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Abstract

Background: Structural variants (SVs) play a causal role in numerous diseases but are difficult to detect and accurately
genotype (determine zygosity) in whole-genome next-generation sequencing data. SV genotypers that assume that the
aligned sequencing data uniformly reflect the underlying SV or use existing SV call sets as training data can only partially
account for variant and sample-specific biases. Results: We introduce NPSV, a machine learning-based approach for
genotyping previously discovered SVs that uses next-generation sequencing simulation to model the combined effects of
the genomic region, sequencer, and alignment pipeline on the observed SV evidence. We evaluate NPSV alongside existing
SV genotypers on multiple benchmark call sets. We show that NPSV consistently achieves or exceeds state-of-the-art
genotyping accuracy across SV call sets, samples, and variant types. NPSV can specifically identify putative de novo SVs in a
trio context and is robust to offset SV breakpoints. Conclusions: Growing SV databases and the increasing availability of SV

calls from long-read sequencing make stand-alone genotyping of previously identified SVs an increasingly important
component of genome analyses. By treating potential biases as a “black box” that can be simulated, NPSV provides a
framework for accurately genotyping a broad range of SVs in both targeted and genome-scale applications.
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Findings
Background

Structural variants (SVs) play a causal role in numerous dis-
eases [1]. However, our ability to detect and analyze disease-
causing SVs in short-read whole-genome sequencing (WGS)
data can be limited by inaccurate genotyping (determining zy-
gosity) [2, 3]. While numerous tools integrate SV discovery and
genotyping [4-6], our focus here is “stand-alone” genotyping
of putative SVs identified by discovery tools and/or obtained

from the literature or SV catalogs [7]. Stand-alone genotyping
is a critical step in ensemble pipelines that integrate multi-
ple SV discovery tools; in clinical workflows, where we seek to
accurately genotype known pathogenic SVs (e.g., from dbVar
[8]) alongside detecting novel SVs; and in population studies,
which generate “squared-off” genotypes for all variants in all
samples [7].

SVs, defined here as variants >50bp [9], are similar in size to
or larger than the read length of short-read next-generation se-
quencers (NGS) and, thus, typically cannot be detected directly.
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Instead SVs must be inferred from secondary features in the se-
quencing data such as split reads, discordant read-pairs, and
read depth [9]. As a result, the precision and recall for detect-
ing and genotyping SVs in NGS data can be much lower than for
single-nucleotide variants and short indels [4, 7, 10-13]. Long-
read sequencing (read lengths of >10 kb) improves the recall and
precision of SV detection (the long reads span more events and
can be more reliably mapped) [14-16]. However, long-read se-
quencing is more expensive than NGS [17], so many more sam-
ples have been and will continue to be sequenced with NGS
technologies. Thus, despite the growth in long-read sequencing,
there is a need to develop improved NGS SV genotyping tools,
including to genotype those SVs first (and exclusively) detected
with long-read sequencing.

Existing SV genotyping tools [18-26] (see Chander et al.
[7] for a recent comparison) exclusively target specific variant
types/sizes, use parametric (i.e., fixed-size [27]) models of SV ev-
idence, and/or are trained on existing genome-wide call sets.
These approaches assume that different SV call sets are sim-
ilar and/or that the aligned sequencing data consistently and
uniformly reflect the underlying variant (e.g., the read depth
is proportional to copy number, alternate alleles are identi-
fied at a consistent rate, and/or consistent breakpoint features
will be observed across all variants). However, these assump-
tions do not hold for all variants. The different types of SVs,
range of SV sizes, different genomic contexts, and different
sequencers/pipelines, all of which influence the available ev-
idence for predicting the SV genotype, motivate an ensemble
of approaches, each optimized for a specific subset of SVs [10,
28]. NGS simulation is a possible strategy to enable automatic
ensemble creation. For example, for select SVs from the 1000
Genomes Project, Chu et al. showed that training the GINDEL SV
genotyper on simulated data could achieve genotyping accuracy
within a few percentage points of models trained on held-out
data [29].

Here, we propose the Non-Parametric Structural Variant
(NPSV) genotyper. NPSV extends current ensemble methods
by automatically creating classifiers for predicting SV geno-
types optimized for the specific SVs and sample under anal-
ysis and even a single specific SV. In this non-parametric ap-
proach, the number of models can grow to capture genomic re-
gion, sequencer, and pipeline-specific SV evidence. NPSV per-
forms detailed simulation of the putative SVs to be genotyped.
The simulated data, which are representative of the actual ob-
served sequencing data, are used to train sample- and variant-
specific classifiers for predicting SV genotypes. In contrast to
training data sourced from existing SV call sets, by using sim-
ulation we can generate representative training data for any
putative SV, not just those previously observed, with accurate
sequence-resolved breakpoints and “ground truth” genotype
labels.

We present a rigorous evaluation of NPSV genotyping ac-
curacy across multiple truth sets in the HG002 and NA12878
reference samples. We compare NPSV to similar stand-alone
SV genotyping tools (that accept a VCF of putative SVs and
aligned reads as input and predict the SV genotype), chosen
to be representative of different alignment, graph, and ma-
chine learning-based SV genotyping methods: Delly2 [18], SV-
Typer [19], svviz2 [20], Paragraph [25], GraphTyper2 [21], SV2
[22], and GenomeSTRIiP [26]. We show that NPSV consistently
achieves similar or better genotyping accuracy across the dif-
ferent datasets, samples, and variant types, can sensitively and
specifically identify putative de novo SVs in a trio context, and is
robust to offsets in SV breakpoints.

The NPSV dataflow is shown in Fig. 1A. The inputs are the
aligned reads (BAM/CRAM file), termed the “actual” data, and
a VCF file of putative sequence-resolved deletion and insertion
SVs. For each putative SV and possible genotype, NPSV gener-
ates synthetic short-read datasets using an NGS simulator con-
figured to match the actual data (bottom path in Fig. 1A). We pro-
cess the simulated datasets with the same alignment pipeline as
the actual data and then extract realignment, read pair, and cov-
erage SV features from each simulated replicate. The features
extracted from the simulated data are used to train sample-
and variant-specific classifier(s) to predict the genotype from
the SV evidence similarly extracted from the actual sequenc-
ing reads. The simulation, feature extraction, and classification
approaches are described in more detail in the Methods (NPSV
genotyping algorithm) with the features specifically described in
Supplementary Table S1.

Figure 1B shows the simulated and actual SV evidence for an
example homozygous alternate 822-bp deletion in the Genome
in a Bottle (GIAB) HG002 call set [27], as would be generated
to train a variant-specific classifier. The actual data are most
consistent with the simulated homozygous alternate genotype.
This SV is the deletion of 1 repeat of a tandem repeat. Owing
to the underlying repetitive sequence, no reads were uniquely
realigned to the SV’s alternate allele and no alternate spanning
fragments were identified. The simulated data show that the ab-
sence of both of those features is consistent with the alternate
allele for this SV (and pipeline) and is not an indication of a ho-
mozygous reference genotype as might otherwise be expected
(indicated by the actual and simulated features in the first 2 pan-
els “massing” on the y-axis). The NPSV variant-specific classifier
correctly genotyped this variant as homozygous alternate, while
genotypers that exclusively use realignment, split-read, and/or
spanning read evidence did not.

NPSV implements 2 genotyping approaches: (i) a “variant”
model, like that described in this section, which creates variant-
specific classifiers trained on 100 replicates per variant per zy-
gosity (i.e., 300n synthetic samples for n variants), and (ii) a “sin-
gle” model that creates a single sample-specific genome-wide
classifier for each variant type (e.g., deletions, insertions) trained
on 1 replicate per variant per zygosity (i.e., 3n synthetic sam-
ples for n variants). The former approach is more computation-
ally demanding but can be applied at any scale, including for
just a single SV in a single sample. To reduce the computational
burden, a “hybrid” model only builds variant-specific classifiers
for smaller SVs (<1 kb by default) and uses the single model for
larger SVs. We generally observed the hybrid model to be most
accurate for deletions and the single model to be most accurate
for insertions and so set that as the default configuration.

Genotyping accuracy

We evaluated NPSV and the comparison SV genotypers with
multiple SV call sets across 2 samples: the GIAB version 0.6 call
set for HG002 [30] and the Polaris 2.0, Polaris 2.1, and SV-plaudit
call sets for NA12878 [31, 32]. Genotype counts for each call set
are reported in Supplementary Table S2. Using the call set SVs as
the input, we report the genotype concordance, i.e., the fraction
of predicted genotypes that exactly match the call set genotypes,
and the non-reference concordance, which treats heterozygous
and homozygous alternate genotypes as equivalent. The call
sets and evaluation are described in more detail in the Methods.
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Figure 1: NPSV dataflow and example SV evidence. (A) NPSV dataflow showing the matched training and prediction pipelines. For each putative SV and genotype,
NPSV generates 1 or more simulated replicates. These simulated data, shown in the schematic as red, blue, and green clusters for homozygous reference (hom.
ref.), heterozygous (het.), and homozygous alternate (hom. alt.) genotypes, respectively, are used to train sample- and variant-specific classifiers for predicting the SV
genotype. (B) Synthetic training data (colored circles/bars) and actual data (black square/line) for a homozygous alternate 822-bp deletion in HG002. This SV is the
deletion of 1 copy of a repeat and as a result of the repetitive genomic context, no fragments were uniquely realigned to the SV’s alternate allele and no alternate
spanning fragments were identified. The actual data are consistent with the simulated homozygous alternate data and not a homozygous reference genotype as might
be expected from the absence of alternate allele realignments. This SV is successfully genotyped as homozygous alternate by NPSV when building a variant-specific

classifier.

Figure 2 shows the genotyping accuracy for NPSV and com-
parison tools for all truth sets. As a result of randomization
in the simulations, SV sampling, and classifier training, NPSV
genotyping is not deterministic. In Fig. 2 we show the mean ac-
curacy for 10 complete NPSV genotyping runs and report the
mean and standard deviation in Supplementary Tables S3-S6.
Figure 2 (top) (Supplementary Table S3) shows the genotyping
accuracy for GIAB SVs in the high-confidence Tier 1 regions
(6,449 DEL and 6,462 INS SVs) and in the Tier 1 regions combined
with lower-confidence Tier 2 SVs (8,370 DEL and 8,413 INS SVs).
NPSV achieves similar or better exact genotype concordance and
non-reference concordance than the comparison tools for both
deletions and insertions. For SVs in Tier 1 regions, NPSV im-
proves genotype and non-reference concordance for deletions
and insertions by 0.8-2.1 percentage points. Fig. 2 (bottom) (Sup-
plementary Table S5) shows the genotyping accuracy for the
NA12878 truth sets (1,143 DEL SVs in SV-plaudit, 8,073 DEL and
6,246 INS SVs in Polaris 2.0, and 20,610 DEL and 12,028 INS SVs
in Polaris 2.1). NPSV generalizes across these datasets, achieving
similar or better accuracy than the best comparison SV geno-
typers across all 3 datasets and both insertions and deletions.

Precision, recall, and F1 scores for genotyping homozygous
reference vs non-reference SVs are shown in Supplementary Ta-
bles S4 and S6. We observed NPSV to achieve similar or bet-
ter F1 scores than the comparison genotypers, albeit often with
increased recall and reduced precision. For the Polaris 2.1 call
set, which is enriched for homozygous reference calls and thus

reflective of the common population genotyping use case, the
mean DEL and INS recall are 0.939 and 0.985, respectively: the
DEL and INS precision (false discovery rate) are 0.820 (0.180)
and 0.945 (0.055). Given the small variance across all metrics for
NPSV, for concision, the remaining analyses use a single geno-
typing run.

Supplementary Table S7 shows the genotype concordance
for NPSV single and variant models for GIAB SVs in Tier 1 re-
gions grouped by SV length (SVLEN), the difference in length
of reference and alternate alleles. Concordance generally in-
creases with increasing SV length as read-pair and other fea-
tures become more informative and a smaller fraction of vari-
ants overlap repetitive regions (see below). For deletions >1kb,
the single model showed increased accuracy. Those results mo-
tivated the default 1-kb threshold for the hybrid approach,
which uses the single model for larger SVs where that ap-
proach is more accurate and for which simulating an SV is
more computationally demanding, and reserves the more com-
putationally expensive but also potentially more accurate vari-
ant model for smaller variants. For GIAB insertions, the sin-
gle model is more accurate than the variant model for all vari-
ant sizes. As noted above, based on these results, we set the
NPSV default configuration to use the hybrid approach for dele-
tions and single model for insertions. Supplementary Figure
S3 shows the genotype concordance for all call sets and tools
grouped by SV length along with the underlying SV length
distributions.
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Figure 2: Genotyping accuracy for HG002 and NA12878 SVs. Top: Genotype concordance and non-reference concordance (presence or absence) for GIAB SVs (including
“LongReadHomRef” SVs where “long reads supported homozygous reference for all individuals”) in high-confidence Tier 1 regions and the Tier 1 regions and lower-
confidence Tier 2 SVs combined. Bottom: Concordance for NA12878 call sets. The NPSV accuracy is the mean of 10 runs. The best concordance is indicated with a black

outline. The asterisk shows tools used in the construction of that call set.

Owing to the repetitive sequence, SVs in tandem repeats
(TRs) are more difficult to accurately genotype. NPSV genotype
concordance for GIAB DEL and INS SVs in Tier 1 regions overlap-
ping a TR > 100 bp (as annotated by GIAB) was 77.5% and 69.0%,
respectively, compared with 96.5% and 92.1% for DEL and INS
SVs not overlapping a TR > 100 bp. Supplementary Figure S4
shows the genotype concordance for all NPSV modes for GIAB
SVs in Tier 1 regions grouped by SV length and whether the SV
overlaps a TR > 100 bp. The [50, 100) and [100, 300) size bins are
enriched for SVs overlapping a TR > 100 bp, contributing to the
reduced genotyping accuracy for these smaller SVs reported
above.

To evaluate the use of the NPSV stand-alone genotyper with
SVs identified with SV discovery tools (as opposed to benchmark
call sets), we re-genotyped SVs called with Lumpy [33]/SVTyper
[19] and Manta [34] in HG002. Using the discovery SVs as the
input, Table 1 reports the genotyping accuracy and Supple-

mentary Table S8 shows precision, recall, and F1 scores com-
pared to the GIAB SVs in Tier 1 regions. To focus on genotyp-
ing accuracy, SVs that were not detected (“no-calls”) were ex-
cluded from the concordance calculation. For the Lumpy call
set the difference in genotyping accuracy is primarily driven
by the count of putative false-positive calls, which in turn
is sensitive to the criteria for matching the call set to truth
set SVs. Some of the putative false-positive SVs may be true-
positive SVs (i.e., non-reference) that have sufficiently differ-
ent breakpoints compared to the truth set SV so as not to
match during concordance analysis. When the required size
similarity is relaxed from 70% to 30%, 150 more Lumpy SVs
matched GIAB truth set SVs and the exact genotype concor-
dance (non-reference concordance) for NPSV, 84.9% (91.3%), and
Lumpy/SVTyper, 82.8% (91.9%), became more similar. The im-
pact of offset or imprecise SV descriptions is described further
below.



Table 1: Genotyping accuracy with discovery SVs as the input to SV genotyping and GIAB SVs in Tier 1 regions as the truth set; concordance is
calculated for the subset of SVs successfully identified by the discovery tool

Caller genotyping, %

Discovery
Caller Type recall, % Concordance
lumpy DEL 30.5 82.1
manta DEL 67.9 90.1
manta INS 25.2 87.3

Trio analysis

We evaluated SV genotyping in a trio context using the HG002
trio. Table 2 shows the Mendelian error rate (MER) and counts
of different types of Mendelian errors (MEs) for GIAB SVs in Tier
1 regions. The NPSV MERs for both deletions and insertions are
greater than the MERs for some of the existing genotypers, e.g.,
svviz2. However, most of the NPSV MEs are variants with low-
confidence genotypes and thus can be specifically filtered out
on the basis of the NPSV-reported genotype quality (GQ); e.g.,
94% of ME deletions in Tier 1 regions have a minimum GQ < 10
(among all trio members). The highest-quality NPSV deletion ME
in the Tier 1 regions was explicitly reported by Zook et al. [30] as
a “likely de novo deletion.” Supplementary Table S9 lists the trio
genotypes, minimum GQ, and GQ ranking for that deletion and
a second deletion ME reported by Zook et al. in a locus known
to undergo somatic rearrangement. Consistent with Zook et al.
NPSV genotyped the 2 deletions as de novo. NPSV in variant mode
reported the 2 deletions as the most confident ME deletions in
the Tier 1 regions, and the hybrid mode reported the variants
among the top 4 most confident.

Offset SV representations

As shown in Supplementary Fig. S4, the set of GIAB SVs with
discordant NPSV genotypes (i.e., the NPSV genotype does not
match the GIAB genotype) is enriched for variants that overlap
TRs. Across all NPSV modes, >86% of GIAB discordant deletions
and >68% of discordant insertions in Tier 1 regions are anno-
tated in the GIAB call set as overlapping a TR > 100 bp, while
<44% of concordant deletions and <30% of concordant inser-
tions SVs are similarly annotated. Differences between the de-
scription of the putative SV (breakpoints and sequence change)
and the true SV is one of the factors that contribute to genotyp-
ing errors for SVs in these repetitive regions (and more generally)
[25]. We manually reviewed the pileup for 10 randomly selected
deletions discordantly genotyped by NPSV in variant mode; 8 of
10 SVs were offset from the location indicated by long-read Pa-
cific Biosciences (PacBio) sequencing data.

To evaluate the impact of offset breakpoints more gener-
ally, we matched the GIAB SVs (PASS variants only) in Tier 1 re-
gions to corresponding SVs called by PBSV [35] in PacBio long-
read sequencing data (4,114 of 4,203 deletions and 5,157 of 5,443
insertions successfully matched). Making the assumption that
the PacBio SV calls have correct breakpoints, we infer the off-
set from the distance between the GIAB breakpoints and the
breakpoints identified in the long-read data (modeled on the
approach in Chen et al. [25]). Figure 3 shows genotype concor-
dance for SVs grouped by the breakpoint offset (the same analy-
sis for select comparison tools is included in Supplementary Fig.
S5). For deletions, we observe an expected negative association
between breakpoint offsets and genotyping accuracy; genotype
concordance is >85% for offsets <10bp (and >95% for no or sin-
gle base offsets), decreasing to 49.6% for SVs with breakpoint off-

NPSV genotyper, %

Non-reference Non-reference

concordance Concordance concordance
87.2 88.5 92.7
91.8 92.2 93.6
93.5 89.1 93.7

sets >50bp. At larger offsets, the variant model increasingly out-
performs the single model, suggesting that the variant-specific
classifiers may be better able to model the specific genomic con-
text around offset deletions. For insertions we observe a similar
negative association between breakpoint offsets and genotyping
accuracy, although with a plateau for offsets of 1-20 bp. Much
of the genotype concordance is recovered when using the long-
read-derived SV calls as the input call set instead of the GIAB
SVs (solid line in Fig. 3).

The challenge of offset or imprecise breakpoints is further
observed in the SV-plaudit call set. The majority of SV-plaudit
variants >1kb (410 of 551) have imprecise breakpoints (including
SVs with breakpoint confidence intervals of hundreds or thou-
sands of bases). NPSV genotype concordance was 93.6% (132 of
141) for SVs with exact breakpoints, decreasing to 63.7% (261 of
410) otherwise.

To investigate the potential for correcting SV descriptions us-
ing only the NGS data, we experimentally extended NPSV to pro-
pose and select among possible alternate alignments for an SV.
We hypothesize that the actual data are most similar to the sim-
ulated data for the correct SV description and genotype, and
thus we could identify a better SV representation based on the
distance between the actual and simulated SV evidence. For
deletions of 1 or more copies of a TR, we proposed up to 10 dif-
ferent alignments of the deletion within the repetitive region,
choosing the SV description where the real data are closest to
the non-reference synthetic data. The SV proposal algorithm is
described in more detail in the Supplementary Methods. When
applied to the GIAB call set SV proposal increases the sensitivity
for calling heterozygous and homozygous alternate genotypes
at the cost of smaller decreases in precision; the net effect is
an increase in genotyping accuracy (genotype concordance of
87.8% Vs 87.2% for SVs in Tier 1 regions, 83.7% vs 82.9% for SVs
in Tier 1 and 2 regions) and F1 scores (0.940 vs 0.933 for SVs in
Tier 1 regions, 0.926 vs 0.914 for SVs in Tier 1 and 2 regions) (Sup-
plementary Table S10).

Computational requirements

The simulation process is computationally intensive but also
readily parallelizable. NPSV simulation and feature extraction
are multi-threaded across variants. On a 36-core compute node
(dual 18-core Intel Xeon 6140 2.3 GHz CPUs) genotyping 16,871
GIAB SVs required 21.1 hours (wall clock time as determined by
the time utility); using the single, variant, and hybrid approaches
exclusively required 53.3 minutes, 39.6 hours, and 31.2 hours, re-
spectively. Maximum memory resident set size was 22.1 GB as
determined by the SLURM cluster manager (17.7, 39.0, and 24.3
GB for the single, variant, and hybrid modes). The NPSV prepro-
cessing step, which generates sequencing statistics, e.g., insert
size distribution, used in simulation and feature extraction, is
designed to use a combination of goleft [36], a fast alignment
analysis tool, and metrics already calculated as part of a typi-



Table 2: Mendelian error rate and Mendelian error breakdown for GIAB autosomal SVs in Tier 1 regions
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De novo

79
94
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svviz2 (mapq)

Tool MER, % (proportion) — Heterozygous Homozygous
npsv (single) 3.60 (231/6,416) 99 7
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npsv (hybrid) 3.21 (206/6,416) 106 1
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NPSV default configuration uses hybrid mode for deletions and single mode for insertions. ME: Mendelian error; MER: Mendelian error rate.
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Figure 3: Genotype concordance for GIAB SVs with offset breakpoints. Genotype concordance for GIAB variant-only SVs in Tier 1 regions grouped by the maximum offset
between the GIAB breakpoints and the breakpoints for the corresponding SV called with PBSV in PacBio long-read sequencing data. The line shows the concordance
when using the PBSV SVs as the input to NPSV running the default genotyoping mode (“hybrid” for deletions, “single” for insertions). The background bar chart shows
the underlying distribution of offsets. The same analysis for select comparison tools is included in Supplementary Fig. S5.

cal genome analysis pipeline, e.g., with the Picard tools [37]. In
that approach, <1 minute is required for preprocessing. The cur-
rently un-optimized fallback preprocessor required 2.4 hours for
the 25.5x HG002 BAM file. Supplementary Table S11 lists execu-
tion time and resident set size for all of the comparison tools
running on the same system.

NPSV is a novel stand-alone SV genotyper that simulates pu-
tative SVs to train sample and variant-specific machine learn-
ing classifiers. NPSV consistently achieved genotyping accuracy
similar to or better than the comparison SV genotypers across
both variant types and all truth sets (Fig. 2), including compared
to the tools used to construct those truth sets (e.g., svviz2 for
GIAB and Paragraph for Polaris). NPSV successfully and specif-
ically identified the putative de novo SV deletions reported by
GIAB. Improvements of 1-3 percentage points in genotyping ac-
curacy translate to tens to hundreds of fewer incorrect geno-
types per genome. Those incorrect genotypes leave cases un-
resolved, consume limited budgets for manual review and vali-
dation testing, and dilute downstream analyses.

SV call sets and reference databases can contain many SVs
with incorrect or imprecise descriptions. For example, the clus-

tering of SVs with similar but unique sequence changes dur-
ing the construction of the GIAB call set reduced the num-
ber of SVs 2.3-fold [30], indicating that many of the puta-
tive SVs did not have a single consensus description. Incor-
rect or imprecise SV descriptions can negatively affect geno-
typing accuracy [25]. NPSV maintains genotype concordances
of >85% (DEL) and >81% (INS) for offsets <10bp, similar to
or more robust than comparison tools (Fig. 3, Supplementary
Fig. S5).

Making the SV features even more robust to incor-
rect/imprecise SV descriptions could improve genotyping
accuracy. However, in a strict interpretation of the precise
sequence-resolved SVs in the GIAB call set, genotyping a puta-
tive SV with an incorrect description as non-reference would
be inaccurate because that specific alternate allele is absent.
Ideally, we would want to identify the correct SV descriptions
as part of the genotyping process. We observed substantial
increases in genotyping accuracy when using SVs called in
long-read sequencing data as the input call set, suggesting that
there is an opportunity to further improve genotyping accuracy
by refining the SV descriptions. We extended NPSV to select
among alternative alignments for deletion SVs based on the
similarity between the actual and simulated NGS data. The
alternate representations increased the sensitivity for detecting



non-reference genotypes, with a net increase in genotyping
accuracy and F1 score for detecting non-reference genotypes
compared to the original SV descriptions (Supplementary Table
S10). A substantial gap remains, though, between NPSV’s NGS-
only approach for refining SV descriptions and the accuracies
observed when genotyping the long read-derived calls (Fig. 3).
We are actively working on improving all aspects (SV proposal,
NGS simulation fidelity, features, and the similarity metric) of
the SV refinement algorithm.

Because NPSV simulates the expected alleles, it is limited
to sequence-resolved SVs with discrete genotypes and does
not genotype “position independent” SVs, e.g., high copy num-
ber duplications. At present, NPSV only supports biallelic dele-
tions and insertions and treats each SV independently. It does
not currently genotype inversions or other SV types. However,
the underlying method can be extended to support other SV
types, e.g., inversions, and more complex variants/genotypes,
e.g., compound heterozygous genotypes or multiple SVs on the
same haplotypes. We hypothesize that the simulation-based ap-
proach, which is not dependent on the previous generation of
representative training data, may be particularly useful for com-
plex SVs. Minimal high-quality “ground truth” data are available
for these sites; GIAB, for example, largely excluded complex SVs
from the benchmark call set and most of the genotype errors
identified in manual review were identified as complex [30].

The simulation process can be computationally intensive,
particularly when simulating many replicates to build per-
variant classifiers. However, because the variant-specific classi-
fiers can be built at the granularity of a single variant, they can
be used in a targeted fashion, e.g., on SVs with low-confidence
genotypes or in repetitive regions, to model the biases intro-
duced by the genomic region, sequencer, and/or the analysis
pipeline. Alternately when the same call set is being genotyped
across multiple samples, the simulated training data could be
reused. Preliminary experiments using the simulated training
data generated for the parental samples to genotype the GIAB
SVs in HG002 showed similar genotyping accuracy. When using
shared training data, the simulation costs scale with the call set
size, not the product of the call set and cohort sizes. Optimizing
NPSV for large cohorts is an area of ongoing work. Large, highly
consistent cohorts, such as gnomAD, can use other samples as
the reference panel [38] but may have few and/or potentially am-
biguous examples of extremely rare variants/genotypes. NPSV
can effectively create a synthetic “reference panel” for all zy-
gosities, for any variant, in any number of samples (including
a single genome).

Here we present NPSV, a stand-alone SV genotyper for WGS data.
Instead of attempting to develop a model for the complex and
interconnected effects of the genomic region, sequencer, and
alignment pipeline on the observed SV evidence, NPSV uses de-
tailed simulation of the sequencing process to train sample-
and variant-specific classifiers for predicting SV genotypes. Be-
cause NPSV can generate relevant training data for any vari-
ant(s), at any granularity, it supports a range of targeted (a sin-
gle variant) and large-scale (whole genome) SV genotyping ap-
plications. We showed that NPSV consistently achieves simi-
lar or improved genotyping accuracy for benchmark call sets.
Looking forward, NPSV’s simulation-based approach provides a
framework for genotyping the important “long tail” of SVs that
are rare, complex, and/or exclusively discovered with long-read

technologies, and thus lack high-quality representative training
examples.

NPSV is a Python-based tool for stand-alone genotyping of
sequence-resolved SV insertions and deletions. The inputs are
the aligned reads (BAM/CRAM file), termed the “actual” data, and
a VCF file of putative SVs. NPSV produces a copy of the input VCF
with predicted SV genotypes.

Prior to genotyping, a preprocessing step estimates the
mean, per-chromosome, and per-GC fraction coverage and the
insert size distribution. Those statistics inform the simulation
and feature extraction. Many of those metrics are often already
generated as part of the genome analysis pipeline and so do not
need to be recomputed. In this evaluation, NPSV internally runs
indexcov [36] and uses metrics previously computed with the Pi-
card tools [37]. NPSV can also generate those statistics directly
if needed using bedtools [39], SAMtools [40], and indexcov [36].
For each putative SV and possible genotype, NPSV generates 1 or
more synthetic short-read datasets (termed replicates) using the
ART NGS simulator [41] configured to model the actual sequenc-
ing data, i.e., sequencer error model, read length, insert size dis-
tribution, and coverage. In this evaluation we align the simu-
lated WGS data with BWA-MEM [42] and mark duplicates with
samblaster [43] to mimic the BCBio pipeline [44] used to align
the actual data (along with SAMtools [40] and sambamba [45]
for format conversion and sorting). The SV features extracted
from the simulated replicates (and randomly simulated regions
in the genome, see below) are used to train sample- and variant-
specific classifier(s). The SV features extracted from the actual
data for putative SVs are only used to predict the genotypes (and
not for training).

Features extracted from the simulation of the homozygous
references genotype, i.e., the absence of the putative SV, can ex-
hibit low variance, negatively affecting genotyping accuracy. To
generate a more realistic “null” model, by default, NPSV gener-
ates the training data for homozygous reference genotypes by
extracting features from the actual alignments for size-matched
variants randomly sampled from the genome [46]. For haploid
sex chromosomes, size-matched variants are sampled from the
sex chromosomes; otherwise variants are sampled from the au-
tosome (and the X chromosome for SVs called on a diploid X
chromosome).

NPSV extracts or derives the allele, spanning read, and cover-
age SV features listed in Supplementary Table S1 and described
in more detail in the Supplementary Methods. NPSV counts the
reference and alternate reads by locally realigning read pairs to
the reference and alternate sequences (derived from the puta-
tive SV description) using BWA [42] (via SeqLib [47]) and a read
pair-aware alignment-scoring metric adapted from svviz2 [20].
Only reads originally aligned within some flanking distance (de-
fault of 99th percentile of the insert size) of the putative SV
breakpoints are realigned. We extract insert size probability-
weighted counts of spanning reads (adapted from SVTyper [19]),
counts of clipped reads (adapted from SMRT-SV2 [23]), and the
mean event depth relative to flank regions, chromosome, and
regions of similar GC coverage features (DHFFC, DHFC, DHBFC
adapted from duphold [48]) from the actual (original) align-
ments.

NPSV currently implements a Support Vector Machine (SVM)
classifier for the single model and a random forest (RF) classi-



fier for the variant model using the scikit-learn framework [49].
The specific features used with each classifier are listed in Sup-
plementary Table S1. We observed this combination to achieve
consistently high accuracy across variant types and call sets, al-
though the differences in accuracy between classifier algorithms
were typically small (1-1.5 percentage points). Data are centered
and normalized to unit variance (using StandardScaler) prior
to training the SVM (using a radial basis function kernel) with
the same scaling used for genotyping. When training the single
SVM model, NPSV can perform a grid search of the C (1, 10, 100,
500, 1,000, 5,000, 10,000) and gamma (“scale,” 0.001, 0.0055, 0.01,
0.055, 0.1, 0.55) hyperparameters with 5-fold cross-validation
[23]; however, we did not observe consistently improved accu-
racy over default parameters for the GIAB call set and so dis-
able the parameter sweep by default to reduce the training time.
When training the single-model classifier, the training data are
optionally filtered by genomic region. For the GIAB call set we
excluded data outside the GIAB Tier 1 regions. When training
the per-variant classifiers, observations with features >5 stan-
dard deviations from the mean are excluded. To reduce execu-
tion time for the per-variant model, by default, we do not imple-
ment parameter sweeps during training. Evaluation of the RF-
based variant model on the GIAB call set with different numbers
of trees (10, 50, 100, 200) and maximum tree depth (variable, 3)
indicated that use of the default parameters (100 trees with vari-
able depth) achieves high accuracy with reasonable execution
time. The final genotypes and GQ are determined from the label
and class probabilities predicted by scikit-learn.

We evaluated NPSV and the comparison SV genotypers with
deletion and insertion SVs in the GIAB version 0.6 call set
(GRCh37) for HG002, and the Polaris 2.0 (GRCh37), Polaris 2.1
(GRCh38), and SV-plaudit (GRCh37) call sets for NA12878. The
truth sets were obtained from the GIAB FTP site [S0], Polaris
repository [31], and SV-Plaudit Supplementary materials [51].
GIAB SVs smaller than 50 bp or larger than 15 Mb, SVs outside
the GIAB Tier 1 and 2 regions, SVs without genotypes, and fil-
tered (i.e., not PASS) SVs, except for those variants filtered as
“LongReadHomRef” (i.e., “long reads supported homozygous ref-
erence for all individuals”), were excluded. SV-plaudit and Po-
laris SVs smaller than 50 bp or larger than 15 Mb, SVs without
genotypes, and filtered SVs were similarly excluded. In the SV-
plaudit report [32] 9 researchers manually inspected SVs called
in NA12878 by the 1000 Genomes Project [10]. The researchers
were shown visualizations of data for the NA12878 trio and
asked, “Does the sample support the variant type shown? [...],”
with the possible answers “True,” “False,” or “denovo.” Only SVs
for which >50% of the curators reported that the sample sup-
ports the variant were retained. Almost all the curated SVs were
deletions, so we limited the SV-plaudit analysis to deletions.
Supplementary Table S2 lists the counts of each genotype in the
different truth sets.

We genotyped the GIAB SVs in a subset of the NIST Illumina
HiSeq 2500 2x 148 PCR-free WGS data [52-55] with coverage rep-
resentative of typical WGS (mean coverage of 25.5x, 20.4x, and
24.7x for HG002, HG0O03, and HGO004, respectively). We aligned
the WGS reads to GRCh37 and performed point variant calling
and SV discovery (using Lumpy [33]/SVTyper [19] via smoove [56]
and Manta [34]) with version 1.0.9 of the BCBio pipeline using the

default BWA and GATK-based configuration [44]. We genotyped
the NA12878 SVs in the lllumina Platinum Genomes 2x100 WGS
data [57, 58] (mean coverage of 50.5x). We aligned the NA12878
WGS reads to GRCh37 and GRCh38 with version 1.2.3 of the
BCBio pipeline.

We compared NPSV to a representative set of stand-alone SV
genotyping tools. The Delly2 (v0.8.3) genotyping module [18], SV-
Typer (v0.7.1) [19], and GenomeSTRiP (v2.00.1958) [26] predict the
genotype using a parameterized model incorporating multiple
forms of evidence, e.g., depth, split-reads, and read pairs, ex-
tracted from original alignments. The svviz2 (commit b2c5126)
[20] reporting module predicts the genotype assuming a bino-
mial model for counts of reads realigned to the SV alleles with
BWA. Paragraph (v2.4a) [25] and GraphTyper2 (v2.5.1) [21] employ
a parametric model of reads realigned to a graph representation
of the SV. SV2 (v1.5) [22] uses an SVM classifier trained on fea-
tures extracted from 1000 Genomes Project data.

Unless otherwise noted, all tools were run with the truth set
VCFs and BAMs produced by the BCBio pipeline as the inputs.
SV2, SVTyper, and GenomeSTRiP do not support the insertion
SVsin the GIAB and Polaris call sets and so were evaluated on the
deletion SVs only. Prior to genotyping with Paragraph, we nor-
malized the VCF to add a padding base for complex variants. The
svviz2 genotypes were extracted from the “GT_mapq” field in the
report to generate a genotyped VCF (we observed the “mapq”
genotypes to generally be the most accurate for the GIAB call
set). For SV2, variants called by GATK haplotype caller (as imple-
mented in the BCBio pipeline) were used as the “SNV” input. For
GraphTyper2, the GIAB Tier 1 and 2 BED file was used to generate
the regions for genotyping the GIAB HG0O02 call set, while the en-
tire chromosomes were used as the regions for the NA12878 call
sets; the “AGGREGATE” model was used as the output genotypes.
GraphTyper2 converts insertions to duplications; those SVs were
converted back to the call set representation to facilitate concor-
dance analysis. Delly modifies the representation of some indel
SVs such that the modified SV is no longer matched to the cor-
responding SV in the truth set during evaluation, reducing the
reported concordance by up to 0.3 percentage points. Each tool
was run with its default parameters, and thus the results pre-
sented here may not represent the best possible performance
that could be achieved with expert tuning of the available con-
figuration parameters. For example, GenomeSTRiP’s high rate of
“no-calls” (./.) for some smaller Polaris SVs can be affected by the
“minimum length to include depth-based genotype likelihoods”
depth.effectiveLengthThreshold parameter (default of 200) [29].
The VCF FILTER annotations introduced by Delly, GraphTyper,
Paragraph, and SV2 reduced genotyping accuracy (filtered geno-
types are treated as “no calls” during concordance analysis) and
so were ignored in all evaluations.

This evaluation does not exercise all of the capabilities of
the different comparison tools, which may support other vari-
ant types, e.g., inversions, not yet implemented in NPSV; provide
other features, such as visualization; or are explicitly designed
for efficient population-scale genotyping as opposed to the sin-
gle sample and trio analyses performed here.

We measured genotyping accuracy using Truvari [59], modified
to report the genotype confusion matrix [60]. Supplementary Fig.
S1A and B shows the definitions of concordance metrics calcu-



lated from the confusion matrix when using the “truth” SVs as
the input to SV genotyping. Supplementary Fig. S1C and D shows
the definition of the concordance metrics when using the output
of an SV discovery tool as the input to the SV genotyper.

MEs were identified in autosomal regions using BCFTools [61].
We categorized MEs as a heterozygous or homozygous de novo, or
other (e.g., homozygous alternate proband with a homozygous
reference parent).

To evaluate the impact of imprecise breakpoints, we com-
puted the genotype concordance for GIAB deletion SVs in Tier
1 regions grouped by the maximum offset between the GIAB
SV breakpoints and the corresponding SV breakpoints called in
long-read sequencing data [25]. We used SV calls generated by
PBSV 2.2.1 in PacBio CCS reads (obtained from the GIAB FTP
repository). We matched the GIAB and PBSV calls with Truvari
configured to match SVs within a 2,000-bp window, with 70%
size and sequence similarity [30], and extracted the offsets from
the Truvari annotations.

Project name: npsv

Project home page: https://github.com/mlinderm/npsv
Operating system(s): Linux

Programming language: Python, C++, BASH

License: MIT

RRID:SCR-020984

Supporting data are available via the GigaScience database [62].
The GIAB SV call set is available in the GIAB FTP repository [50]
and the sequencing data for HG002, HG003, and HG004, respec-
tively, at [30, 52-55].

The SV-plaudit call set is available in the Supplementary ma-
terials at [32, 51]. The Polaris call sets are available via GitHub
[31]. The NA12878 sequencing data are available in the European
Nucleotide Archive under project PRJEB3381 [57, 58].
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