatory infiltration in the
liver during acute viral hepatitis.

Together, this study has revealed for the first time a
hepatoprotective role of metformin in acute viral hepatitis via
mechanisms that include restraining excessive T cell infiltration
and activation in the liver, inhibiting the mTOR signaling via a
TSC1-dependent manner in T cells. Moreover, we have shown
that metformin may contribute to mitochondrial fission and
ROS production, leading to the orchestration of T cell-mediated
immunity following viral infection. Overall, this study supports a
beneficial role of metformin for viral hepatitis and also provides
mechanistic evidence for the involvement of TSC1/mTOR in the
regulation of T cell functions, providing a solid evidence for the
therapeutic potential of metformin in viral infection.
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