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Abstract

Over the past several decades, growth declines and mortality of trembling aspen through-

out western Canada and the United States have been linked to drought, often interacting

with outbreaks of insects and fungal pathogens, resulting in a “sudden aspen decline”

throughout much of aspen’s range. In 2015, we noticed an aggressive fungal canker caus-

ing widespread mortality of aspen throughout interior Alaska and initiated a study to quan-

tify potential drivers for the incidence, virulence, and distribution of the disease. Stand-level

infection rates among 88 study sites distributed across 6 Alaska ecoregions ranged from

<1 to 69%, with the proportion of trees with canker that were dead averaging 70% across

all sites. The disease is most prevalent north of the Alaska Range within the Tanana Kusko-

kwim ecoregion. Modeling canker probability as a function of ecoregion, stand structure,

landscape position, and climate revealed that smaller-diameter trees in older stands with

greater aspen basal area have the highest canker incidence and mortality, while younger

trees in younger stands appear virtually immune to the disease. Sites with higher summer

vapor pressure deficits had significantly higher levels of canker infection and mortality. We

believe the combined effects of this novel fungal canker pathogen, drought, and the persis-

tent aspen leaf miner outbreak are triggering feedbacks between carbon starvation and

hydraulic failure that are ultimately driving widespread mortality. Warmer early-season tem-

peratures and prolonged late summer drought are leading to larger and more severe wild-

fires throughout interior Alaska that are favoring a shift from black spruce to forests

dominated by Alaska paper birch and aspen. Widespread aspen mortality fostered by this

rapidly spreading pathogen has significant implications for successional dynamics, ecosys-

tem function, and feedbacks to disturbance regimes, particularly on sites too dry for Alaska

paper birch.
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Introduction

Climate-driven changes in the spread and virulence of plant pathogens over the past 50 years

have dramatically altered the composition, successional dynamics, and function of forest eco-

systems globally [1–5]. However, the complexity of host-pathogen-environment interactions

across multiple scales makes understanding and predicting pathogen outbreaks difficult. At

the molecular level, the encoding of plant immune receptors by disease resistance genes

involves the synthesis and coordination of cell protein domains that have only partially been

characterized [6–9]. At the ecological scale, pathogen outbreaks often interact with other biotic

agents such as insects and vertebrate herbivores that stress tree carbon (C) balance and facili-

tate pathogen infections through transport or wounding [10–13]. The co-occurrence of these

and other factors such as competition, stand age and drought collectively compromise plant

defensive systems and significantly increase vulnerability to diseases [14–17]. Recent advances

in coupling remote detection of tree mortality with landscape and climate modeling are pro-

viding insights into the mechanisms of disease spread and, in many cases, have identified

drought as a contributing driver of pathogen outbreaks over the past several decades [18–21].

Widespread growth declines and mortality of trembling aspen (Populus tremuloides
Michx.) throughout western Canada and the U.S. have been linked to drought since the late

1990s [22–25]. Drought-induced aspen dieback has interacted with outbreaks of herbivorous

and wood-boring insects and fungal pathogens, resulting in a “sudden aspen decline” through-

out much of aspen’s range, exacerbating sensitivity to both drought and pest and pathogen

outbreaks [14,15,24,26]. Aspen is equipped with a robust system of constitutive and induced

secondary chemical defenses against insects and pathogens [27]. However, multiple stressors

over prolonged periods trigger a spiraling set of feedbacks between declining plant C and

water balance that eventually kills trees [28,29]. There are several hydraulic adaptations that

allow aspen to thrive in drier habitats; however, as we discuss below, many of these same char-

acteristics are affected directly and indirectly by pathogens and herbivorous insects to increase

vulnerability to hydraulic failure brought on by drought and freeze-thaw cycles [30–36]. This

makes aspen and other poplars growing in semi-arid environments particularly sensitive to

the feedbacks between drought and insect and/or pathogen outbreaks [15].

Interior Alaska has warmed more than twice as fast as the contiguous U.S. over the past 60

years [37,38]. Across interior Alaska, aspen ring-width increment has shown a gradual decline

over this time period in response to temperature-induced drought stress, and more recently,

declines in growth and plant water balance have been correlated with damage from an out-

break of the aspen leaf miner (Phyllocnistis populiella Cham.) which began in the early 2000s

and is now widespread throughout the state [39–44]. Monitoring of permanent plots since the

mid-1990s revealed aspen growth declines and increased mortality throughout interior Alaska

attributed to recent increases in July vapor pressure deficit coupled with the aspen leaf miner

outbreak [45]. In 2015, we first noticed a highly aggressive fungal canker infecting the main

stem of aspen, which was widespread throughout the Alaskan boreal forest, particularly north

of the Alaska Range. Although likely associated with the combined stresses of drought and the

leaf miner outbreak, this “aspen running canker” appeared to be instrumental in the mortality

reported. The pathogen, previously new to science, has been recently named Neodothiora
populina Crous, G.C. Adams, & Winton [46], and we have completed a Koch’s postulates

study that confirms this pathogen is causing the disease outbreak we characterize here (S1

Document) [47]. The purpose of the current study was to quantify the incidence, virulence,

and distribution of the pathogen as a function of stand structure, landscape position and sum-

mer climate throughout the range of aspen within the Alaskan boreal forest. Given recent stud-

ies highlighting the interaction between C stress imposed by the nearly ubiquitous aspen leaf
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miner and climate warming [39,42,43,45], we were particularly interested in how stand, land-

scape, and climatic factors interacted to influence the variability in disease incidence and

related mortality across the regional scale.

Materials and methods

Study sites

The incidence of running stem canker in aspen was inventoried within previously established

networks of long-term monitoring and inventory plots scattered across interior Alaska, and

within additional sites selected specifically for this study (Fig 1, DOI: 10.6073/pasta/

85f4357d25255ed1373e4d2afeac4784). These included sites within the Bonanza Creek (BNZ)

Experimental Forest (BCEF) and sites within the BNZ Regional Site Network (RSN), both

maintained by the BNZ Long-Term Ecological Research program (BNZ LTER). Forest inven-

tory plots within the BCEF were established in 1987 to study boreal forest vegetation and eco-

system change following fire in uplands and flooding along the Tanana River near Fairbanks,

Fig 1. Map of study sites. Location of 88 sites inventoried for aspen canker. For analyses, sites within the Yukon-Old Crow Basin were grouped with those from the

North Ogilvie Mountains.

https://doi.org/10.1371/journal.pone.0250078.g001
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Alaska. Stands range in age from 40 to 200 years old, and are dominated by a mix of hardwoods

including aspen, Alaska paper birch (Betula neoalaskana Sarg.), and balsam poplar (Populus
balsamifera L.), and conifers including white spruce (Picea glauca (Moench) Voss), black spruce

(Picea mariana (Mill.) B.S.P.), and tamarack (Larix laricina (Du Roi) K. Koch). Sites within the

RSN were established in 2013 to study long-term vegetation and ecosystem responses across a

large regional scale to the recently intensified fire regime driven by climate warming throughout

interior Alaska. When established, RSN sites were characterized as young (< 15 yrs), intermedi-

ate age (40–60 yrs), or mature (> 80 yrs), dominated by the same tree species found within

BCEF with stand composition being a function of site conditions and successional trajectory.

Study plots within the BCEF and RSN networks are 50 x 60 m, and long-term inventory data on

vegetation, climate and soils can be found on the BNZ LTER webpage (http://www.lter.uaf.edu/

data/data-catalog). We also surveyed plots within the Cooperative Alaska Forest Inventory

(CAFI) network, a network of 203 sites representing a wide range of mature boreal forest stands

scattered across interior and south-central Alaska including the Kenai Peninsula [48]. Each

CAFI site includes three 0.1-acre plots which we combined into one plot for each site. Only sites

containing aspen within LTER and CAFI networks were inventoried. We established additional

plots within stand types throughout interior Alaska that were underrepresented by the CAFI

and LTER plots in order to encompass a broader range of aspen stand ages and overstory com-

positions. These “NEW” plots (~0.08 ha) included intermediate-age to mature stands within the

Yukon Old Crow Basin and North Ogilvie Mountains ecoregions along a 254 km stretch of the

Yukon River between Circle and Eagle River, Alaska, and younger stands established within

areas along the road system (always > 200 m from the road) that burned between 1980–2000.

In total, these 88 study sites encompassed a minimum boundary area of over 209,000 km2.

Canker inventory. All standing aspen trees within each plot were recorded as live or dead,

diameter measured at 1.37 m above the ground (DBH) and evaluated from bottom to top for

damages. On CAFI and LTER plots, up to three damage agents from a standardized list were

recorded in order of severity (i.e., agents threatening survival being more important than agents

that reduce growth or wood quality). These included weather-related breakage or blowdown,

insect (including aspen leaf miner) or other pathogen damage such as decay and fungal conks,

moose browsing or bark stripping, etc. Running canker lesions were identified by discolored,

often sunken bark with distinct margins, and necrosis of cambium with unusual length (>10

cm) often girdling the stem but exhibiting no fungal fruiting bodies or the smell of bacterial fer-

mentation. The aspen stands examined were remarkably free of any cankers exhibiting the typi-

cal diagnostic characteristics of well-known aspen pathogens encountered at high frequency in

the Lake States and southern Rocky Mountain, such as distinctive fruiting bodies, black stroma,

pustules, cirrhi, fruity smell, colored oozing, or target-shaped rings of callousing.

Where possible, the likely cause of death was recorded for standing dead trees. A severity

rating for each damage agent was assigned based upon the percentage of affected plant tissue

as follows: 0, none observed; 1, trace to 5% affected area (i.e., roots, bole circumference, foliage,

branches, buds); 2, 6–15%; 3, 16–35%; 4, 36–67%; 5, 68–100%. The location on the tree was

also recorded for each damage agent. On “NEW” plots, only live/dead, DBH, canker status,

leaf miner status, and moose browse damages were recorded.

Statistics

The probability of canker infection (π) for an individual tree was modeled using mixed effects

linear logistic regression using a binary response model of the form:

logit pð Þ ¼ log ð
p

1 � p
Þ ¼ aþ b

0x0 þ g
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where β’ = (β1, . . .., βs) is the vector of s slope parameters for x’ (= x1, . . ., xs) predictor variables

(fixed effects), and γ represents a single random effect. We first fit a global model that included

tree DBH (cm), other damage agents, a suite of stand-level structural and landscape variables,

and ecoregion as fixed effects, to assess whether site (numbered 1–88) or site within ecoregion

was the best single random intercept effect. This allowed for an assessment of the variation in

canker infection among ecoregions while accounting for the potential autocorrelation among

sites. Stand-level variables included aspen density (trees ha-1), aspen basal area (m2 ha-1), aver-

age aspen DBH for the stand (cm), and relative aspen density (% of all trees that were aspen).

Leaf damage by the aspen leaf miner was not included as a fixed effect because all sites had

high and indistinguishable levels of herbivory by leaf miners (severity class 5). Landscape

variables for each site included slope, elevation, and a derived variable ranging from 0 to 180˚

representing the degree of southerly exposure. We tested for multicollinearity among indepen-

dent variables by calculating variable inflation factor (VIF) values for each predictor using sep-

arate linear regressions among predictor variables, using a cutoff for acceptance of VIF< 2.0

for inclusion in models. Models were fitted using the glmer function (lme4 package) in R statis-

tical software version 3.4.2 [49]. Comparisons of models with different fixed effects were made

using maximum likelihood, with AIC values compared using an analysis of deviance test using

the anova function (lmerTest package) before refitting models using restricted maximum like-

lihood. For models with AIC values differing by < 2, the one with fewer parameters was

selected. Pairwise comparisons between ecoregions were made using the glht function (mult-
comp package). Because the number of sites varied among ecoregions and sites were not ran-

domly distributed within ecoregions, we caution that these analyses may not necessarily allow

true inference at the scale of the ecoregion. We report marginal (R2m) and conditional (R2c)
values for models to evaluate variance explained by fixed and fixed + random effects, respec-

tively (r.squaredGLMM function in MuMin package). Model parameters are reported in equa-

tion form, and graphically presented as odds ratios for fixed effect parameters, estimated by

exponentiating the corresponding parameter estimate, along with 95% Wald confidence

intervals.

To determine whether variation in summer climate contributed to spatial differences in

canker infection, we optimized logistic models using climate variables and stand-level parame-

ters as fixed effects and one of several random effects to account for non-independence at

potentially multiple spatial scales. Ecoregion and climate variables were not considered as

fixed effects in the same model because discriminant function analysis (PROC DISCRIM,

SAS) [50] revealed that sites could be classified into ecoregions with a high degree of accuracy

using climate variables, suggesting these variables were potentially confounded (see below).

Model selection involved first optimizing the random effect structure by comparing global

models that included all possible fixed effects plus either site, ecoregion, or site within ecore-

gion as the random effect, followed by model optimization of fixed effects as described above.

Landscape and stand-structural characteristics were derived from our stand-level inventory

data sets, and comparison of R2m and R2c values enabled assessment of variance explained by

fixed and fixed + random effects. Average mean monthly precipitation (mm), air temperature

(˚C), vapor pressure (Pa), and frost-free growing season length (days) were obtained from the

Scenarios Network for Alaska and Arctic Planning (SNAP) as downscaled and spatially inter-

polated climate data for 1980–2016 (https://www.snap.uaf.edu/tools/data-downloads). These

climate data are estimates of historical monthly climatic variables for any given locale in Alaska

downscaled to a 1-km grid resolution using PRISM (Parameter–elevation Relationships on

Independent Slopes Model) which integrates location, elevation, coastal proximity, topo-

graphic variables, vertical atmospheric layer, and orographic effectiveness of the terrain [51].

We calculated vapor pressure deficit (VPD; hPa) as the difference between monthly saturation
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vapor pressure and monthly vapor pressure after calculating saturation vapor pressure from mean

monthly temperature [52]. We were particularly interested in VPD because of the reported

drought sensitivity of aspen to VPD throughout interior Alaska [45] and the known sensitivity of

other cankers to variation in water stress [53]. Analyses revealed a high degree of collinearity in

VPD among summer months; therefore, logistic models incorporating climate variables were run

for each month separately, where the inclusion of VPD, precipitation and growing season length

resulted in VIF< 2. All data reported throughout the manuscript are means ± 1 SE.

Results

Stand structure

A total of 16,576 aspen trees were surveyed across 88 study sites located within 6 ecoregions

(Fig 1, Table 1). Relative aspen density and mean aspen DBH were inversely correlated across

the 88 study sites, reflecting the dominance of smaller-diameter trees in early successional

stands (Fig 2A). Stand-level aspen basal area increased non-linearly with mean aspen DBH,

indicating that although big trees have an influence on stand basal area, stands with a higher

density of intermediate-sized trees frequently show the highest levels of aboveground biomass

(Fig 2B). Stand age was not assessed, but it is likely that mean aspen DBH increased in older

stands, albeit at different rates given the range of landscape positions and stand compositions

that were sampled. Aspen density (P< 0.05), relative aspen density (P < 0.001), stand-level

aspen basal area (P< 0.01), and mean aspen DBH (P< 0.0001) all varied among ecoregions,

primarily due to a low density of large aspen trees at Copper River and Cook Inlet sites

(Table 1). Despite these apparent ecoregion differences in stand structure, we found a relatively

high average error rate (55.3%) when discriminant function analysis (PROC DISCRIM, SAS)

was used to classify stands by ecoregion based only on these 4 stand structural characteristics.

Classification error rates were particularly high for the Tanana Kuskokwim Lowlands (83.3%),

Yukon Old Crow Basin (60.0%), and Yukon Tanana Uplands (90.3%). In contrast, a similar

number of climate variables (see below) produced a relatively low average error rate (6.9%)

when classifying sites by ecoregion, indicating that climatic differences were a stronger diag-

nostic than stand composition when grouping sites by ecoregion. This is to be expected

because our sites were not randomly distributed within ecoregions, although they were geo-

graphically distinct. Summaries for salient climate variables are shown in S1 Fig.

Canker incidence

Canker was present at 72 of the 88 sites inventoried. The proportion of trees infected with can-

ker ranged from 1.8 ± 1.3% at Copper River sites to 30.1 ± 5.1% at Tanana Kuskokwim

Table 1. Aspen structural characteristics of 88 stands averaged by ecoregion.

Ecoregion Number of Sites Aspen Density (trees ha-1) Relative Aspen Density (%) Aspen BA (m2 ha-1) Mean Aspen DBH (cm)

Cook Inlet 10 865 ± 317 b 29 ± 10 c 10.0 ± 2.8 abc 17.9 ± 2.1 a

Copper River 3 945 ± 361 b 49 ± 20 bc 20.8 ± 5.0 a 19.7 ± 3.5 a

Ray Mountains 16 2232 ± 638 b 71 ± 9 ab 4.6 ± 1.5 c 4.3 ± 0.4 c

Tanana Kuskokwim Lowlands 18 2434 ± 319 b 74 ± 6 ab 11.2 ± 2.3 ab 7.7 ± 1.0 bc

Yukon Tanana Uplands 31 1582 ± 348 b 63 ± 6 b 8.4 ± 1.7 bc 9.6 ± 1.7 b

North Ogilvie Mountains 10 4273 ± 1570 a 89 ± 3 a 14.9 ± 1.8 a 7.1 ± 1.2 bc

Two sites from the Yukon-Old Crow Basin ecoregion were combined within the North Ogilvie Mountains ecoregion for statistical purposes as all 10 sites along the

stretch of the Yukon River between Circle and Eagle River were within similar landscapes. Values within columns with different letters indicate significant differences

among ecoregions for variables at P < 0.05 (ANOVA).

https://doi.org/10.1371/journal.pone.0250078.t001
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Lowlands sites, where infection was highest on average (P< 0.001) and ranged from 0.5% to

68.9% across sites (Fig 3A). The proportion of trees with canker that were dead was high and

invariant across ecoregions, averaging above 70% (Fig 3B). However, even within interior

Alaskan ecoregions where infection was high, some sites showed no mortality of infected trees,

suggesting the disease was at early developmental stages or perhaps trees had high resistance

against the canker in some stands. Across all 88 sites, the incidence of canker infection was sig-

nificantly greater in smaller diameter trees than larger diameter trees (Fig 4). The exception to

this was within the North Ogilvie Mountains, where 3 of 4 trees > 25 cm DBH at one site were

infected, increasing the overall cross-site infection rate in the largest trees. For the 72 sites

where canker was detected, higher canker incidence in smaller DBH trees and lower incidence

in larger DBH trees occurred to greater extents relative to all trees within the population (Fig

5, comparing columns 7 & 8). Canker was not found at 16 sites, which were located either

within recent burn perimeters (< 15 years old) north of the Alaska Range, or in older stands

with a high proportion of large trees south of the Alaska Range. Thus, while younger trees in

intermediate-aged stands had high infection rates, younger trees in younger stands had little to

no canker infection.

Modeling canker incidence

Model selection revealed that the best mixed-effect model estimating the probability of canker

infection across ecoregions included tree DBH, stand structural parameters (aspen basal area,

relative aspen density, and aspen density) and ecoregion as fixed effects, and site as a random

effect. Values for R2m (0.23) and R2c (0.45) indicated that fixed effects and the random effect of

site, accounting for the autocorrelation among sites, contributed similarly to total explained

variance:

Logit ðpÞ ¼ log ðp=ð1� pÞÞ ¼ � 0:761 � 0:177�DBH � 0:023�Relative Aspen Density þ 0:092�Aspen

Basal Area þ 0:106�Mean Aspen DBH � 1:413�CK � 3:263�CR � 0:358�RM þ 0:692�TKL�

0:736�NOM

Ecoregion abbreviations (see Fig 4) were coded as 1 or 0 in the model. Ecoregion β values

are computed relative to the Yukon Tanana Uplands (YTU) which does not appear in the

model and has a log (odds) = the intercept plus other stand-level factors when all binary vari-

ables for ecoregions = 0. One way to visualize the effects of the selected stand variables is by

examining how a unit change of a given variable affects the odds ratio of canker infection

when all other variables are held constant (Fig 6). For example, a 1 cm increase in the DBH of

an aspen tree decreased the odds of canker infection by 16.2%, while a 1 cm increase in average

aspen DBH (a surrogate for stand age) increased the odds of canker infection by 11.2%. Thus,

the model shows that probability of canker infection is highest in smaller diameter trees grow-

ing in older stands. Increasing stand level aspen basal area by 2 m2 ha-1 increased the odds of

canker infection by 20.2% and increasing the relative aspen density by 10% reduced the odds

of canker infection by 20.3%. This inverse relationship between canker incidence and relative

aspen density is likely driven by little to no canker in young trees within recent burn perime-

ters. Variability in elevation, slope or southerly exposure did not significantly influence the

odds of canker infection. Differences among ecoregions in the probability of canker infection

Fig 2. Relationships between stand structural characteristics across the 88 study sites. Mean aspen DBH vs. percentage

of trees that were aspen (= relative aspen density) across stands where aspen grew with white spruce, black spruce,

Alaskan paper birch, or a combination (A) and aspen basal area vs. mean aspen DBH (B) across study sites.

https://doi.org/10.1371/journal.pone.0250078.g002
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were driven by high canker incidence in the Tanana Kuskokwim Lowlands and low incidence

of canker south of the Alaska Range, which are similar to differences in canker incidence cal-

culated directly from survey data (Fig 7).

Incorporating climate variables into modeling canker incidence

The best model incorporating climate variables to predict canker infection included monthly

VPD and stand structural parameters as fixed effects, and site nested within ecoregion as the

random effect. Other climate variables (precipitation and growing season length) and site vari-

ables (elevation, slope and southerly) were eliminated during model optimization. The effects

of stand structure variables were consistent among models incorporating VPD run separately

for May, June, July, and August, and similar to those reported above where ecoregion was

included as a fixed effect (S1 Table). Sites with higher monthly VPD consistently had a higher

canker infection whereby increases in VPD by 0.25 hPa during May, June, July and August

increased the odds of canker infection by 17.7%, 8.0%, 10.1% and 23.3%, respectively (Fig 8).

Fig 3. Canker incidence and canker mortality across ecoregions. Box plots of (A) canker incidence (% aspen trees infected) by

ecoregion, and (B) % of trees infected with canker that are dead. Ecoregions sharing different letters are significantly different at

P< 0.05 (ANOVA model, F5,82 = 5.10, P< 0.001). Means ± 1 STD error are listed across the bottom of the graph.

https://doi.org/10.1371/journal.pone.0250078.g003

Fig 4. Incidence of canker infection by DBH class for each ecoregion and as an average across all 88 sites (last column). For

the last column, size classes sharing similar letters are not different at P< 0.05 (ANOVA, F5,291 = 5.42, P< 0.0001). CK = Cook

Inlet, CR = Copper River, RM = Ray Mountains, TKL = Tanana Kuskokwim Lowlands, NOM = North Ogilvie Mountains,

YTU = Yukon Tanana Uplands. The absence of size classes within ecoregions is because no trees were found within that size class,

or that none of the trees within that size class were infected.

https://doi.org/10.1371/journal.pone.0250078.g004
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Climate sensitivity of canker infection involves a complex of factors affecting both the plant

and the pathogen, as discussed below. Monthly VPD and temperature values are positively

correlated during the growing season, as expected, since temperature is included in the calcu-

lation of VPD. Interestingly, VPD and precipitation are also positively correlated, albeit

weakly, for May, June, and July (S2 Fig). In our global model that included all climate variables

as fixed effects, increases in precipitation tended to decrease canker infection in May and

August, and increase canker infection in June and July; however, precipitation was eliminated

as a factor during model optimization. Although speculative, it may be that during May and

August, higher rainfall improves plant water balance at some sites and thereby reduces vulner-

ability to canker despite the dominant net effect of warmer conditions (higher VPD) favoring

pathogen growth [54,55]. But during June and July, the period of most rapid tree growth, both

warmer (higher VPD) and wetter (higher PPT) site conditions appear to be benefitting

Fig 5. Proportion of DBH size classes at 72 sites with canker (columns 1–8) and at 16 sites without canker (columns 9–10). For sites with canker,

the first 6 columns show data for only trees with canker categorized by ecoregion, and column 7 shows the mean across all sites for trees with canker.

Column 8 shows the size distribution of all trees (with and without canker) at sites where canker was present. Values beside size classes in Column 8

refer to the % increase in proportion of infected trees vs. the population as a whole for each size class (�P< 0.10). For example, there are 6% more trees

infected with canker in DBH class 1 than there are in the population (NS), while there are 35% fewer trees infected with canker in 15–20 cm size class

than there are in the population as a whole (P< 0.10). Columns 9 and 10 show data for sites without canker, broken down into young sites (n = 9) and

older sites (n = 7). For sites without canker, young sites (column 9) were located within recent burn perimeters scattered across the Yukon Tanana

Uplands, Ray Mountains, and North Ogilvie Mountains ecoregions, while 6 of 7 old sites (column 10) were located south of the Alaska Range within the

Cook Inlet and Copper River ecoregions. CK = Cook Inlet, CR = Copper River, RM = Ray Mountains, TKL = Tanana Kuskokwim Lowlands,

NOM = North Ogilvie Mountains, YTU = Yukon Tanana Uplands.

https://doi.org/10.1371/journal.pone.0250078.g005
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pathogen growth. Overall, models show that VPD alone was the most important climate driver

influencing the probability of canker infection, which is consistent with aspen drought sensi-

tivity to the recent summer drying in interior Alaska [45]. Data from the main BNZ LTER

weather station show that while average VPD is similar for May, June and July, precipitation

steadily increases throughout the summer. However, soil moisture declines significantly from

May through July, suggesting that trees are controlling stand water balance and potentially

becoming progressively water limited despite this increase in precipitation (S3 Fig). Interest-

ing, even when precipitation has increased substantially relative to VPD in August, sites with

higher VPD continue to have higher rates of canker.

Discussion

Disease epidemiology and spread

The aspen mortality we and others have observed throughout interior Alaska appears to differ

from the “sudden aspen decline” syndrome (sensu [14,15,24,56]) in the contiguous U.S. in the

consistent presence of a large, fast-expanding diffuse canker, the absence of extensive branch

dieback preceding mortality, and the lack of direct involvement of secondary insect pests and

Fig 6. Modeling canker incidence based on stand parameters. Odds ratios for stand structural parameters from the

mixed-effects logistic model: Logit (π) = log (π/(1- π)) = –0.761–0.177�DBH– 0.023�Relative Aspen Density
+ 0.092�Aspen Basal Area + 0.106�Mean Aspen DBH– 1.413�CK– 3.263�CR—0.358�RM + 0.692�TKL– 0.736�NOM.

Ecoregion β values are computed relative to YTU which does not appear in the model and has a log (odds) = the

intercept when all other factors are 0. Variables with odds ratios significantly greater than 1.0 indicate a significant

increase the odds of canker infection while those below 1.0 indicate a significant reduction in the probability of canker

infection. For example, an odds ratio of 0.838 (red dot) means that for every 1 cm increase in DBH of a given aspen

tree, the odds of having canker is reduced by 16.2% (= (1–0.839)�100), while an odds ratio of 1.112 (blue dot) means

that every 1 cm increase in average stand-level DBH (a surrogate for stand age) increased the odds of having canker by

11.2% ((1.112–1)�100). Ecoregion abbreviations follow Fig 4.

https://doi.org/10.1371/journal.pone.0250078.g006
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pathogens. We recognize the canker pathogen found on aspen in Alaska to be the primary

agent of mortality (S1 Document), as such it differs from a forest decline in which biotic agents

are secondary contributing factors to a primary inciting factor such as drought. Marchetti

et al. (2011) [56] reported that a group of interchangeable secondary insects including borers

(Agrilus liragus and Saperda calcarata), bark beetles (Procryphalus mucromatus and Trypoph-
loeus populi), and possibly others distinguished the Rocky Mountain decline mortality, which

are not involved in the mortality driven by N. populina in interior Alaska. However, as we dis-

cuss below, we believe drought and the ubiquitous aspen leaf miner may have contributed to

the N. populina outbreak by stressing the host trees. To our knowledge, the size and speed of

Fig 7. Modeling canker incidence among ecoregions. Probability of canker infection for different ecoregions as a

function of DBH of an aspen tree (A), mean stand-level aspen DBH, a surrogate for stand age (B), and aspen basal area

(C). Probabilities were calculated by fixing all other variables as mean values using the following equation derived from

a mixed-effects logistic regression model incorporating site as a random effect: Logit (π) = log (π/(1- π)) = –0.761–

0.177�DBH– 0.023�Relative Aspen Density + 0.092�Aspen Basal Area + 0.106�Mean Aspen DBH– 1.413�CK–

3.263�CR– 0.358�RM + 0.692�TKL– 0.736�NOM. Ecoregion β values are computed relative to YTU which does not

appear in the model and has a log(odds) = the intercept when all other factors are 0. Contrasts derived from logistic

models indicated the following differences in canker incidence among ecoregions; TKLa, YTUab, RMbc, NOMabc,

CKcd, CRd, where ecoregions with different letters are significantly different at P< 0.05. Ecoregion abbreviations

follow Fig 4.

https://doi.org/10.1371/journal.pone.0250078.g007

Fig 8. Modeling canker responses to variations in stand structure and climate. Odds ratios for canker incidence response to

0.25 hPa increases in VPD during May, June, July and August derived from the mixed-effects logistic equation model: Logit (π) =

log (π/(1- π)) = α + β1
�DBH + β2

�Relative Aspen Density + β3
�Aspen Basal Area + β4

�Mean Aspen DBH + β5
�VPDmonth.

Model results for stand structural variables and monthly VPD are show in S1 Table. Unit increases in variables with odds ratios

above 1.0 significantly increase the probability of canker infection while those below 1.0 reduce the probability of canker infection.

Thus, an odds ratio of 1.177 for VPD in May indicates that for every 0.25 hPa increase in VPD the odds of having canker increases

by 17.7%.

https://doi.org/10.1371/journal.pone.0250078.g008
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expansion of N. populina exceeds that reported for any known fungal canker pathogen of trees

in temperate or boreal forests and generally results in tree death within 1–2 years. As such, N.

populina is more aggressive and severe than other aspen canker diseases, such as Hypoxylon
canker, which is similar in size and lethality but usually takes several years to kill trees and

always presents evident black stroma [53]. Cytospora canker pathogens (C. chrysosperma, C.

notastroma, and C. nivea) were occasionally observed on fallen aspen as secondary colonizers

of the N. populina cankers, as was also reported in sudden aspen decline [56]. Cytospora are

readily differentiated by the consistent habit of producing numerous aggregated fruiting bod-

ies on the face of annual cankers.

Across all plots where canker was found, 34% of all aspen trees were dead, of which 53%

were identified as having canker; however, we suspect we underestimated the canker contribu-

tion to mortality because the disease is often difficult to identify on dead trees. All aspen trees

within the CAFI and LTER site networks are individually tagged, and our inventory included

all standing and down dead trees that could be located. However, trees were not recorded as

having canker unless we could unequivocally identify symptoms of this particular fungal can-

ker. We suspect that the values reported for overall disease incidence in Fig 3A are also conser-

vative because canker symptoms may have been within the upper canopy but not visible from

the ground. Moreover, given how rapidly the canker spreads within a tree, many trees likely

had developing canker but undetectable symptoms.

It appears that the disease was well established when we first inventoried trees in 2015, and

that mortality and canker incidence increased in a coordinated manner between 2015 and

2018 (Fig 9). The CAFI network provides the longest record of mortality for permanent plots

and shows a steady increase in mortality since 2000 (Fig 10). Unfortunately, we lack data on

earlier endemic contributions to mortality; however, the rapid rise in proportion of dead trees,

and increase in variability among sites that parallels the variability of canker incidence, suggest

that the canker has played a major role in aspen mortality over the past two decades.

Mechanisms underlying sudden aspen decline syndrome

In Alaska, sudden aspen decline appears to involve interactions among drought, the fungal

canker, and the aspen leaf miner (Phyllocnistis populiella) that affect C metabolism and plant

water balance to shift aspen beyond its hydraulic safety zone. In addition to the influence of

DBH and stand structure on canker incidence (Figs 6 and 7), variability in spring and summer

climate among sites contributed to models characterizing the patterning of the disease across

the landscape. In particular, the consistent influence of increases in VPD on higher canker

incidence point to the net interactive effects of plant and canker responses to temperature,

vapor pressure and soil moisture (Figs 8, S1 & S2).

Similar to most other woody angiosperms in temperate to semi-arid environments, aspen

operates within a narrow safety margin representing a tradeoff between hydraulic efficiency

and risk to drought-induced hydraulic failure [28,57–59]. Hydraulic failure due to xylem

embolism during drought is caused by air entering vessels through intervessel pit membranes,

often from older vessels [34]. The thickness and porosity of pit membranes are key morpho-

logical traits influencing the probability of this air intrusion [60,61]. Despite having compara-

tively small-diameter vessels, aspen achieves high leaf specific conductance by maintaining

lower leaf area to sap wood ratios [33], which contributes to aspen dominating drier habitats

than Alaska paper birch, the only other hardwood species found throughout interior Alaskan

uplands [62]. Hydraulic efficiency, photosynthesis and growth rate are positively intercorre-

lated in aspen [63]; however, aspen maintains only 1–2 years of active xylem in rapidly grow-

ing branches because of pit membrane degradation [34]. Thus, even a small percentage of
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embolized 2-yr old xylem driven by drought-insect-pathogen interactions would have large

impacts on hydraulic efficiency and associated mortality of aspen. Increased incidence of

freeze-thaw events over the past decade in interior Alaska may have also contributed to this

mortality syndrome since the loss of hydraulic conductivity due to xylem embolism as cells

thaw under tension is known to be correlated with the number of freeze thaw events [33].

Aspen leaf miner (ALM) accelerates leaf water loss by increasing cuticular permeability to

evaporation while at the same time reducing photosynthesis via stomatal disruption and

potentially chlorophyll degradation [42]. Drought-induced declines in C metabolism, growth,

and water balance [29] have likely contributed to the sustained ALM outbreak, via direct and

interactive effects on aspen stress and insect survival [40–42]. Aspen produces phenolic glyco-

sides as a direct defense against the ALM, but also produces extrafloral nectaries, an indirect

defense that attracts predators such as parasitoid wasps and mites that feed on the miner larvae

[64,65]. These collective C costs coupled with the direct effects of the sustained leaf mining on

plant water balance likely contribute to mortality through the strong feedbacks between C

Fig 9. Changes in disease incidence at 3 assessments across multiple sites within 2 regions. Box plots showing % of

all aspen trees dead (2013, 2015, and 2018) and % of all aspen trees with canker (2015 and 2018) for sites within the Big

Denver Fire perimeter (A, n = 4 sites, Ray Mts. ecoregion) and Gerstle River Fire perimeter (B, n = 6 sites, Tanana

Kuskokwim Lowlands ecoregion).

https://doi.org/10.1371/journal.pone.0250078.g009

Fig 10. Box plots showing % of all aspen trees dead at select CAFI sites in 2000 and every 5 years thereafter. When plot

inventory began in 1995, dead trees were not inventoried, but all live trees were tagged and those that subsequently died were

inventoried on subsequent dates. The CAFI program included other sites in the inventory program from 1996–2013, but the 12

sites here represent the cohort of sites with the longest sampling history (other than 4 sites first inventoried in 1994 but not

included here). Also shown are the proportion of trees with canker at these same sites that we inventoried in 2018.

https://doi.org/10.1371/journal.pone.0250078.g010
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starvation and hydraulic failure [28,29]. We recorded high ALM damage on all trees invento-

ried, and thus, were unable to statistically uncouple interactions between the ALM and canker

outbreaks. However, because insects and pathogens interact and are known to both influence

and respond to changes in plant C and water balance, it is likely that the ALM has contributed

to the outbreak of the canker.

Fungal cankers both respond to and exacerbate vulnerability to C starvation and hydraulic

failure, and the reliance on only a few years of xylem makes aspen particularly vulnerable to

the direct and indirect effects of fungal cankers. Occlusion of pit membranes by fungal hyphae

may increase vulnerability to drought-induced cavitation and/or prevent refilling of cavitated

vessels during the growing season [66,67]. Experimental fungal canker inoculations in Populus
beijingensis have been shown to trigger the up-regulation of immune response genes, and the

down-regulation of genes related to chemical defense, hydraulic functioning and the metabo-

lism and transport of carbohydrates [36]. Because water stress reduces phloem C transport

and carbohydrate supply necessary for osmoregulation and vessel refilling [28], it seems likely

that the effects of drought, ALM and canker are triggering feedbacks between plant C and

hydraulic stress. Our observations that the highest canker incidence and mortality rates are

found on smaller diameter trees in older stands, while younger trees in younger stands appear

virtually immune to the disease supports the notion that mortality is driven by C starvation

linked with hydraulic failure. Smaller-diameter trees in intermediate-age and older stands

have reduced growth rates and defenses due to reductions in light and likely soil water avail-

ability [68]. Although younger trees in early-successional stands have ALM, they are likely

growing closer to their maximum relative growth rate with a more actively up-regulated defen-

sive system. We suspect that as stands age, all trees become more vulnerable to canker infec-

tion because of the effects of increasing LAI on declining soil water content. How

belowground C partitioning responds to drought and is influenced by C starvation in aging

aspen stands are important but poorly understood factors influencing these dynamics [69–71].

Ecosystem level consequences of aspen mortality

Warmer early-season temperatures coupled with prolonged late summer drought are leading

to larger and more severe wildfires throughout interior Alaska that are favoring a shift from

black spruce to forests dominated by Alaska paper birch and aspen [72,73]. Paleoecological

studies indicate that the current fire regime is novel in the context of interior Alaskan fires

over the past 10,000 years [74] and is likely to persist throughout the 21st century [75,76],

although the amount of area burned may stabilize by mid-century due to conversion of the

landscape to hardwood forests [77]. Rapid litter decay in deciduous stands and the absence of

an insulating moss layer entrain plant-soil-microbial feedbacks that influence long-term tra-

jectories of net primary production, nutrient cycling and C storage [78–80]. These fire-driven

shifts to a more deciduous landscape are predicted to have negative feedbacks to climate

warming through reduced fire frequency and increased albedo and NPP relative to coniferous

forests [81]. Thus, widespread aspen mortality throughout the region has significant conse-

quences for ecosystem function, successional dynamics, and changing disturbance regimes,

particularly on sites too dry for Alaska paper birch.

Across interior Alaska, most forests with an aspen-dominated canopy contain at least some

slow-growing white spruce and/or black spruce trees in the sub-canopy, and many of the

aspen stands we inventoried were a mixture of aspen and conifers. Although the successional

models developed decades ago predict that these mixed stands will eventually transition to

conifer dominance, their fate has become less certain, and dependent on a number of factors

such as moose herbivory on aspen or snowshoe hare herbivory on small conifers [82,83]. In
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addition, as an intensified fire regime increases fire probability in deciduous stands, perhaps

promoted by a high proportion of dead aspen, conifer seedlings and saplings will be killed

before they produce viable seed [84]. However, in stands where aspen mortality is high, reach-

ing for example near or over 60% at many of the BNZ LTER Gerstle River stands (Fig 9B),

black spruce may experience a growth release triggered by an opening of the aspen canopy.

Whether these stands return to black spruce dominance before reburning is dependent on

whether they reburn prior to producing seed [84], but current rates of aspen mortality could

shift these stands back to the black spruce-moss stand types rather than remaining on the

deciduous pathway.
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32. Anderegg WRL, Plavcová L, Anderegg LDL, Hacke UG, Berry JA, Field CB. Drought’s legacy: Multiyear

hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk.

Global Change Biology. 2013; 19(4):1188–96. https://doi.org/10.1111/gcb.12100 PMID: 23504895

33. Sperry JS, Nichols KL, Sullivan JEM, Eastlack SE. Xylem embolism in ring-porous, diffuse-porous, and

coniferous trees of northern Utah and interior Alaska. Ecology. 1994; 75(6):1736–52. ISI:

A1994PE26700021.

34. Sperry JS, Perry AH, Sullivan JEM. Pit membrane degradation and air-embolism formation in ageing

xylem vessels of Populus tremuloides michx. Journal of Experimental Botany. 1991; 42(11):1399–406.

https://doi.org/10.1093/jxb/42.11.1399

35. Tai X, Mackay DS, Anderegg WRL, Sperry JS, Brooks PD. Plant hydraulics improves and topography

mediates prediction of aspen mortality in southwestern USA. New Phytologist. 2017; 213(1):113–27.

https://doi.org/10.1111/nph.14098 PMID: 27432086

36. Li P, Liu W, Zhang Y, Xing J, Li J, Feng J, et al. Fungal canker pathogens trigger carbon starvation by

inhibiting carbon metabolism in poplar stems. Scientific Reports. 2019; 9(1). https://doi.org/10.1038/

s41598-019-46635-5 PMID: 31300723

37. Bieniek PA, Walsh JE, Thoman RL, Bhatt US. Using climate divisions to analyze variations and trends

in Alaska temperature and precipitation. Journal of Climate. 2014; 27(8):2800–18. https://doi.org/10.

1175/jcli-d-13-00342.1 WOS:000334017400002.

38. Thoman R, Walsh J. Alaska’s changing environment: documenting Alaska’s physical and biological

changes through observations 2019.

39. Cahoon SMP, Sullivan PF, Brownlee AH, Pattison RR, Andersen HE, Legner K, et al. Contrasting driv-

ers and trends of coniferous and deciduous tree growth in interior Alaska. Ecology. 2018; 99(6):1284–

95. https://doi.org/10.1002/ecy.2223 PMID: 29569245

PLOS ONE Fungal pathogen outbreak triggers widespread mortality of aspen in Alaska

PLOS ONE | https://doi.org/10.1371/journal.pone.0250078 April 8, 2021 21 / 24

https://doi.org/10.1016/j.rse.2019.111238
https://doi.org/10.1080/01431161.2019.1620375
https://doi.org/10.1139/X08-001
https://doi.org/10.1111/j.1365-2486.2010.02357.x
https://doi.org/10.1016/j.foreco.2012.12.033
https://doi.org/10.1111/gcb.13595
https://doi.org/10.1111/gcb.13595
http://www.ncbi.nlm.nih.gov/pubmed/28121057
https://doi.org/10.3390/f10080671
https://doi.org/10.3390/f10080671
https://doi.org/10.1111/pce.12141
http://www.ncbi.nlm.nih.gov/pubmed/23730972
https://doi.org/10.1016/j.tree.2011.06.003
http://www.ncbi.nlm.nih.gov/pubmed/21802765
https://doi.org/10.1007/s00442-013-2875-5
https://doi.org/10.1007/s00442-013-2875-5
http://www.ncbi.nlm.nih.gov/pubmed/24394863
https://doi.org/10.1038/ngeo2400
https://doi.org/10.1038/ngeo2400
https://doi.org/10.1111/gcb.12100
http://www.ncbi.nlm.nih.gov/pubmed/23504895
https://doi.org/10.1093/jxb/42.11.1399
https://doi.org/10.1111/nph.14098
http://www.ncbi.nlm.nih.gov/pubmed/27432086
https://doi.org/10.1038/s41598-019-46635-5
https://doi.org/10.1038/s41598-019-46635-5
http://www.ncbi.nlm.nih.gov/pubmed/31300723
https://doi.org/10.1175/jcli-d-13-00342.1
https://doi.org/10.1175/jcli-d-13-00342.1
https://doi.org/10.1002/ecy.2223
http://www.ncbi.nlm.nih.gov/pubmed/29569245
https://doi.org/10.1371/journal.pone.0250078


40. Wagner D, DeFoliart L, Doak P, Schneiderheinze J. Impact of epidermal leaf mining by the aspen leaf

miner (Phyllocnistis populiella) on the growth, physiology, and leaf longevity of quaking aspen. Oecolo-

gia. 2008; 157(2):259–67. https://doi.org/10.1007/s00442-008-1067-1 WOS:000257956000008. PMID:

18523809

41. Wagner D, Doak P. Long-term impact of a leaf miner outbreak on the performance of quaking aspen.

Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere. 2013; 43(6):563–

9. https://doi.org/10.1139/cjfr-2012-0486 WOS:000320231100006.

42. Wagner D, Wheeler J, Burr S. The leaf miner Phyllocnistis populiella negatively impacts water relations

in aspen. Tree Physiology. 2020; 40:580–90. https://doi.org/10.1093/treephys/tpz109 PMID: 31728531

43. Boyd MA, Berner LT, Doak P, Goetz SJ, Rogers BM, Wagner D, et al. Impacts of climate and insect her-

bivory on productivity and physiology of trembling aspen (Populus tremuloides) in Alaskan boreal for-

ests. Environmental Research Letters. 2019; 14(8). https://doi.org/10.1088/1748-9326/ab215f

44. USDA. Forest health conditions in Alaska—2019. In: USDA, editor.: USDA, Washington, DC; 2020.

45. Trugman AT, Medvigy D, Anderegg WRL, Pacala SW. Differential declines in Alaskan boreal forest

vitality related to climate and competition. Global Change Biology. 2018; 24(3):1097–107. https://doi.

org/10.1111/gcb.13952 PMID: 29055122

46. Crous P, Groenewald J, Adams G, Winton L. Fungal planet no. 1141. Persoonia—Molecular Phylogeny

and Evolution of Fungi. 2020; 45.

47. Winton L, Adams G, Ruess R. Determining the causal agent of the aspen running canker disease in

Alaska. Canadian Journal of Forest Pathology. (in review).

48. Malone T, Liang J, Packee E. Cooperative Alaska Forest Inventory. Department of Agriculture, Pacific

Northwest Research Station, 2009 PNW-GTR-785 Contract No.: PNW-GTR-785.

49. R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Aus-

tria: R Foundation for Statistical Computing; 2017.

50. SAS. SAS University Edition. 4 ed. Cary, NC: SAS Institute, Inc.; 2018.

51. Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor GH, et al. Physiographically sensitive

mapping of climatological temperature and precipitation across the conterminous United States. Inter-

national Journal of Climatology. 2008; 28(15):2031–64. https://doi.org/10.1002/joc.1688

52. Nicklen EF, Roland CA, Csank AZ, Wilmking M, Ruess RW, Muldoon LA. Stand basal area and solar

radiation amplify white spruce climate sensitivity in interior Alaska: Evidence from carbon isotopes and

tree rings. Global Change Biology. 2019; 25(3):911–26. https://doi.org/10.1111/gcb.14511 PMID:

30408264

53. Sinclair WA, Lyon HH. Diseases of trees and shrubs. 2nd ed. Ithaca, New York, USA: Cornell Univer-

sity Press; 2005. 660 p.

54. Lian X, Piao S, Li LZX, Li Y, Huntingford C, Ciais P, et al. Summer soil drying exacerbated by earlier

spring greening of northern vegetation. Science Advances. 2020; 6(1):eaax0255. https://doi.org/10.

1126/sciadv.aax0255 PMID: 31922002

55. Buermann W, Bikash PR, Jung M, Burn DH, Reichstein M. Earlier springs decrease peak summer pro-

ductivity in North American boreal forests. Environmental Research Letters. 2013; 8(2). https://doi.org/

10.1088/1748-9326/8/2/024027 WOS:000321425100031.

56. Marchetti SB, Worrall JJ, Eager T. Secondary insects and diseases contribute to sudden aspen decline

in southwestern Colorado, USA. Canadian Journal of Forest Research. 2011; 41(12):2315–25. https://

doi.org/10.1139/X11-106

57. Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, et al. Global convergence in the vul-

nerability of forests to drought. Nature. 2012; 491(7426):752–5. https://doi.org/10.1038/nature11688

PMID: 23172141

58. Gleason SM, Westoby M, Jansen S, Choat B, Hacke UG, Pratt RB, et al. Weak tradeoff between xylem

safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytologist.

2016; 209(1):123–36. https://doi.org/10.1111/nph.13646 PMID: 26378984

59. Maherali H, Pockman WT, Jackson RB. Adaptive variation in the vulnerability of woody plants to xylem

cavitation. Ecology. 2004; 85(8):2184–99. https://doi.org/10.1890/02-0538

60. Lens F, Tixier A, Cochard H, Sperry JS, Jansen S, Herbette S. Embolism resistance as a key mecha-

nism to understand adaptive plant strategies. Current Opinion in Plant Biology. 2013; 16(3):287–92.

https://doi.org/10.1016/j.pbi.2013.02.005 PMID: 23453076

61. Jansen S, Choat B, Pletsers A. Morphological variation of intervessel pit membranes and implications

to xylem function in angiosperms. American Journal of Botany. 2009; 96(2):409–19. https://doi.org/10.

3732/ajb.0800248 PMID: 21628196

PLOS ONE Fungal pathogen outbreak triggers widespread mortality of aspen in Alaska

PLOS ONE | https://doi.org/10.1371/journal.pone.0250078 April 8, 2021 22 / 24

https://doi.org/10.1007/s00442-008-1067-1
http://www.ncbi.nlm.nih.gov/pubmed/18523809
https://doi.org/10.1139/cjfr-2012-0486
https://doi.org/10.1093/treephys/tpz109
http://www.ncbi.nlm.nih.gov/pubmed/31728531
https://doi.org/10.1088/1748-9326/ab215f
https://doi.org/10.1111/gcb.13952
https://doi.org/10.1111/gcb.13952
http://www.ncbi.nlm.nih.gov/pubmed/29055122
https://doi.org/10.1002/joc.1688
https://doi.org/10.1111/gcb.14511
http://www.ncbi.nlm.nih.gov/pubmed/30408264
https://doi.org/10.1126/sciadv.aax0255
https://doi.org/10.1126/sciadv.aax0255
http://www.ncbi.nlm.nih.gov/pubmed/31922002
https://doi.org/10.1088/1748-9326/8/2/024027
https://doi.org/10.1088/1748-9326/8/2/024027
https://doi.org/10.1139/X11-106
https://doi.org/10.1139/X11-106
https://doi.org/10.1038/nature11688
http://www.ncbi.nlm.nih.gov/pubmed/23172141
https://doi.org/10.1111/nph.13646
http://www.ncbi.nlm.nih.gov/pubmed/26378984
https://doi.org/10.1890/02-0538
https://doi.org/10.1016/j.pbi.2013.02.005
http://www.ncbi.nlm.nih.gov/pubmed/23453076
https://doi.org/10.3732/ajb.0800248
https://doi.org/10.3732/ajb.0800248
http://www.ncbi.nlm.nih.gov/pubmed/21628196
https://doi.org/10.1371/journal.pone.0250078


62. Viereck LA, Dyrness CT, Van Cleve K, Foote MJ. Vegetation, soils, and forest productivity in selected

forest types in interior Alaska. Canadian Journal of Forest Research. 1983; 13:703–20.

63. Hajek P, Leuschner C, Hertel D, Delzon S, Schuldt B. Trade-offs between xylem hydraulic properties,

wood anatomy and yield in Populus. Tree Physiology. 2014; 34(7):744–56. https://doi.org/10.1093/

treephys/tpu048 PMID: 25009155

64. Young B, Wagner D, Doak P, Clausen T. Induction of phenolic glycosides by quaking aspen (Populus

tremuloides) leaves in relation to extrafloral nectaries and epidermal leaf mining. Journal of Chemical

Ecology. 2010; 36(4):369–77. https://doi.org/10.1007/s10886-010-9763-9 WOS:000276430700003.

PMID: 20354896

65. Young B, Wagner D, Doak P, Clausen T. Within-plant distribution of phenolic glycosides and extrafloral

nectaries in trembing aspen (Populus tremuloides; Salicaceae). American Journal of Botany. 2010; 97

(4):601–10. https://doi.org/10.3732/ajb.0900281 WOS:000276045500007. PMID: 21622422

66. Madar Z, Solel Z, Sztejnberg A. The effect of Diplodia pinea f.sp. cupressi and Seiridium cardinale on

water flow in cypress branches. Physiological and Molecular Plant Pathology. 1990; 37(5):389–98.

https://doi.org/10.1016/0885-5765(90)90121-D

67. Love DM, Sperry JS. In situ embolism induction reveals vessel refilling in a natural aspen stand. Tree

Physiology. 2018; 38(7):1006–15. https://doi.org/10.1093/treephys/tpy007 PMID: 29509942
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69. Landhäusser SM, Lieffers VJ. Defoliation increases risk of carbon starvation in root systems of mature

aspen. Trees—Structure and Function. 2012; 26(2):653–61. https://doi.org/10.1007/s00468-011-0633-

z

70. Giardina CP, Litton CM, Crow SE, Asner GP. Warming-related increases in soil CO2 effux are

explained by increased below-ground carbon flux. Nature Climate Change. 2014; 4(9):822–7. https://

doi.org/10.1038/nclimate2322 WOS:000341569700027.

71. Litton CM, Giardina CP. Below-ground carbon flux and partitioning: global patterns and response to

temperature. Functional Ecology. 2008; 22:941–54.

72. Johnstone JF, Hollingsworth TN, Chapin FS, III, Mack MC. Changes in fire regime break the legacy lock

on successional trajectories in the Alaskan boreal forest. Global Change Biology. 2010; 16:1281–95.

73. Barrett K, McGuire AD, Hoy EE, Kasischke ES. Potential shifts in dominant forest cover in interior

Alaska driven by variations in fire severity. Ecological Applications. 2011; 21(7):2380–96.

WOS:000296139200004. https://doi.org/10.1890/10-0896.1 PMID: 22073630

74. Kelly R, Chipman ML, Higuera PE, Stefanova I, Brubaker LB, Hu FS. Recent burning of boreal forests

exceeds fire regime limits of the past 10,000 years. Proceedings of the National Academy of Sciences

of the United States of America. 2013; 110(32):13055–60. https://doi.org/10.1073/pnas.1305069110

WOS:000322771100054. PMID: 23878258

75. Balshi MS, McGuire AD, Duffy P, Kicklighter DW, Melillo JM. Vulnerability of carbon storage in North

American boreal forests to wildfires during the 21st Century. Global Change Biology. 2009; 15:1491–

510.

76. Mann DH, Rupp TS, Olson MA, Duffy PA. Is Alaska’s boreal forest now crossing a major ecological

threshold? Arctic Antarctic and Alpine Research. 2012; 44(3):319–31. https://doi.org/10.1657/1938-

4246-44.3.319 WOS:000307990800006.

77. Wylie B, Pastick NJ, Johnson K, Bliss N, Genet H, editors. Soil carbon and permafrost estimates and

susceptibility in Alaska. Chapter3. Washington, D.C. (In press): U.S. Geological Survey Professional

Paper; 2016.

78. Johnstone JF, Chapin FS, Hollingsworth TN, Mack MC, Romanovsky VE, Turetsky MR. Fire, climate

change, and forest resilience in interior Alaska. Canadian Journal of Forest Research. 2010; 40:1302–

12.

79. Melvin AM, Mack MC, Johnstone JF, McGuire AD, Genet H, Schuur EAG. Differences in ecosystem

carbon distribution and nutrient cycling linked to forest tree species composition in a mid-successional

boreal forest. Ecosystems. 2015; 18(8):1472–88. https://doi.org/10.1007/s10021-015-9912-7

WOS:000365096400013.

80. Alexander HD, Mack MC. A canopy shift in interior Alaskan boreal forests: consequences for above-

and belowground carbon and nitrogen pools during post-fire succession. Ecosystems. 2016; 19:98–

114.

PLOS ONE Fungal pathogen outbreak triggers widespread mortality of aspen in Alaska

PLOS ONE | https://doi.org/10.1371/journal.pone.0250078 April 8, 2021 23 / 24

https://doi.org/10.1093/treephys/tpu048
https://doi.org/10.1093/treephys/tpu048
http://www.ncbi.nlm.nih.gov/pubmed/25009155
https://doi.org/10.1007/s10886-010-9763-9
http://www.ncbi.nlm.nih.gov/pubmed/20354896
https://doi.org/10.3732/ajb.0900281
http://www.ncbi.nlm.nih.gov/pubmed/21622422
https://doi.org/10.1016/0885-5765%2890%2990121-D
https://doi.org/10.1093/treephys/tpy007
http://www.ncbi.nlm.nih.gov/pubmed/29509942
https://doi.org/10.1007/s10886-013-0374-0
https://doi.org/10.1007/s10886-013-0374-0
http://www.ncbi.nlm.nih.gov/pubmed/24363094
https://doi.org/10.1007/s00468-011-0633-z
https://doi.org/10.1007/s00468-011-0633-z
https://doi.org/10.1038/nclimate2322
https://doi.org/10.1038/nclimate2322
https://doi.org/10.1890/10-0896.1
http://www.ncbi.nlm.nih.gov/pubmed/22073630
https://doi.org/10.1073/pnas.1305069110
http://www.ncbi.nlm.nih.gov/pubmed/23878258
https://doi.org/10.1657/1938-4246-44.3.319
https://doi.org/10.1657/1938-4246-44.3.319
https://doi.org/10.1007/s10021-015-9912-7
https://doi.org/10.1371/journal.pone.0250078


81. Pastick NJ, Duffy P, Genet H, Rupp TS, Wylie BK, Johnson KD, et al. Historical and projected trends in

landscape drivers affecting carbon dynamics in Alaska. Ecological Applications. 2017; 27(5):1383–402.

https://doi.org/10.1002/eap.1538 PMID: 28390104

82. Olnes J, Kielland K, Genet H, Ruess RW. Post-fire deciduous canopies drive patterns in snowshoe

hare herbivory of regenerating black spruce. Canadian Journal of Forest Research. 2019; 49:1392–

2399.

83. Conway AJ, Johnstone JF. Moose alter the rate but not the trajectory of forest canopy succession after

low and high severity fire in Alaska. Forest Ecology and Management. 2017; 391:154–63.

84. Johnstone JF, Allen CD, Franklin JF, Frelich LE, Harvey BJ, Higuera PE, et al. Changing disturbance

regimes, ecological memory, and forest resilience. Frontiers in Ecology and the Environment. 2016; 14

(7):369–78. https://doi.org/10.1002/fee.1311 WOS:000382527900016.

PLOS ONE Fungal pathogen outbreak triggers widespread mortality of aspen in Alaska

PLOS ONE | https://doi.org/10.1371/journal.pone.0250078 April 8, 2021 24 / 24

https://doi.org/10.1002/eap.1538
http://www.ncbi.nlm.nih.gov/pubmed/28390104
https://doi.org/10.1002/fee.1311
https://doi.org/10.1371/journal.pone.0250078

