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Abstract: Systemic vasculitis is a group of diverse diseases characterized by immune-mediated in-
flammation of blood vessels. Current treatments for vasculitis, such as glucocorticoids and alkylating
agents, are associated with significant side effects. In addition, the management of both small and
large vessel vasculitis is challenging due to a lack of robust markers of disease activity. Recent re-
search has advanced our understanding of the pathogenesis of both small and large vessel vasculitis,
and this has led to the development of novel biologic therapies capable of targeting key cytokine and
cellular effectors of the inflammatory cascade. It is anticipated that these novel treatments will lead
to more effective and less toxic treatment regimens for patients with systemic vasculitis.

Keywords: systemic vasculitis; molecular target; novel treatment

1. Introduction

Systemic vasculitis pathologically denotes inflammation of a blood vessel, which is
characterized by the presence of an inflammatory infiltrate and destruction of the vessel
wall, causing stenosis and thrombosis. Vasculitis is a group of diverse disorders that
demonstrate various organ involvement and clinical severity. Vasculitis can virtually
affect any vessel in the organ system, and, depending on which vessel it invades, the
manifestations can be very diverse. It is very common for highly variable conditions to
lead to delays in diagnosis. Therefore, identifying vasculitis early, assessing response to
therapy, and detecting disease relapse remain important clinical challenges [1,2].

As with many rheumatic diseases, there are no disease-specific clinical features or
laboratory tests for making a definite diagnosis. Instead, vasculitis is classified according
to classification criteria, of which the most widely used is the nomenclature, published by
Chapel Hill Consensus Conference (CHCC) in 2012. Here, vasculitis is classified according
to the size of the affected vessel: small vessel vasculitis (SVV), medium vessel vasculitis
(MVV), and large vessel vasculitis (LVV) [3]. The epidemiology of systemic vasculitides
varies greatly according to the type of vasculitis and the patient’s age, sex, and geographic
location [4].

The pathogenesis of vasculitis remains unclear. One explanation is that exposure to
an unidentified antigen, such as a virus, toxin, or cryptic epitope, leads to activation of the
immune response. In some people, this immune response is not down-regulated, leading
to the production of immune complexes that deposit in blood vessel walls and lead to
vasculitis [5]. Pauci-immune vasculitides are not immune-complex-mediated and typically
associate with antineutrophil cytoplasmic autoantibodies (ANCA), which are hypothesized
to cause vascular damage indirectly by priming neutrophils to degranulate and to produce
oxygen-free radicals.

The last decade has seen major advances in our understanding of the pathogenesis
of vasculitis. These discoveries have led to the development of novel treatments, which
seek to provide greater efficacy and a more acceptable side effect profile. In this review,
we discuss the recent advances in understanding the pathogenesis of primary systemic
vasculitides and the development of novel treatments.
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2. Systemic Vasculitis Classification

Classification criteria are intended to create homogeneous patient groups for research.
The classification systems for vasculitis are limited by overlapping features of subgroups
and unrecognized pathogenic mechanisms. The most used classification criteria are defined
by the size of the vessel they predominantly affect, namely, small, medium, or large, or
variable vessel size (Table 1). The Chapel Hill International Consensus Conference (CHCC)
of 2012 defined and standardized the nomenclature of systemic vasculitides [3].

Table 1. Nomenclature of the systemic vasculitides defined during the 2012 International Chapel Hill
Consensus Conference (Adapted from [3]).

Systemic Vasculitis

Large-vessel vasculitis (LVV)

Giant cell arteritis (GCA)

Takayasu arteritis (TA)

Medium-vessel vasculitis (MVV)

Polyarteritis nodosa (PAN)

Kawasaki disease (KD)

Small-vessel vasculitis (SVV)

Anti-neutrophil cytoplasmic antibody (ANCA) associated vasculitis (AAV)

Microscopic polyangiitis (MPA)

Granulomatosis with polyangitis (GPA)

Eosinophilic granulomatosis with polyangitis (EGPA)

Immune complex vasculitis

Anti-glomerular basement membrane (anti-GBM) disease

Cryoglobulinemic vasculitis (CV)

IgA vasculitis (Henoch-Schonlein) (IgAV)

Hypocomplementemic urticarial vasculitis

Variable vessel vasculitis (VVV)

Behçet’s disease (BD)

Cogan’s syndrome (CS)

LVV involves the aorta and its major branches, and includes giant cell arteritis (GCA)
and Takayasu arteritis (TA). MVV involves the main visceral arteries and veins and their
initial branches and includes polyarteritis nodosa (PAN) in adults. Kawasaki disease—
the other major form of MVV and an acute arteritis of childhood—is not covered in this
review. SVV involves arterioles, capillaries, intraparenchymal arteries, venules, and some
veins and includes ANCA-associated vasculitis (AAV), the most common SVV in adults.
There is, however, some overlap, and arteries of any size can potentially be involved
in any case of the three main categories of dominant vessel pattern involvement [3]. In
addition to the multi-organ systemic vasculitides, other forms of vasculitis have also been
defined, such as single-organ vasculitis, including cutaneous arteritis, primary central
nervous system vasculitis, and isolated aortitis; vasculitis associated with systemic disease,
including rheumatoid vasculitis, lupus vasculitis, and sarcoid vasculitis; and vasculitis
associated with an underlying cause: disease-related (Hepatitis B, Hepatitis C-associated
cryoglobulinaemia, and cancer), or drug-related vasculitis [3].

The central feature of LVV is granulomatous arteritis. GCA exclusively affects indi-
viduals aged >50 years with a female-to-male predominance of 3:1. Additionally, GCA
is more common in patients of Northern European descent than in Asian ethnic groups.
GCA typically affects the branches of carotid, vertebral, and temporal arteries resulting in
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the classic symptoms of headache, jaw claudication, and loss of vision [6]. In contrast, TA
usually affects females during the second and third decades of life. It is rare in Northern
Europe but is more common in southeast Asia [7]. TA typically involves the aorta and its
primary branches leading to vascular occlusion with claudication, aneurysm formation,
aortic insufficiency, and cardiac failure. Current treatment of LVV is glucocorticoids [8].
Although methotrexate and azathioprine have been used as steroid-sparing agents, their
effectiveness has not been proven in randomized controlled trials (RCT).

PAN is uncommon, with an estimated incidence of 1 to 10 per million. Both sexes
are affected equally, and the peak age range of onset is between 40 and 60 years. The
etiopathogenesis of PAN is strongly linked to viral hepatitis infection, particularly hepatitis
B virus, which comprised over one-third of 348 PAN cases in the largest case series to
date [9,10]. About 35% of polyarteritis nodosa (PAN) cases are associated with hepatitis
B [11]. The incidence of hepatitis B virus-related PAN has declined substantially over
the last four decades after improvements in immunization, transfusion practice, and
hepatitis B virus therapy. PAN is characterized by a transmural necrotizing arteritis of
muscular arteries [12]. The most commonly affected sites are the skin (causing livedo
reticularis and ulceration) and peripheral nerves (leading to a mononeuritis multiplex).
Involvement of visceral vessels is also common with multiple irregular arterial stenoses
and microaneurysms demonstrable on contrast angiography in up to 90% of patients [13]
with long-term immunosuppression with glucocorticoids alongside other agents such
as cyclophosphamide, methotrexate, or azathioprine, improves patient outcomes, and
supports an autoimmune component to pathogenesis [14].

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV) are a
group of systemic autoimmune disorders that predominately affects the small vessels. AAV
are necrotizing vasculitides that are differentiated from other small vessel vasculitis by
the lack of significant immune deposition in the vessel walls. AAV includes microscopic
polyangiitis (MPA), granulomatosis with polyangiitis (GPA), and eosinophilic granulomato-
sis with polyangiitis (EGPA). The autoantibodies that define AAV are myeloperoxidase
(MPO)-ANCA and proteinase 3 (PR3)-ANCA [15]. AAV are rare autoimmune conditions
with a combined estimated prevalence of 46–184 per million [3]. However, they are associ-
ated with significant mortality. GPA mortality is reported to be greater than 90% at two
years if left untreated [16,17]. Fortunately, the introduction of effective therapeutics has dra-
matically decreased the two-year mortality rate to 15% [18]. The treatment of AAV consists
of remission induction followed by a maintenance phase. The treatment recommendations
for induction or maintenance AAV vary based on the severity of the disease [16]. There
are different definitions for determining what constitutes severe disease, but, generally,
any AAV that is life- or organ-threatening is considered severe [19]. Current treatment
options are effective; however, they are associated with significant patient morbidity due
to treatment-related adverse effects.

Behçet disease (BD) is a rare relapsing, multisystem vasculitis, characterized by recur-
rent attacks of oral-genital ulcers and ocular, musculoskeletal, vascular, central nervous
system (CNS), and gastrointestinal (GI) involvement. The prevalence of BD varies widely
by geographic area, but, according to a recent meta-analysis, it is approximately 10.3 per
100,000 inhabitants [20]. The vascular involvement is the most frequent cause of mortality,
and ocular involvement is the most important factor of morbidity in BD as it can cause
blindness [21]. Treatment of BD is based on clinical manifestations. While colchicine,
nonsteroidal anti-inflammatory agents, and topical treatments are often sufficient for muco-
cutaneous and joint involvement, immunosuppressive agents are required for major organ
involvement [22].

As the understanding of the pathophysiology of systemic vasculitis increases, new
therapies with fewer toxic effects are being proposed. This article will provide a review of
current treatment options and an expert opinion on the future of AAV treatment.



Biomedicines 2021, 9, 757 4 of 14

3. Drug Discovery and Potential Targets in Vasculitis

Treatment of the various type of vasculitis mainly relies on corticosteroids and conven-
tional immunosuppressive drugs, such as methotrexate or azathioprines. Since vasculitis
is a complex, chronic inflammatory disease, treatment may be needed for many different
inflammatory molecules and targets. At present, research on these molecules and targets
is mainly based on a few antibodies or inhibitors. Recent advances in the era of biologic
agents have improved the management of difficult-to-treat cases dramatically. (Table 2,
Figure 1).
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3.1. Th1 Cytokines and Relative Drug Discovery
3.1.1. IL-6

IL-6 plays a pathological effect on the inflammatory response in both the vessel wall
and the systemic circulation. Tocilizumab is a humanized monoclonal antibody that com-
petitively inhibits IL-6 by binding to circulating and membrane-bound IL-6 receptors. The
first reported randomized controlled trial on the efficacy of tocilizumab in GCA random-
ized 20 patients to either 8 mg/kg tocilizumab delivered intravenously each month or
placebo infusions in addition to glucocorticoids and found a higher relapse-free survival in
the tocilizumab group (85 versus 20%, p = 0.001) at week 52 [23]. The effects of tocilizumab
on glucocorticoid-sparing were observed in both relapsing and newly diagnosed GCA. The
phase 3 Giant Cell Arteritis Actemra (GiACTA) trial enrolled 251 patients with new-onset
GCA, randomized to one of four arms: tocilizumab 162 mg weekly or every other week
(combined with a 26-week prednisone taper), or a prednisone taper alone (either 26 or
52 weeks). This study reported that Tocilizumab is an effective glucocorticoid-sparing
therapy, demonstrating sustained glucocorticoid-free remission in 56% of patients receiv-
ing weekly tocilizumab compared with 18% of patients receiving a 52-week prednisone
taper [24]. Tocilizumab is Food and Drug Administration (FDA)-approved for treatment
of GCA.

In TA, a phase 3 trial about the effect of tocilizumab, Takayasu arteritis treated with
tocilizumab (TAKT) was reported in 2017 [25]. Here, 36 relapsing TA patients were random-
ized to either tocilizumab, 162 mg weekly or placebo given weekly alongside a tapering
glucocorticoid dose. Analyzed by an intention-to-treat method, tocilizumab failed to show
difference in time to relapse as compared to placebo (hazard ratio [HR] 0.41, 95% confidence
interval [CI] 0.15–1.10, p = 0.0596). However, the per-protocol analysis showed a significant
difference for tocilizumab (n = 16) versus placebo (n = 17) (HR 0.34, 95% CI 0.11–1.00,



Biomedicines 2021, 9, 757 5 of 14

p = 0.03). In 2020, the long-term efficacy and safety of tocilizumab in TA was reported.
In that study, 28 patients received tocilizumab for 96 weeks. 46.4% of these 28 patients
treated with tocilizumab reduced their dose to <0.1 mg/kg/day, thus showing evidence of
a steroid-sparing effect of Tocilizumab in TA in long-term treatment [26].

There is no RCT for the effect of tocilizumab in PAN yet. In a recent case report,
tocilizumab was effective for hepatitis B virus related PAN without Hepatitis B virus
reactivation [27]. In a literature review based on 11 case reports, tocilizumab is effective in
cases of refractory or relapsing polyarteritis nodosa and showed its glucocorticoid-sparing
effect [28].

There are several case reports describing patients with AAV treated with tocilizumab
showing that complete and sustained remission was achieved in many of the patients with
refractory disease [29,30]. RCTs may be warranted in the future.

3.1.2. IL-12 and IL-23

IL-23 is a pro-inflammatory cytokine composed of two subunits, IL-23A (p19) and
IL-23B (p40), the latter shared with IL-12. The IL-23/IL-17 axis mainly plays a protective
role against bacterial infections; its dysregulation plays a role in in immune-mediated
inflammatory disorders [31–33]. As it has been reported that the IL-12/Th1 cell/IFN-γ
pathway is involved in granulomatous inflammation in the pathogenesis of GCA, treat-
ments targeting IL12 have been attempted, and the use of ustekinumab to treat LVV has
been reported [34].

Ustekinumab is a monoclonal antibody that targets the p40 subunit of IL-12/23. One
open-label study of 25 patients with refractory GCA treated with ustekinumab in addition
to glucocorticoids demonstrated that no patients relapsed over 52 weeks. The median
prednisolone dose decreased from 20 to 5 mg, and about 25% of patients were able to stop
glucocorticoids. In addition, CT angiography showed an improvement in mural thickness
with complete resolution in eight patients who underwent CT angiography before and
after treatment [35]. However, in a recently reported prospective study, 10 out of 13 (77%)
patients who failed to achieve the primary endpoint with ustekinumab in prednisone taper,
and seven experienced disease flares after a mean period of 23 weeks [36]. Further research
on the effect of Ustekinumab in GCA seems warranted.

Ustekinumab treatment in TA has been reported sporadically, and only in a few case
series. One series of three patients with refractory TA treated with ustekinumab reported
stabilization of clinical disease activity and normalization of inflammatory markers [37].
Recently, the results of a long-term follow-up on the same three patients reported that
ustekinumab showed marginal effects on reducing prednisolone dose, and 2 of 3 patients
discontinued ustekinumab treatment because of relapse and secondary failure [38].

3.1.3. Tumor Necrosis Factor (TNF) α Inhibitor

TNF α inhibitors were the first biologic agents tried in various vasculitides. TNF α

is an important cytokine for the formation of granuloma [39], and also for activation of
endothelial cells [40].

After a few cases showing successful anti-TNF-α treatment in GCA patients had
been reported, a comparative double-blind study was attempted using infliximab but was
subsequently stopped due to the lack of efficacy on the prevention of relapse [41]. Using
etanercept, a randomized controlled study showed a significant steroid sparing effect after
one year in 17 patients, however not for a longer period [42]. Adding adalimumab to a
standard prednisone regimen showed no steroid sparing effect in 70 patients in a 10-week
prospective randomized controlled study [43]. As a result of these studies, anti-TNF-α
therapy is not recommended in GCA.

Several retrospective studies and case series reported that TNF α inhibitors were
effective in most patients with refractory Takayasu’s arteritis [44–46]. A two-year follow-
up cohort study from Norway reported higher rates of sustained remission as well as
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lesser progression of angiographic lesions in patients receiving anti-TNF-α agents, when
compared with conventional treatments in Takayasu’s arteritis [47].

In PAN, infliximab has been used in refractory forms of the disease or because of
intolerance to conventional drugs and seems to be effective [48]. In a small case series, nine
refractory PAN patients were treated with infliximab and 8 of 9 patients (89%) achieved
significant improvement and prednisone dose reduction of 50% [49].

A number of open-label studies and case series have reported the usefulness of anti-
TNF-α therapies in AAV, although these results have not been confirmed in RCTs. In the
Wegener’s Granulomatosis Etanercept Trial (WGET), which recruited 174 patients with
GPA, there was no benefit from etanercept on the sustained remission rate [50]. With little
evidence for its effectiveness, the use of anti-TNF α treatment in AAV may be significantly
limited in the future. Similarly, for EGPA, the only available information is derived from
five case reports with conflicting findings that do not support anti-TNF-α use to treat
EGPA [51–53].

In small RCT of 40 patients with BD, etanercept was significantly more effective in
suppressing most of the mucocutaneous manifestations, such as oral ulcers and erythema
nodosum, than placebo [54]. Several observational studies and case series also confirmed
the beneficial effects of infliximab and adalimumab on mucocutaneous lesions of BD [55].
Most of the studies on the effects of TNF-α inhibitors in BD are in ocular manifestations
and mainly reported in case series. Infliximab significantly decreases in relapse rate and
glucocorticoid dosage in BD patients with ocular involvement [56–58]. In the first prospec-
tive study in 63 patients with BD uveitis, uveoretinitis improved with infliximab treatment
in 92% and maintained for up to 12 months [59]. A 1-year observational multicenter study
reported the results of infliximab and adalimumab use in 124 patients with refractory BD
uveitis, and complete remission was achieved in 84/124 (68%) [60]. A recent retrospective
observational study also reported that adalimumab was highly effective and safe for treat-
ment of BD related uveitis [61]. An open-label study of 177 patients with BD related uveitis
compared the efficacy of infliximab (103 patients) versus adalimumab (74 patients) as a first-
line biologic agent. In this study, an improvement in all ocular parameters were observed
in both groups after 1-year treatment; however, adalimumab had significantly better ocular
outcomes in some parameters [62]. In BD related vascular manifestation, such as deep vein
thrombosis, superficial thrombophlebitis, a retrospective study reported that adalimumab
achieved significantly higher vascular response (34/35, 97%) compared with conventional
immunosupressants (23/35, 66%) during a mean follow-up of 25.7 ± 23.2 months. Sig-
nificantly lower vascular relapse was also observed in adalimumab group [63]. In recent
two multicenter observational studies, clinical remission was achieved in 89% and 80% of
patients with BD, respectively, with vascular involvement refractory to conventional ISs
treatment [64,65].

3.2. Th2 Cytokines and Relative Drug Discovery
IL-5

IL-5 is the major cytokine responsible for eosinophil activation, chemoattraction,
and survival. Several studies have reported elevated serum IL-5 levels in EGPA [66,67].
Recently, IL-5 antagonists have been studied as an EGPA-specific treatment. Mepolizumab,
a humanized anti-IL-5 monoclonal antibody, selectively inhibits eosinophilic inflammation
and is approved to treat severe eosinophilic asthma [68]. A benefit of mepolizumab
treatment in EGPA patients was observed in previous small open-label pilot studies [69–71].
In the large scale randomized controlled trial, 136 EGPA patients with an uncontrolled
disease injected 300 mg of mepolizumab once a month subcutaneously. The remission rate
in patients treated with mepolizumab was significantly higher than that of patients treated
with placebo (28% vs. 3%, of the participants had ≥24 weeks of accrued remission; odds
ratio, 5.91; 95% confidence interval [CI], 2.68 to 13.03; p < 0.001) [72]. This study led to FDA
authorization of mepolizumab as the first drug specifically approved for EGPA.
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3.3. Targets and Drug Discovery of B Cells
3.3.1. CD20

B cells are clearly central to the pathogenesis of AAV, as they produce ANCAs. Rit-
uximab is a chimeric monoclonal antibody that induces B-cell depletion by binding CD20
expressing B cells. Its development has led to advances in AAV therapy. The Rituximab
in ANCA-Associated Vasculitis (RAVE) [73] and Rituximab Versus Cyclophosphamide in
ANCA-Associated Vasculitis (RITUXVAS) [74] trials established noninferiority of rituximab
to cyclophosphamide for AAV remission induction. Several second-generation anti-CD20
drugs have been developed, one of which, ofatumumab, has been tested in one small case
series of patients with AAV, with results showing its therapeutic benefit. However, there
has been no RCT yet [75].

3.3.2. BAFF

B-cell activating factor (BAFF), also known as B-lymphocyte stimulator (BlyS), plays
an important role in B cell maturation and is increasingly recognized as important in the
pathogenesis of relapsing AAV. Increased BAFF expression is evident in patients with active
vasculitis, and preclinical data suggest that high BAFF concentrations can promote the
survival of autoreactive B cells that, under normal conditions, would be degraded [76,77].
Belimumab is a fully humanized monoclonal antibody that binds to BAFF receptors on B
cells. It is licensed for the treatment of systemic lupus erythematosus [78,79].

In AAV, the Belimumab in Remission of Vasculitis (BREVAS) trial examined the
addition of belimumab to azathioprine and glucocorticoids for maintenance of remission in
patients with GPA and MPA [80]. However, the trial was stopped early due to suboptimal
recruitment, and no improvement in the relapse rate was observed. The combination of
rituximab and belimumab is being investigated further in an ongoing randomized double-
blind placebo-controlled trial, the Rituximab and Belimumab Combination Therapy in
PR3-AAV trial (COMBIVAS) (ClinicalTrials.gov identifier: NCT03967925).

3.4. B-Cell and T-Cell Co-Stimulation and Depletion
3.4.1. CD28–CD80/CD86

Co-stimulatory molecules predominantly modulate the immune responses by activat-
ing T- and B-cell functions, but also affect dendritic cell and macrophage functions and play
a crucial role in inflammation. Abatacept, a fusion protein of the extracellular domain of
CTLA-4 and the Fc fragment of human IgG1 (CTLA-4–Ig), is an inhibitor of T lymphocyte
activation by means of co-stimulatory blockade by binding to CD80 and CD86 receptors
on APC that is needed for antigen-presenting activation of T cells [81].

In GCA, 41 patients were randomized and relapse-free survival was 48% with abat-
acept as maintenance therapy compared with 31% with placebo (p = 0.049) [82]. The
duration of remission is significantly longer in the abatacept group than that of the placebo
group. In a double-blind randomized controlled multicenter study, 34 patients with TA
were treated with abatacept at a dose of 10 mg/kg on days 1, 15, 29, and at 8 weeks.
Patients attaining remission at 12 weeks were randomized to either receive placebo (n = 15)
or monthly abatacept (n = 11) and followed up until 12 months. However, there was no
difference in the duration of remission and relapse-free survival at 12 months between the
two groups [83].

In AAV, infiltrations of granulomatous T-cells were observed in lungs and kidneys,
suggesting a pathogenic role of T cells. In an open-label trial of 20 patients with a non-
severe relapsing GPA who were treated with abatacept, the remission rate was about 80%
and steroid discontinuation rate 75% [84]. The ongoing phase III randomized placebo-
controlled Abatacept for the Treatment of Relapsing, Non-Severe, Granulomatosis with
Polyangiitis (ABROGATE) (ClinicalTrials.gov identifier: NCT02108860) trial is currently
recruiting patients.
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3.4.2. CD52

CD52 is expressed on monocytes, macrophages, and eosinophils. Depletion of B cells
and T cells can be achieved by alemtuzumab [85]. This humanized anti-CD52 monoclonal
antibody selectively depletes lymphocytes and has been shown to be effective in other
systemic vasculitides such as Behçet’s disease [86]. Alemtuzumab as remission induction
therapy was effective in 84% of 32 BD patients, and sustained remission was achieved in
69% at 12 months [86]. Walsh et al. reported results of a retrospective long-term study of
71 patients with refractory or relapsing AAV treated with alemtuzumab and found it useful
to achieve remission with a lower relapse rate [87]. A randomized, prospective, open-label
study of alemtuzumab for remission induction in refractory AAV (ALEVIATE trial) was
presented in the form of an abstract in 2019. In this study, remission was achieved in 65% of
AAV patients at 6 months and 35% sustained remission at one year [88] However, adverse
events, such as infection, are high compared to standard treatment.

3.5. Targeting Complement
C5a Receptors

The complement system is a central mediator of antibody-mediated immune re-
sponses. C5 is a potent effector protein in this pathway, exerting its effects through its
cleavage products: C5a, a potent anaphylatoxin and chemoattractant, and C5b, part of the
a membrane attack complex that lyses target cells [89]. In patients with AAV, complement
deposition is evident at sites of tissue inflammation, such as kidneys, and high plasma
levels of complements correlate with disease severity [90,91].

Avacopan contains a small molecule that binds to C5a preventing it from binding to
its receptor. Clinical trial results of C5a receptor inhibition with avacopan have shown
promising results [92]. Sixty-seven patients with AAV were randomized to either high-dose
glucocorticoids, avacopan plus low-dose glucocorticoids, or avacopan alone alongside
cyclophosphamide or rituximab induction. At 12 weeks, a 50% reduction from base-
line in the Birmingham Vasculitis Activity Score (BVAS) occurred in 86% of the avaco-
pan/glucocorticoid and 81% of the avacopan-alone groups, compared with 70% in the
glucocorticoid group (p = 0.002 and p = 0.01, respectively). However, this study included
only non-severe disease. The results of a phase III trial, the Avacopan in Patients With
ANCA-Associated Vasculitis (ADVOCATE) trial, were reported in 2021 [93]. This study
enrolled 331 patients, randomized to receive either avacopan or glucocorticoids during
remission induction with either cyclophosphamide or rituximab. At 26 weeks, the number
of patients in remission, as assessed by a score 0 on the BVAS and withdrawal of steroid
therapy, was not inferior in both the avacopan and prednisone groups (72.3%, 70.1% re-
spectively). Additional data showed that avacopan was superior over glucocorticoids in
sustained remission at 52 weeks, with an acceptable safety profile.

An anti-C5a monoclonal Ab, IFX-1 is also being evaluated in phase II studies (IN-
FLARX trial, NCT03895801 and NCT03712345). Recruitment is ongoing and completion is
estimated by July 2021.

3.6. Other Targets
Interferon-α

Interferons (IFN), a large family of glycoproteins, produce a cellular response to the
microbes, tumors, and antigens [94]. IFN-α was demonstrated to modulate the Th1/Th2
balance toward Th1 by increased IFN-γ production and inhibiting IL-5 and IL-13 produc-
tion in Th2 cells [95,96].

The efficacy of IFN-α has been well established in BD, with the data coming from case
series, especially in ocular manifestations [97–99]. A retrospective study reported that there
was no difference between azathioprine plus colchicine and IFN-α2a treatment in BD uveitis
regarding remission and relapse rates [100]. Some case reports also reported the efficacy of
INF-α in neuro BD [101,102]. In an RCT of 44 patients of BD, IFN-α treatment significantly
improved mucocutaneous manifestations, such as orogenital ulcers, and papulopustular
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lesions [103]. In a recent prospective study of 33 patients with deep venous thrombosis,
one of the serious complications of BD, the relapse rate was lower and recanalization rate
was higher in patients treated with IFN-α compared with AZA (12% vs. 45% and 86% vs.
45%) [104].

Table 2. Targets and relative agent in vasculitis.

Target Agent Vasculitis References

Th1 cytokines IL-6 Tocilizumab
(anti-IL-6R mAb)

GCA,
TA

PAN
AAV

[23,24]
[25,26]
[27,28]
[29,30]

IL-12 and IL-23 Ustekinumab
(p40 subunit of IL-12/IL-23 mAb)

GCA
TA

[35]
[37,38]

TNF-α

Infliximab, Adalimumab
(anti-TNF-α mAb)

Etanercept
(TNF-α receptor fusion protein)

TA
PAN
BD

[44–47]
[48,49]
[54–59]
[60–65]

Th2 cytokines IL-5 Mepolizumab
(anti-IL-5 mAb) EGPA [69–72]

B cells CD20 Rituximab
(anti-CD20 mAb) AAV [73,74]

BAFF-R Belimumab
(BAFF-receptor mAb) AAV [80]

Co-stimulatory molecules CD28–CD80/CD86 Abatacept
(CTLA4Ig fusion protein)

GCA
AAV

[82]
[84]

CD52 Alemtuzumab
(anti-CD52 mAb)

AAV
BD

[87,88]
[86]

Complement C5a Avacopan
(C5a receptor inhibitor) AAV [92,93]

Other targets IFN-α IFN-α BD [97–100]
[101–104]

4. Conclusions

As the understanding of the pathogenesis of systemic vasculitis advances, novel
target molecules and therapeutic approaches are being proposed. Treatment outcomes of
vasculitis have improved with several new evidence-based treatments.

In spite of the success of blocking IL-6 in large vessel vasculitis, relapse rates remain
high, suggesting that further study is needed. In AAV, recent trials of therapies that target B-
cell activation, complements, and IL-5 provide encouraging evidence of better outcomes for
these patients. Future clinical trials of these novel therapeutic agents will need to establish
their efficacy and, as an increasing number of potential treatments become available, will
need to indicate how they can be used to complement or replace existing approaches.
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