Male Fertility

ORIGINAL ARTICLE

Reduced semen quality in patients with testicular cancer seminoma is associated with alterations in the expression of sperm proteins

Tânia R Dias^{1,2,3}, Ashok Agarwal¹, Peter N Pushparaj⁴, Gulfam Ahmad⁵, Rakesh Sharma¹

Testicular cancer seminoma is one of the most common types of cancer among men of reproductive age. Patients with this condition usually present reduced semen quality, even before initiating cancer therapy. However, the underlying mechanisms by which testicular cancer seminoma affects male fertility are largely unknown. The aim of this study was to investigate alterations in the sperm proteome of men with seminoma undergoing sperm banking before starting cancer therapy, in comparison to healthy proven fertile men (control group). A routine semen analysis was conducted before cryopreservation of the samples (n = 15 per group). Men with seminoma showed a decrease in sperm motility (P = 0.019), total motile count (P = 0.001), concentration (P = 0.003), and total sperm count (P = 0.001). Quantitative proteomic analysis identified 393 differentially expressed proteins between the study groups. Ten proteins involved in spermatogenesis, sperm function, binding of sperm to the oocyte, and fertilization were selected for validation by western blot. We confirmed the underexpression of heat shock-related 70 kDa protein 2 (P = 0.041), ubiquinol-cytochrome C reductase core protein 2 (P = 0.026), and testis-specific sodium/potassium-transporting ATPase subunit alpha-4 (P = 0.016), as well as the overexpression of angiotensin I converting enzyme (P = 0.005) in the seminoma group. The altered expression levels of these proteins are associated with spermatogenesis dysfunction, reduced sperm kinematics and motility, failure in capacitation and fertilization. The findings of this study may explain the decrease in the fertilizing ability of men with seminoma before starting cancer therapy.

Asian Journal of Andrology (2020) 22, 88–93; doi: 10.4103/aja.aja_17_19; published online: 16 April 2019

Keywords: male fertility; proteomics; seminoma; sperm proteins; sperm quality; testicular cancer

INTRODUCTION

Germ cell tumors (GCTs) represent the most common type of testicular cancer, accounting for about 90%–95% of all cases. The principal types of GCTs are nonseminomas and seminomas; the latter usually grows and spreads more slowly. In the last decades, there is a growing trend in the proportion of seminomas.¹ The survival rate of men with seminoma is very high (over 95%); thus, it is generally not seen as a threat to public health. However, its impact on male fertility represents a major concern for reproductive medicine as it frequently affects men in reproductive age (20–44 years).²

Men with seminoma present impaired fertilizing ability, even before diagnosis.³ Testicular cancer seminoma affects the hypothalamic-pituitary-gonadal (HPG) axis and consequently disturbs spermatogenesis.⁴ These deleterious effects are dependent on the stage and type of seminoma, resulting in poor semen quality or even azoospermia.⁵ The treatment for this type of cancer, usually performed by surgery, chemotherapy, or radiotherapy, further affects semen quality⁵ and hormonal function,⁶ thus highly impairing male fertility. In fact, after cancer therapy, patients may become temporarily or permanently infertile.⁷ For that reason, it is strongly recommended that men diagnosed with seminoma undergo sperm banking to increase the probability to father a child in the future.⁸ The chances to establish a pregnancy by natural conception are 30% lower after the cancer therapy and the recovery of fertilizing ability usually takes several years.⁹ Therefore, in many surviving patients with seminoma, assisted reproductive technology (ART) with cryopreserved samples is the only option for having children.¹⁰ Still, sperm banking is not possible for many patients due to the high cost or lack of facilities, urgency to initiate the treatment, impaired spermatogenesis, and/or poor semen quality at the time of specimen collection.¹¹

Proteomics studies have been recently used as a valuable tool to explore how certain health conditions affect male reproductive potential, especially by evaluating spermatozoa and seminal plasma proteome.^{12,13} Although spermatozoa are transcriptionally and translationally silent after being produced in the testis, the acquisition of sperm function occurs during maturation in the epididymis and transit through the female reproductive tract.¹⁴ Therefore, the sperm proteome is highly susceptible to alterations according to the health status of

¹American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; ²Department of Health Sciences, Faculty of Health Sciences,

University of Beira Interior, Covilhã 6201-001, Portugal; ³Department of Microscopy and Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4050-313, Portugal; ⁴Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, Jeddah 21589, Saudi Arabia; ⁵Division of Pathology, School of Medical Sciences, Sydney University, Lidcombe NSW 2141, Australia.

Correspondence: Dr. A Agarwal (agarwaa@ccf.org)

Received: 12 August 2018; Accepted: 04 January 2019

the individual, and this impacts the quality of sperm parameters. The deleterious effects of seminoma treatment represent a challenge to understand the mechanisms behind the impairment of male fertility caused by the disease. In this study, we used semen samples from men with testicular cancer seminoma that were cryopreserved before

PARTICIPANTS AND METHODS

Semen analysis and cryopreservation

in comparison with healthy proven fertile men.

This study was conducted after approval by the Institutional Review Board (IRB) of Cleveland Clinic, Cleveland, OH, USA. Semen samples were obtained from healthy volunteers with proven fertility (control, n = 15) and patients with seminoma (n = 15). All the participants signed informed written consent to allow the use of their samples in this study. The inclusion criteria were as follows: (1) control group, healthy fertile men who had fathered a child in the last 2 years; (2) seminoma group, patients diagnosed with seminoma and undergoing sperm banking before starting cancer therapy. Following 2-3 days of abstinence, semen samples were collected at the Andrology Center, Cleveland Clinic. Samples were liquefied for 20-30 min in an incubator (Panasonic, Newark, NJ, USA) at 37°C, and a routine semen analysis was conducted according to the World Health Organization (WHO) 2010 guidelines.¹⁵ Semen volume, sperm motility, and sperm concentration were recorded. Total sperm count and total motile count were also calculated and the results were expressed as mean ± standard error of the mean (s.e.m.). Whole ejaculate samples were immediately cryopreserved in TEST-yolk buffer (TYB; Irvine Scientific, Santa Ana, CA, USA) in a ratio of 1:1 as previously described16 and finally labeled and stored in liquid nitrogen at -196°C.

starting cancer therapy, to investigate alterations in the sperm proteome

Protein extraction and estimation

Samples were thawed on ice and centrifuged at 4000g for 10 min (Eppendorf, Hauppauge, NY, USA). To remove the freezing medium (TYB) as much as possible, the sperm pellet was washed four times in phosphate-buffered saline (PBS; Sigma-Aldrich, St. Louis, MO, USA) and centrifuged at 4000g for 10 min at 4°C. Total sperm protein was extracted overnight at 4°C with radioimmunoprecipitation assay (RIPA) buffer (Sigma-Aldrich). Subsequently, samples were centrifuged at 10 000g for 30 min at 4°C, to recover the protein fraction (supernatant). Pierce BCA Protein Assay kit (Thermo Fisher Scientific, Waltham, MA, USA) was used to estimate the protein concentration, according to the manufacturer's instructions.

Quantitative proteomic analysis

Three samples from the control or seminoma group were randomly selected for the proteomic analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Samples were pooled (n = 3) using the same amount of protein from each sample. Each pool was then evaluated as an individual sample in the proteomic analysis. The system used was a Finnigan LTQ-Orbitrap Elite hybrid mass spectrometer (Thermo Fisher Scientific) using the previously described conditions and software.¹⁷ Scaffold (version 4.0.6.1, Proteome Software Inc., Portland, OR, USA) was used for the identification of differentially expressed proteins (DEPs) between the control and seminoma groups. The spectral counts were used to determine the abundance of each protein (very low, low, medium, or high). The identified DEPs were categorized as underexpressed, overexpressed, or unique to one of the groups, based on the normalized spectral abundance factor (NSAF) ratio according to previously reported criteria.¹⁷

Bioinformatic analysis

Bioinformatic analysis of DEPs identified by LC-MS/MS was carried out using the Ingenuity Pathway Analysis software (IPA; Qiagen, Hilden, Germany). IPA was used to evaluate the canonical pathways, top diseases and bio-functions, and upstream regulators related to the identified DEPs. Proteins were selected for validation by western blot considering the following criteria: (1) proteins involved in reproductive system development and function; (2) proteins involved in the top canonical pathways; (3) proteins with a higher difference of abundance between the experimental groups; and (4) proteins with a well-described function in the literature. Only proteins that met all the above-mentioned criteria were subjected to western blot.

Western blot

Western blot was performed using individual samples from the control and seminoma groups (n = 6 per group). A total of 25 µg protein per sample was mixed with 4 × Laemmli sample buffer (Bio-Rad, Hercules, CA, USA) in a ratio of 1:3 and made up to 25 μl with PBS. Samples were boiled at 95°C for 10 min and immediately loaded into a 4%-15% (w/v) polyacrylamide gel (Bio-Rad). Electrophoresis was performed with constant voltage (90 V) for 2 h. Precision Plus Protein[™] Dual Xtra Standard (Thermo Fisher Scientific) was used as the molecular weight marker. The resolved proteins were transferred (20 V for 30 min) to methanol-activated polyvinylidene difluoride (PVDF) membranes (GE Healthcare, Marlborough, MA, USA) and blocked for 90 min at room temperature, with a 5% (w/v) nonfat milk (Bio-Rad) solution prepared in tris-buffered saline with tween-20 (TBST; Sigma-Aldrich). Membranes were incubated overnight (4°C) with specific primary antibodies followed by the respective secondary antibodies at room temperature, for 90 min (Supplementary Table 1). Membranes were incubated with enhanced chemiluminescence (ECL) reagent (GE Healthcare) for 5 min, and the chemiluminescence signals were read in the ChemiDoc[™] MP Imaging System (Bio-Rad). Densities from each band were quantified with Image Lab[™] Software (version 6.0.1, Bio-Rad) and divided by the corresponding total protein lane density. Total protein density was obtained by incubation of the membranes with total colloidal gold protein stain (BioRad). The results were expressed as fold variation relative to the control group.

Statistical analyses

After testing normal distribution by the Kolmogorov–Smirnov test, semen parameters and western blot results were analyzed by Mann–Whitney U test for independent samples, using the MedCalc Software (version 17.8; MedCalc Software, Ostend, Belgium). All data are presented as mean \pm s.e.m., and differences with P < 0.05 were considered statistically significant.

RESULTS

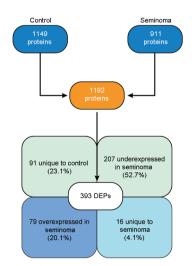
Semen quality in patients with testicular cancer seminoma

The average volume of the ejaculates was very similar between the control and seminoma groups (Table 1). However, there was a decrease in sperm

Table	1:	Semen	parameters	of	fertile	men	(control)	and	patients	with
testicu	ıla	r cance	r seminoma							

Parameter	Control	Seminoma	Р
Semen volume (ml)	3.53±0.35	3.33±0.42	0.541
Sperm motility (%)	67±3	54±5	0.019
Sperm concentration (10 ⁶ ml ⁻¹)	95.49±7.79	46.72±12.19	0.003
Total sperm count (106)	316.92±45.41	136.11±41.55	0.001
Total motile count (106)	211.88±30.09	75.63±22.44	0.001

Results are presented as mean \pm s.e.m. (*n*=15 per group). Statistical significance was considered for P < 0.05. s.e.m.: standard error of the mean


motility (P = 0.019), sperm concentration (P = 0.003), total sperm count (P = 0.001), and total motile count (P = 0.001) in patients with seminoma relative to control (**Table 1**). Nevertheless, all the samples were considered normozoospermic according to the WHO 2010 criteria.¹⁵

Differentially expressed proteins

Proteomic analysis identified 1149 proteins in the control group and 911 in the seminoma group. After comparative analysis between the experimental groups, a total of 1192 proteins were quantified and 393 were found to be differentially expressed (**Supplementary Table 2**). More than half (52.7%) of the DEPs were underexpressed, while 20.1% were overexpressed in spermatozoa of patients with seminoma. Furthermore, 4.1% of the DEPs were unique to the seminoma group and 23.1% unique to the control group (**Figure 1**).

Selection of proteins for validation

According to the IPA analysis, among the top diseases and biofunctions related to "physiological system development and function," the category with the highest P value was "reproductive system development and function." Within this category, we selected seven proteins involved in specific reproductive processes (Table 2): angiotensin-converting enzyme (ACE), acrosin precursor (ACR), T-complex protein 1 subunit gamma (CCT3), sperm surface protein Sp17 (SPA17), sodium/potassium-transporting ATPase subunit alpha-4 (ATP1A4), heat shock-related 70 kDa protein 2 (HSPA2), and proteasome activator complex subunit 4 (PSME4). Some of these proteins were also involved in the top canonical pathways identified in this dataset. While HSPA2 participates in the "protein ubiquitination pathway" and "unfolded protein response," ACE is related to "phagosome maturation." Other top five canonical pathways included "mitochondrial dysfunction" and "oxidative phosphorylation." Among the proteins involved in those pathways were NADH-ubiquinone oxidoreductase 75 kDa subunit (NDUFS1), cytochrome b-c1 complex subunit 2 (UQCRC2), and ATP synthase subunit alpha (ATP5A), which are subunits of the mitochondrial complexes I, III, and V, respectively. These three proteins were also selected for analysis by western blot. The abundance and expression pattern of the ten selected proteins obtained by the proteomic analysis is presented in Table 3.

Figure 1: Number of proteins identified by proteomic analysis of spermatozoa samples obtained from fertile men (control) and men with testicular cancer seminoma, and expression profile of the DEPs identified after comparative analysis between the experimental groups. DEPs: differentially expressed proteins.

Prediction of the upstream regulators

The IPA analysis predicted the activation or inhibition of several proteins, which could be responsible for the altered expression in the sperm proteome of men with seminoma. The rapamycin-insensitive companion of mammalian target of rapamycin (RICTOR) was predicted to be activated, thus leading to the underexpression of NDUFS1, UQCRC2, ATP5A1, and PSME4. Moreover, it was predicted that the underexpression of ATP5A1 and ATP1A4 may involve the activation of the amyloid-beta A4 protein (APP). On the other hand, the inhibition of the heat shock factor protein 2 (HSF2) was predicted to regulate the underexpression of CCT3, as well as six other chaperonins of the T-complex protein-1 (TCP-1) family (CCT2, CCT4, CCT5, CCT6A, CCT7, and CCT8).

Western blot analysis

All proteins selected for western blot analysis were identified. There was an increase in the protein expression of ACE (P = 0.005) and ACR (P = 0.009) in the seminoma group (2.61 ± 0.38 and 2.02 ± 0.26-fold variation to control, respectively) in comparison with the

Table 2: Specific functions of the differentially expressed proteins related to reproductive system development and function identified by the bioinformatic analysis when comparing the sperm proteome of patients with testicular cancer seminoma with fertile men

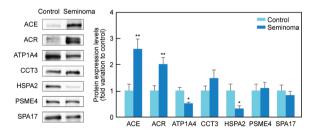
Process	Protein	Р
Binding of sperm	ACE, ACR, CCT3, SPA17	< 0.0001
Fertilization	ACE, ACR, ATP1A4, SPA17	< 0.0001
Cell movement of sperm	ATP1A4	< 0.0001
Spermatogenesis	ACE, ATP1A4, HSPA2, PSME4, SPA17	0.0003
Function of sperm	ATP1A4	0.0028
Acrosome reaction	ACR	0.0037
Fertility	ACE, ACR, PSME4	0.0067
Morphology of male germ cells	ACR, PSME4	0.0089
Morphology of sperm	ACR	0.0120
Hyperactivation of sperm	ATP1A4	0.0133

ACE: angiotensin-converting enzyme; ACR: acrosin precursor; ATP1A4: sodium/potassiumtransporting ATPase subunit alpha-4; CCT3: T-complex protein 1 subunit gamma; HSPA2: heat shock-related 70 kDa protein 2; PSME4: proteasome activator complex subunit 4; SPA17: sperm surface protein Sp17

Table 3: Proteomic data of the differentially expressed proteins identified in the spermatozoa samples of fertile men (control) and men with testicular cancer seminoma before cancer therapy, which were selected for validation by western blot

Protein	Abu	ndance		Expression profile	Р
	Control	Seminoma	ratio		
ACE	High	High	1.62	Overexpressed in seminoma	0.0131
ACR	High	Medium	0.34	Underexpressed in seminoma	0.0001
ATP1A4	Medium	Very low	0.07	Underexpressed in seminoma	0.0001
ATP5A1	High	Medium	0.18	Underexpressed in seminoma	< 0.0001
CCT3	High	Very low	0.09	Underexpressed in seminoma	< 0.0001
HSPA2	High	High	0.53	Underexpressed in seminoma	< 0.0001
NDUFS1	Medium	Very low	0.42	Underexpressed in seminoma	0.0307
PSME4	Medium	Very low	0.13	Underexpressed in seminoma	0.0006
SPA17	Medium	Very low	0.02	Underexpressed in seminoma	0.0001
UQCRC2	High	Low	0.23	Underexpressed in seminoma	0.0001

ACE: angiotensin-converting enzyme; ACR: acrosin; ATP1A4: sodium/potassium-transporting ATPase subunit alpha-4; ATP5A: ATP synthase subunit alpha; CCT3: T-complex protein 1 subunit gamma; HSPA2: heat shock-related 70 kDa protein 2; NDUFS1: NADH-ubiquinone oxidoreductase 75 kDa subunit; NSAF: normalized spectral abundance factor; PSME4: proteasome activator complex subunit 4; SPA17: sperm surface protein Sp17; UQCRC2: cytochrome b-c1 complex subunit 2


90

control $(1.00 \pm 0.25$ and 1.00 ± 0.19 , respectively) (Figure 2). On the other hand, there was a decrease in the protein levels of ATP1A4 (P = 0.016) and HSPA2 (P = 0.041) in men with seminoma (0.53 ± 0.03 and 0.32 ± 0.11 -fold variation to control, respectively) when compared with the control group (1.00 ± 0.25 and 1.00 ± 0.22 , respectively) (Figure 2). The protein levels of CCT3, SPA17, and PSME4 were similar between the study groups. There was also a decrease (P = 0.026) in the protein expression levels of UQCRC2 (0.34 ± 0.14 -fold variation to control) in the seminoma group relative to the control (1.00 ± 0.14) (Figure 3). No differences were found in the protein levels of NDUFS1 or ATP5A1 between the experimental groups.

DISCUSSION

The present study is the first attempt to identify alterations in spermatozoa proteome of patients with seminoma before initiating cancer therapy, using fertile donors as control group. Our goal was to evaluate the expression levels of proteins involved in reproductive function from spermatogenesis to sperm function and fertilization. This may provide new insights on the underlying mechanisms responsible for the reduced sperm quality in men with seminoma.

Spermatogenesis consists of a complex process of spermatozoa production that involves several steps of germ cell differentiation. The bioinformatic analysis identified an underexpression of PSME4 in spermatozoa of patients with seminoma. PSME4 plays a role in the morphology of male germ cells; it is particularly important for histone replacement during chromatin remodeling and DNA double-strand break repair.¹⁸ It has been reported that mice lacking this protein present impaired spermatogenesis and reduced fertility.¹⁹ Thus, the downregulation of this protein may contribute to reduced fertility in men with seminoma. Although we were not able to confirm the underexpression of PSME4 by western blot in our dataset, we observed the underexpression of the molecular chaperone HSPA2 by both proteomics and western blot analysis. Molecular chaperones are essential for normal sperm production and functional transformation. HSPA2 acts as a protein quality control system as it ensures the correct folding/refolding of proteins and activates the degradation of misfolded proteins.²⁰ It has been described that HSPA2 participates in the stability of the microtubules during the meiotic process of germ cell differentiation.²¹ In fact, animal

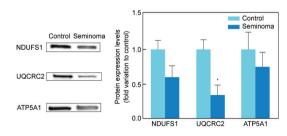


Figure 2: Graphical representation of the expression levels of proteins involved in reproductive functions (ACE, ACR, ATP1A4, CCT3, HSPA2, PSME4, and SPA17) in spermatozoa samples obtained from fertile men (control) and men with testicular cancer seminoma. Results are presented as fold variation to control and expressed as mean±standard error of the mean (n = 15 per group). Statistical significance is indicated as: $^{*P} < 0.05$, $^{**P} < 0.01$, seminoma versus control. Representative blots for each protein are also presented. ACE: angiotensin-converting enzyme; ACR: acrosin precursor; ATP1A4: sodium/potassium-transporting ATPase subunit alpha-4; CCT3: T-complex protein 1 subunit gamma; HSPA2: heat shock-related 70 kDa protein 2; PSME4: proteasome activator complex subunit 4; SPA17: sperm surface protein Sp17.

studies show that knockout mice for *Hspa2* exhibit an enormous number of apoptotic germ cells, resulting in infertility.²² Men with abnormal spermatogenesis frequently present a reduced *hspA2* mRNA expression.²³ Thus, the downregulation of HSPA2 protein in men with seminoma may contribute to the decreased production of normal spermatozoa during spermatogenesis, which is in accordance with the observed reduction in sperm concentration and total sperm count in seminoma group.

The protein ATP1A4 was identified as downregulated in seminoma group by the proteomic analysis, and this result was confirmed by the western blot technique. IPA analysis revealed that ATP1A4 participates in several reproductive processes, including spermatogenesis, function of sperm, cell movement of sperm, hyperactivation, and fertilization. ATP1A4 is the catalytic subunit of the Na⁺/K⁺-ATPase membrane protein, which controls the exchange of sodium and potassium ions across the plasma membrane in an ATP-dependent reaction.²⁴ The regulation of ions in spermatozoa is essential for the acquisition of motility and fertilizing ability. ATP1A4 plays a key role in maintaining human sperm motility.²⁵ It has been shown that male mice lacking this subunit are completely sterile and their spermatozoa present not only reduced motility but also impaired hyperactivation and inability to fertilize in vitro.26 These studies highlight the importance of ATP1A4 for male fertility, and the underexpression of this protein in spermatozoa of men with seminoma may explain the decrease in sperm motility and total motile count relative to proven fertile men (control group). The downregulation of ATP1A4 was related to the activation of APP. In fact, this protein has been identified in human spermatozoa and suggested to play an important role in sperm function, especially in signaling events involved in sperm motility.27

Another important process crucial for sperm function is mitochondrial function. It is required for energy production necessary for spermatozoa movement and production of reactive oxygen species (ROS) in physiological amounts to trigger capacitation and regulate hyperactivation and acrosome reaction.²⁸ Mitochondrial function relies on the expression of the mitochondrial complexes I–IV for oxidative phosphorylation (OXPHOS) and complex V for ATP production.²⁹ Our proteomic data showed a downregulation of NDUFS1, UQCRC2, and ATP5A1 in the seminoma group, which are subunits of complex I, III, and V, respectively. The downregulation of these three proteins was predicted to be induced by the activation of RICTOR, which plays a key role in spermatogenesis and sperm maturation signaling

Figure 3: Graphical representation of the protein expression levels of mitochondrial complex subunits NDUFS1, UQCRC2, and ATP5A1 in spermatozoa samples obtained from fertile men (control) and men with testicular cancer seminoma. Results are presented as fold variation to control and expressed as mean \pm standard error of the mean (n = 15 per group). Statistical significance is indicated as: P < 0.05, seminoma versus control. Representative blots for each protein are also presented. NDUFS1: NADH-ubiquinone oxidoreductase 75 kDa subunit; UQCRC2: cytochrome b-c1 complex subunit 2; ATP5A: ATP synthase subunit alpha.

pathways.²⁸ The mitochondrial subunits are essential for the proper assembly of the complexes; thus, alterations in their protein expression in spermatozoa are indicative of mitochondrial dysfunction, as reported by the IPA canonical pathways.³⁰ Although the western blot analysis demonstrated a tendency of reduced expression of the three mitochondrial subunits, only the UQCRC2 was decreased in patients with seminoma. Downregulation of UQCRC2 was associated with reduced sperm kinematics, ATP production, and capacitation, which ultimately compromises sperm binding and fertilization.³¹ In fact, an underexpression of UQCRC2 was observed in infertile men with varicocele.³²

The acquisition of sperm fertilizing ability involves a timed triggering of events in the female reproductive system, culminating in sperm-oocyte binding. SPA17 and CCT3 are two sperm proteins involved in this function, which were identified as downregulated in the seminoma group by the proteomic analysis. SPA17 is a mannosebinding protein that binds to zona pellucida carbohydrates during fertilization.³³ It also plays an important role in germ cell differentiation during spermatogenesis, as its expression increases from early to late stages.34 CCT3 is one of the subunits of the TCP-1 complex. Although we selected to evaluate the expression levels of this subunit, six other subunits of this complex (CCT2, CCT4, CCT5, CCT6A, CCT7, and CCT8) were also downregulated in men with seminoma. These subunits mediate capacitation-dependent binding of spermatozoa to the zona pellucida.³⁵ Thus, the downregulation of this system may compromise sperm fertilization.³⁶ The downregulation of TCP-1 complex subunits was predicted to be due to HSF2 inhibition. In fact, disruption of hsf2 in mice affected testicular size37 and induced spermatogenic defects.³⁸ When active, HSF2 is likely to induce the upregulation of HSPA2.³⁹ Thus, the predicted inhibition of HSF2 in men with seminoma is in accordance with the downregulation of HSPA2. Although the underexpression of SPA17 and CCT3 was not confirmed by the western blot, the downregulation of HSPA2 in men with seminoma may contribute to the loss of sperm function. In fact, this protein is known to regulate the formation of zona pellucida-binding sites in spermatozoa during spermatogenesis.40 In addition, it regulates fertilization by mediating the function of sperm surface receptors, such as sperm adhesion molecule 1 (SPAM1) and arylsulfatase A (ARSA), during sperm-egg recognition.⁴¹ Previous proteomic studies have shown low expression levels of HSPA2 in men with asthenozoospermia⁴² and primary or secondary infertility.⁴³ Another study also reported a downregulation of HSPA2, ATP1A4, and SPA17 in infertile varicocele patients.³² Our results suggest that the altered expression levels of these proteins in men with seminoma may contribute to the impairment of male fertility.

The proteomic analysis also identified ACE as overexpressed in the seminoma group, and this result was confirmed by western blot. This protein is a zinc metallopeptidase responsible for the conversion of angiotensin I to angiotensin II.⁴⁴ The role of ACE in male reproductive function is not completely understood. Studies with ACE-deficient mice reported that these animals produce a normal number of spermatozoa and present normal motility and morphology. However, the spermatozoa were unable to bind and fertilize the egg.^{45,46} A negative correlation between sperm-bound ACE activity and sperm motility has also been observed.⁴⁷ The testis-specific isoform of this protein (tACE) is believed to be released from functional spermatozoa during capacitation and acrosome reaction to increase the fertilizing ability.⁴⁸ In fact, a lower tACE activity was detected in spermatozoa from normozoospermic men relative to those with oligoasthenozoospermia.⁴⁷ Thus, the overexpression of this protein in spermatozoa from men with seminoma may be responsible for the decrease in sperm motility observed in this group, and possibly explains why some men with seminoma are not able to have children even before the treatment.

Finally, the protein ACR, in its precursor form (proacrosin), was identified as underexpressed in the seminoma group by the proteomic analysis. This protein is activated and converted to its active form during acrosome reaction, playing a role in sperm–oocyte binding.⁴⁹ In contrast, using western blot, we found a high overexpression of this protein in men with seminoma. Although we cannot clearly infer about the molecular mechanisms, any of the scenarios (underexpression/overexpression) could lead to a defective acrosome reaction and impaired fertilization. The difference on these results may be due to the sensitivity of each technique and to the sample size. Further studies to assess acrosin activity in men with seminoma are needed to clarify the impact of this condition in acrosome reaction.

Overall, our study points toward important alterations in sperm proteins with a key role in male fertility in men with seminoma. As of today, no specific sperm markers have been identified for the clinical diagnosis and monitoring of testicular cancer seminoma development. The expression levels of HSPA2, ATP1A4, UQCRC2, and ACE can be helpful sperm biomarkers when evaluating the fertility status of a man, which may allow the early diagnosis of seminomas in a noninvasive approach. Although there is still a lot to explore in the pathophysiology of male subfertility/infertility in men with seminoma, our results represent a step forward in understanding the molecular mechanisms behind the reduced sperm quality in these patients. Future advances in mass spectrometry and bioinformatics will improve our understanding on human sperm function in healthy and disease conditions.

AUTHOR CONTRIBUTIONS

AA and RS were responsible for the conception and design of the study. TRD was responsible for the acquisition and interpretation of data, as well as writing the first draft. GA helped in samples processing and PNP performed the bioinformatic analysis. All authors read and approved the final manuscript.

COMPETING INTERESTS

All authors declared no competing interests.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Belinda Willard (Director, Proteomics Core Laboratory, Lerner Research Institute, Cleveland Clinic) for her support in the proteomic analysis and Dr. Ralf Henkel and Dr. Saradha Baskaran for their help in reviewing the manuscript. Financial support for this study was provided by the American Center for Reproductive Medicine, Cleveland Clinic, OH, USA. Tania R Dias was supported by the Portuguese Foundation for Science and Technology (FCT, SFRH/BD/109284/2015) and Fulbright Program (E0585639). Sponsors were not involved in the experiments or writing/submitting the paper.

Supplementary Information is linked to the online version of the paper on the *Asian Journal of Andrology* website.

REFERENCES

- Ruf CG, Isbarn H, Wagner W, Fisch M, Matthies C, et al. Changes in epidemiologic features of testicular germ cell cancer: age at diagnosis and relative frequency of seminoma are constantly and significantly increasing. Urol Oncol 2014; 32: 33.e1–6.
- 2 Noone A, Howlader N, Krapcho M, Miller D, Brest A, et al. SEER Cancer Statistics Review. Bethesda: National Cancer Institute; 1975-2015. Available from: https:// www.seer.cancer.gov/csr/1975_2015/. [Last accessed on 2019 Jan 7].
- 3 Bahadur G, Ozturk O, Muneer A, Wafa R, Ashraf A, et al. Semen quality before and after gonadotoxic treatment. Hum Reprod 2005; 20: 774–81.
- 4 Morrish DW, Venner PM, Siy O, Barron G, Bhardwaj D, et al. Mechanisms of endocrine dysfunction in patients with testicular cancer. J Natl Cancer Inst 1990; 82: 412–8.

92

- 5 Ping P, Gu BH, Li P, Huang YR, Li Z. Fertility outcome of patients with testicular tumor: before and after treatment. Asian J Androl 2014; 16: 107.
- 6 Huddart R, Norman A, Moynihan C, Horwich A, Parker C, et al. Fertility, gonadal and sexual function in survivors of testicular cancer. Br J Cancer 2005; 93: 200.
- 7 Meistrich ML. Effects of chemotherapy and radiotherapy on spermatogenesis in humans. *Fertil Steril* 2013; 100: 1180–6.
- 8 Agarwal A. Semen banking in patients with cancer: 20-year experience. Int J Androl 2000; 23: 16–9.
- 9 Huyghe E, Matsuda T, Daudin M, Chevreau C, Bachaud JM, et al. Fertility after testicular cancer treatments: results of a large multicenter study. Cancer 2004; 100: 732–7.
- 10 Magelssen H, Haugen T, Von Düring V, Melve K, Sandstad B, et al. Twenty years experience with semen cryopreservation in testicular cancer patients: who needs it? Eur Urol 2005; 48: 779–85.
- 11 Vakalopoulos I, Dimou P, Anagnostou I, Zeginiadou T. Impact of cancer and cancer treatment on male fertility. *Hormones (Athens, Greece)* 2015; 14: 579–89.
- 12 Agarwal A, Bertolla RP, Samanta L. Sperm proteomics: potential impact on male infertility treatment. *Expert Rev Proteomics* 2016; 13: 285–96.
- 13 Sharma R, Agarwal A, Mohanty G, Du Plessis SS, Gopalan B, et al. Proteomic analysis of seminal fluid from men exhibiting oxidative stress. *Reprod Biol Endocrinol* 2013; 11: 85.
- 14 Baker MA, Nixon B, Naumovski N, Aitken RJ. Proteomic insights into the maturation and capacitation of mammalian spermatozoa. Syst Biol Reprod Med 2012; 58: 211–7.
- 15 World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen. 5th ed. Geneva: World Health Organization; 2010.
- 16 Agarwal A, Gupta S, Sharma R. Cryopreservation of client depositor semen. In: Andrological Evaluation of Male Infertility. Cham: Springer; 2016. p113–33.
- 17 Agarwal A, Ayaz A, Samanta L, Sharma R, Assidi M, et al. Comparative proteomic network signatures in seminal plasma of infertile men as a function of reactive oxygen species. *Clin Proteomics* 2015; 12: 23.
- 18 Ustrell V, Hoffman L, Pratt G, Rechsteiner M. PA200, a nuclear proteasome activator involved in DNA repair. EMBO J 2002; 21: 3516–25.
- 19 Khor B, Bredemeyer AL, Huang CY, Turnbull IR, Evans R, et al. Proteasome activator PA200 is required for normal spermatogenesis. *Mol Cell Biol* 2006; 26: 2999–3007.
- 20 Radons J. The human HSP70 family of chaperones: where do we stand? *Cell Stress Chaperones* 2016; 21: 379–404.
- 21 Liu M, Shi X, Bi Y, Qi L, Guo X, et al. SHCBP1L, a conserved protein in mammals, is predominantly expressed in male germ cells and maintains spindle stability during meiosis in testis. *Mol Hum Reprod* 2014; 20: 463–75.
- 22 Dix DJ, Allen JW, Collins BW, Mori C, Nakamura N, *et al.* Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility. *Proc Natl Acad Sci U S A* 1996; 93: 3264–8.
- 23 Son WY, Han CT, Hwang SH, Lee JH, Kim SS, et al. Repression of hspA2 messenger RNA in human testes with abnormal spermatogenesis. *Fertil Steril* 2000; 73: 1138–44.
- 24 Hlivko JT, Chakraborty S, Hlivko TJ, Sengupta A, James PF. The human Na,K-ATPase alpha4 isoform is a ouabain-sensitive alpha isoform that is expressed in sperm. *Mol Reprod Dev* 2006; 73: 101–15.
- 25 Sanchez G, Nguyen AN, Timmerberg B, Tash JS, Blanco G. The Na,K-ATPase α4 isoform from humans has distinct enzymatic properties and is important for sperm motility. *Mol Hum Reprod* 2006; 12: 565–76.
- 26 Jimenez T, McDermott JP, Sánchez G, Blanco G. Na,K-ATPase α4 isoform is essential for sperm fertility. *Proc Natl Acad Sci U S A* 2011; 108: 644–9.
- 27 Fardilha M, Vieira SI, Barros A, Sousa M, Da Cruz e Silva OA, et al. Differential distribution of Alzheimer's amyloid precursor protein family variants in human sperm. Ann N Y Acad Sci 2007; 1096: 196–206.
- 28 de Lamirande E, O'Flaherty C. Sperm activation: role of reactive oxygen species and kinases. *Biochim Biophys Acta* 2008; 1784: 106–15.
- 29 Boekema EJ, Braun HP. Supramolecular structure of the mitochondrial oxidative phosphorylation system. J Biol Chem 2006; 282: 1–4.
- 30 Agarwal A, Sharma R, Samanta L, Durairajanayagam D, Sabanegh E. Proteomic signatures of infertile men with clinical varicocele and their validation studies reveal mitochondrial dysfunction leading to infertility. Asian J Androl 2016; 18: 282.

- 31 Shukla KK, Kwon WS, Rahman MS, Park YJ, You YA, et al. Nutlin-3a decreases male fertility via UQCRC2. PLoS One 2013; 8: e76959.
- 32 Samanta L, Agarwal A, Swain N, Sharma R, Gopalan B, et al. Proteomic signatures of sperm mitochondria in varicocele: clinical utility as biomarkers of varicocele associated infertility. J Urol 2018; 200: 414–22.
- 33 O'rand MG, Richardson RT, Yamasaki N. Expression of the rabbit sperm protein Sp17 in COS cells and interaction of recombinant Sp17 with the rabbit zona pellucida. *Mol Reprod Dev* 1995; 40: 48–55.
- 34 Grizzi F, Chiriva-Internati M, Franceschini B, Hermonat PL, Soda G, et al. Immunolocalization of sperm protein 17 in human testis and ejaculated spermatozoa. J Histochem Cytochem 2003; 51: 1245–8.
- 35 Redgrove KA, Anderson AL, Dun MD, McLaughlin EA, O'Bryan MK, et al. Involvement of multimeric protein complexes in mediating the capacitationdependent binding of human spermatozoa to homologous zonae pellucidae. Dev Biol 2011; 356: 460–74.
- 36 Fraser LR, Dudley K. New insights into the t-complex and control of sperm function. *Bioessays* 1999; 21: 304–12.
- 37 Wang G, Ying Z, Jin X, Tu N, Zhang Y, et al. Essential requirement for both hsf1 and hsf2 transcriptional activity in spermatogenesis and male fertility. Genesis 2004; 38: 66–80.
- 38 Mou L, Wang Y, Li H, Huang Y, Jiang T, et al. A dominant-negative mutation of HSF2 associated with idiopathic azoospermia. Hum Genet 2013; 132: 159–65.
- 39 Sarge KD, Park-Sarge OK, Kirby JD, Mayo KE, Morimoto RI. Expression of heat shock factor 2 in mouse testis: potential role as a regulator of heat-shock protein gene expression during spermatogenesis. *Biol Reprod* 1994; 50: 1334–43.
- 40 Huszar G, Stone K, Dix D, Vigue L. Putative creatine kinase M-isoform in human sperm is identifiedas the 70-kilodalton heat shock protein HspA2. *Biol Reprod* 2000; 63: 925–32.
- 41 Redgrove KA, Nixon B, Baker MA, Hetherington L, Baker G, et al. The molecular chaperone HSPA2 plays a key role in regulating the expression of sperm surface receptors that mediate sperm-egg recognition. PLoS One 2012; 7: e50851.
- 42 Hashemitabar M, Sabbagh S, Orazizadeh M, Ghadiri A, Bahmanzadeh M. A proteomic analysis on human sperm tail: comparison between normozoospermia and asthenozoospermia. J Assist Reprod Genet 2015; 32: 853–63.
- 43 Intasqui P, Agarwal A, Sharma R, Samanta L, Bertolla R. Towards the identification of reliable sperm biomarkers for male infertility: a sperm proteomic approach. *Andrologia* 2018; 50: e12919.
- 44 Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990; 86: 1343–6.
- 45 Krege JH, John SW, Langenbach LL, Hodgin JB, Hagaman JR, et al. Male-female differences in fertility and blood pressure in ACE-deficient mice. *Nature* 1995; 375: 146.
- 46 Hagaman JR, Moyer JS, Bachman ES, Sibony M, Magyar PL, et al. Angiotensinconverting enzyme and male fertility. Proc Natl Acad Sci U S A 1998; 95: 2552–7.
- 47 Shibahara H, Kamata M, Hu J, Nakagawa H, Obara H, et al. Activity of testis angiotensin converting enzyme (ACE) in ejaculated human spermatozoa. Int J Androl 2001; 24: 295–9.
- 48 Köhn FM, Miska W, Schill WB. Release of angiotensin-converting enzyme (ACE) from human spermatozoa during capacitation and acrosome reaction. J Androl 1995; 16: 259–65.
- 49 Yamagata K, Murayama K, Okabe M, Toshimori K, Nakanishi T, et al. Acrosin accelerates the dispersal of sperm acrosomal proteins during acrosome reaction. J Biol Chem 1998; 273: 10470–4.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

©The Author(s)(2019)

Supplementary	Table	1:	List	of	the	primary	and	secondary	antibodies
used in this st	udy								

	····,				
Antibody	Source	KDa	Dilution	Vendor	Catalog Number
ACE	Rabbit	200	1:1000	Abcam	ab85955
ACR	Rabbit	46	1:1000	Abcam	ab203289
ATP1A4	Rabbit	100	1:10000	Abcam	ab76020
ATP5A	Mouse	54	1:1000	Abcam	ab110411
CCT3	Rabbit	61	1:2000	Abcam	ab225878
HSPA2	Mouse	70	1:500	Abcam	ab89130
NDUFS1	Rabbit	79	1:10000	Abcam	ab157221
PSME4	Rabbit	211	1:500	Abcam	ab181203
SPA17	Rabbit	17	1:1000	Abcam	ab172626
UQCRC2	Mouse	48	1:1000	Abcam	ab110411
Mouse*	Rabbit	-	1:10000	Abcam	ab6728
Rabbit*	Goat	-	1:10000	Abcam	ab97051

*Secondary antibody. ACE: angiotensin-converting enzyme; ACR: acrosin precursor; CCT3: T-complex protein 1 subunit gamma; SPA17: sperm surface protein Sp17; ATP1A4: sodium/potassium-transporting ATPase subunit alpha-4, HSPA2: heat shock-related 70 kDa protein 2; PSME4: proteasome activator complex subunit 4; NDUFS1: NADH-ubiquinone oxidoreductase 75 kDa subunit; UQCRC2: cytochrome b-c1 complex subunit 2; ATP5A: ATP synthase subunit alpha

Supplementary Table 2: List of the differentially expressed proteins identified by the bioinformatic analysis when comparing the sperm proteome of fertile men (control) and patients with testicular cancer seminoma

	Protein	Accession	Ave	rage SC	Abı	Indance	NSAF ratio	t-test	Expression
			Control	Seminoma	Control	Seminoma	Seminoma/Control	Ρ	
1	Transmembrane and coiled-coil domain-containing protein 2	56847610	23.3	0	М	ni	0.00	0.00000	Unique to Control
2	Isocitrate dehydrogenase (NAD) subunit alpha, mitochondrial precursor	5031777	48.0	0	М	ni	0.00	0.00000	Unique to Control
3	Succinyl-CoA ligase (ADP-forming) subunit beta, mitochondrial precursor	11321583	25.7	0	Μ	ni	0.00	0.00001	Unique to Control
4	Short-chain specific acyl-CoA dehydrogenase, mitochondrial precursor	4557233	50.0	0	Μ	ni	0.00	0.00001	Unique to Control
5	Probable serine carboxypeptidase CPVL isoform X1	530384848	27.0	0	Μ	ni	0.00	0.00006	Unique to Control
6	ATP synthase subunit O, mitochondrial precursor	4502303	33.7	0	Μ	ni	0.00	0.00018	Unique to Control
7	Doublecortin domain-containing protein 2C	566006166	21.7	0	Μ	ni	0.00	0.00021	Unique to Control
8	Bifunctional glutamate/proline-tRNA ligase	62241042	21.0	0	Μ	ni	0.00	0.00088	Unique to Control
9	Exportin-7	154448892	27.3	0	Μ	ni	0.00	0.00197	Unique to Control
10	Uncharacterized protein KIAA1683 isoform X1	530415216	23.3	0	Μ	ni	0.00	0.00606	Unique to Control
11	Leucine-rich repeat-containing protein 37A3 isoform X14	578840218	12.3	0	L	ni	0.00	0.00000	Unique to Control
12	Heme oxygenase 2 isoform a	555943918	11.3	0	L	ni	0.00	0.00001	Unique to Control
13	Actin-related protein T3	221139714	17.7	0	L	ni	0.00	0.00001	Unique to Control
14	Ubiquitin carboxyl-terminal hydrolase 7 isoform 1	150378533	18.3	0	L	ni	0.00	0.00001	Unique to Control
15	Tetratricopeptide repeat protein 25	13899233	12.7	0	L	ni	0.00	0.00003	Unique to Control
16	Actin-like protein 7A	5729720	16.7	0	L	ni	0.00	0.00005	Unique to Control
17	Dynein intermediate chain 2, axonemal isoform X4	530412670	15.7	0	L	ni	0.00	0.00008	Unique to Control
18	Four and a half LIM domains protein 1 isoform 5 $% \left({{\left({{{\rm{A}}} \right)}_{{\rm{A}}}} \right)$	228480205	18.7	0	L	ni	0.00	0.00008	Unique to Control
19	Putative lipoyltransferase 2, mitochondrial precursor	221554520	9.0	0	L	ni	0.00	0.00011	Unique to Control

	Protein	Accession	Ave	rage SC	Abundance		NSAF ratio	t-test	Expression
			Control	Seminoma	Control	Seminoma	Seminoma/Control	Р	
20	Tubulin polymerization-promoting protein family member 2	226491350	16.3	0	L	ni	0.00	0.00012	Unique to Control
21	Isocitrate dehydrogenase (NAD) subunit beta, mitochondrial isoform a precursor	28178821	19.3	0	L	ni	0.00	0.00019	Unique to Control
22	Protein DPCD	39930355	18.3	0	L	ni	0.00	0.00028	Unique to Control
23	Long-chain-fatty-acid-CoA ligase 3	42794754	9.7	0	L	ni	0.00	0.00031	Unique to Control
24	Sodium/potassium-transporting ATPase subunit alpha-3 isoform 1	22748667	17.3	0	L	ni	0.00	0.00047	Unique to Control
25	26S proteasome non-ATPase regulatory subunit 4	5292161	9.0	0	L	ni	0.00	0.00047	Unique to Control
26	ATP synthase subunit g, mitochondrial	51479156	9.0	0	L	ni	0.00	0.00049	Unique to Control
27	Acyl-CoA dehydrogenase family member 9, mitochondrial	21361497	18.0	0	L	ni	0.00	0.00061	Unique to Control
28	Transcription factor A, mitochondrial isoform 1 precursor	4507401	15.0	0	L	ni	0.00	0.00065	Unique to Control
29	Elongation factor Tu, mitochondrial precursor	34147630	10.7	0	L	ni	0.00	0.00066	Unique to Control
30	Eukaryotic translation elongation factor 1 epsilon-1 isoform 2	208879470	8.0	0	L	ni	0.00	0.00068	Unique to Control
31	Voltage-dependent calcium channel subunit alpha-2/delta-2 isoform X1	530373385	8.0	0	L	ni	0.00	0.00075	Unique to Control
32	Armadillo repeat-containing protein 12 isoform X1	530381603	12.0	0	L	ni	0.00	0.00079	Unique to Control
33	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial isoform 3	70906444	13.0	0	L	ni	0.00	0.00081	Unique to Control
34	Probable inactive serine protease 37 isoform 1 precursor	285394164	9.0	0	L	ni	0.00	0.00087	Unique to Control
35	26S proteasome non-ATPase regulatory subunit 14	5031981	9.0	0	L	ni	0.00	0.00088	Unique to Control
36	Mitochondria-eating protein isoform X4	530376736	16.7	0	L	ni	0.00	0.00097	Unique to Control
37	Mitochondrial fission 1 protein	151108473	8.7	0	L	ni	0.00	0.00110	Unique to Control
38	Alpha-soluble NSF attachment protein	47933379	8.0	0	L	ni	0.00	0.00137	Unique to Control
39	Maleylacetoacetate isomerase isoform 1	22202624	9.0	0	L	ni	0.00	0.00179	Unique to Control
40	40S ribosomal protein S15	4506687	10.0	0	L	ni	0.00	0.00184	Unique to Control
41	Aladin isoform 2	291045307	8.3	0	L	ni	0.00	0.00186	Unique to Control
42	Ubiquitin carboxyl-terminal hydrolase isozyme L1	21361091	14.3	0	L	ni	0.00	0.00195	Unique to Control
43	Stomatin-like protein 2, mitochondrial isoform a	7305503	12.3	0	L	ni	0.00	0.00200	Unique to Control
44	Protein FAM209B isoform X2	578835992	8.0	0	L	ni	0.00	0.00205	Unique to Control
45	Putative protein FAM71E2	223972704	12.3	0	L	ni	0.00	0.00229	Unique to Control
46	Acyl-protein thioesterase 1 isoform 1	5453722	11.7	0	L	ni	0.00	0.00240	Unique to Control
47	Histone H1t	20544168	8.0	0	L	ni	0.00	0.00244	Unique to Control
48	Armadillo repeat-containing protein 4 isoform X3	578818430	18.7	0	L	ni	0.00	0.00324	Unique to Control
49	Dnaj homolog subfamily B member 1 isoform X1	578833210	13.3	0	L	ni	0.00	0.00375	Unique to Control
50	Calcium-binding mitochondrial carrier protein Aralar2 isoform 1	237649019	14.0	0	L	ni	0.00	0.00450	Unique to Control

	Protein	Accession	Ave	rage SC	Abundance		NSAF ratio	t-test	Expression
			Control	Seminoma	Control	Seminoma	Seminoma/Control	Р	
51	Long-chain-fatty-acid-CoA ligase ACSBG2 isoform a	574584557	17.7	0	L	ni	0.00	0.00479	Unique to Control
2	Methionine-tRNA ligase, cytoplasmic	14043022	10.0	0	L	ni	0.00	0.00512	Unique to Control
3	60S acidic ribosomal protein P0	4506667	13.3	0	L	ni	0.00	0.00722	Unique to Control
4	Cytoplasmic dynein 1 heavy chain 1	33350932	11.3	0	L	ni	0.00	0.00728	Unique to Control
5	ADP-ribosylation factor 6	4502211	9.0	0	L	ni	0.00	0.00763	Unique to Control
ŝ	Glycine-tRNA ligase precursor	116805340	15.0	0	L	ni	0.00	0.00770	Unique to Control
7	BAG family molecular chaperone regulator 5 isoform b	6631077	9.3	0	L	ni	0.00	0.00818	Unique to Control
8	60S ribosomal protein L7a	4506661	5.3	0	VL	ni	0.00	0.00000	Unique to Control
Э	IsobutyryI-CoA dehydrogenase, mitochondrial	7656849	7.0	0	VL	ni	0.00	0.00000	Unique to Control
С	cAMP-dependent protein kinase catalytic subunit gamma	15619015	7.0	0	VL	ni	0.00	0.00000	Unique to Control
1	Vitamin K epoxide reductase complex subunit 1-like protein 1 isoform 1	46309463	3.7	0	VL	ni	0.00	0.00000	Unique to Control
2	Translocation protein SEC63 homolog	6005872	2.0	0	VL	ni	0.00	0.00001	Unique to Control
3	UDP-N-acetylhexosamine pyrophosphorylase	156627575	3.0	0	VL	ni	0.00	0.00001	Unique to Control
1	Guanine nucleotide-binding protein subunit beta-2-like 1	5174447	2.0	0	VL	ni	0.00	0.00003	Unique to Control
5	Dynein intermediate chain 1, axonemal isoform 2	526479830	7.0	0	VL	ni	0.00	0.00003	Unique to Control
5	Fibronectin type III domain-containing protein 8	8922138	2.0	0	VL	ni	0.00	0.00009	Unique to Control
7	40S ribosomal protein S26-like	530438702	3.0	0	VL	ni	0.00	0.00009	Unique to Control
3	Mitochondrial import receptor subunit TOM22 homolog	9910382	6.0	0	VL	ni	0.00	0.00009	Unique to Control
9	Cation channel sperm-associated protein subunit beta precursor	51339295	2.0	0	VL	ni	0.00	0.00009	Unique to Control
C	Maestro heat-like repeat-containing protein family member 7	223278410	3.3	0	VL	ni	0.00	0.00010	Unique to Control
1	ADP-ribosylation factor-like protein 2 isoform 1	148612885	2.7	0	VL	ni	0.00	0.00015	Unique to Control
2	protein NDRG1 isoform 1	207028748	4.0	0	VL	ni	0.00	0.00016	Unique to Control
3	Speriolin isoform 1	197276668	6.3	0	VL	ni	0.00	0.00017	Unique to Control
4	Radial spoke head protein 6 homolog A	13540559	3.3	0	VL	ni	0.00	0.00018	Unique to Control
5	DCN1-like protein 1	36030883	4.7	0	VL	ni	0.00	0.00025	Unique to Control
6	dnaJ homolog subfamily C member 3 precursor	5453980	3.7	0	VL	ni	0.00	0.00025	Unique to Control
7	Sialic acid synthase	12056473	3.0	0	VL	ni	0.00	0.00028	Unique to Control
8	Glutamine-tRNA ligase isoform b	441478305	3.7	0	VL	ni	0.00	0.00028	Unique to Control
9	Mimitin, mitochondrial	29789409	4.3	0	VL	ni	0.00	0.00031	Unique to Control
С	60S ribosomal protein L22 proprotein	4506613	5.0	0	VL	ni	0.00	0.00032	Unique to Control
1	EF-hand calcium-binding domain-containing protein 14	7662160	6.7	0	VL	ni	0.00	0.00033	Unique to Control

	Protein	Accession	Ave	rage SC	Abı	Indance	NSAF ratio	t-test	Expression
			Control	Seminoma	Control	Seminoma	Seminoma/Control	Р	
82	Iron-sulfur cluster assembly enzyme ISCU, mitochondrial isoform X1	530400013	4.7	0	VL	ni	0.00	0.00036	Unique to Control
33	Growth hormone-inducible transmembrane protein	118200356	4.7	0	VL	ni	0.00	0.00037	Unique to Control
34	S-phase kinase-associated protein 1 isoform b	25777713	4.0	0	VL	ni	0.00	0.00040	Unique to Control
35	Calcium-binding mitochondrial carrier protein Aralar1	21361103	3.3	0	VL	ni	0.00	0.00050	Unique to Control
36	diphosphomevalonate decarboxylase	4505289	2.3	0	VL	ni	0.00	0.00051	Unique to Control
37	V-type proton ATPase subunit E 2 isoform X1	530368260	4.0	0	VL	ni	0.00	0.00052	Unique to Control
88	Nucleosome assembly protein 1-like 1	21327708	4.3	0	VL	ni	0.00	0.00056	Unique to Control
39	26S protease regulatory subunit 4	24430151	6.0	0	VL	ni	0.00	0.00056	Unique to Control
90	Mitochondrial ornithine transporter 1	7657585	5.3	0	VL	ni	0.00	0.00057	Unique to Control
91	60S ribosomal protein L5	14591909	3.7	0	VL	ni	0.00	0.00097	Unique to Control
92	Dynein heavy chain 17, axonemal	256542310	88.0	1.0	Н	VL	0.01	0.00001	UE in Seminoma
93	L-amino-acid oxidase isoform 2 precursor	384381475	76.0	0.3	Μ	VL	0.01	0.00000	UE in Seminoma
4	Sperm-associated antigen 6 isoform X1	530392552	58.0	0.3	Μ	VL	0.01	0.00000	UE in Seminoma
5	Nuclear pore complex protein Nup93 isoform X1	530424559	37.7	0.3	Μ	VL	0.01	0.00129	UE in Seminoma
6	Valine-tRNA ligase	5454158	87.7	1.7	Н	VL	0.01	0.00004	UE in Seminoma
7	Sperm surface protein Sp17	8394343	31.3	0.3	Μ	VL	0.02	0.00010	UE in Seminoma
8	Exportin-2 isoform 1	29029559	16.7	0.3	L	VL	0.02	0.00026	UE in Seminoma
9	26S proteasome non-ATPase regulatory subunit 13 isoform 1	157502193	19.7	0.3	L	VL	0.02	0.00142	UE in Seminoma
.00	Cathepsin F precursor	6042196	21.0	0.3	Μ	VL	0.03	0.00007	UE in Seminoma
01	26S proteasome non-ATPase regulatory subunit 7	25777615	13.7	0.3	L	VL	0.03	0.00230	UE in Seminoma
.02	Uncharacterized protein C7orf61	51972226	14.3	0.3	L	VL	0.03	0.00109	UE in Seminoma
.03	Vacuolar protein sorting-associated protein 13A isoform C	66346672	19.7	0.3	L	VL	0.03	0.00122	UE in Seminoma
.04	Mitochondrial pyruvate carrier 1-like protein	306922396	18.0	0.3	L	VL	0.03	0.00012	UE in Seminoma
05	Plasma membrane calcium-transporting ATPase 4 isoform 4b	48255957	52.3	2.7	Μ	VL	0.03	0.00001	UE in Seminoma
.06	Presequence protease, mitochondrial isoform 2 precursor	41352061	50.3	1.0	Μ	VL	0.03	0.00003	UE in Seminoma
07	Exportin-1 isoform X1	530368070	8.3	0.3	L	VL	0.03	0.00004	UE in Seminoma
.08	Ras-related protein Rab-11B	190358517	15.7	0.3	L	VL	0.03	0.00012	UE in Seminoma
09	Phosphatidylethanolamine-binding protein 4 precursor	116812622	15.0	0.3	L	VL	0.04	0.00029	UE in Seminoma
10	Protein FAM71A	282721094	12.3	0.3	L	VL	0.04	0.00258	UE in Seminoma
.11	Puromycin-sensitive aminopeptidase	158937236	45.0	1.3	Μ	VL	0.04	0.00124	UE in Seminoma
12	Epimerase family protein SDR39U1 isoform 1	116812630	13.3	0.3	L	VL	0.04	0.00151	UE in Seminoma

	Protein	Accession	Ave	rage SC	Abı	indance	NSAF ratio	t-test	Expression
			Control	Seminoma	Control	Seminoma	Seminoma/Control	Р	
113	V-type proton ATPase catalytic subunit A	19913424	15.7	0.3	L	VL	0.04	0.00313	UE in Seminoma
.14	Cullin-associated NEDD8-dissociated protein 1	21361794	143.3	7.0	Н	VL	0.05	0.00000	UE in Seminoma
15	Low molecular weight phosphotyrosine protein phosphatase isoform c	4757714	8.7	0.3	L	VL	0.05	0.00005	UE in Seminoma
16	Dynein heavy chain 8, axonemal isoform X1	578811443	132.3	6.3	Н	VL	0.05	0.00003	UE in Seminoma
17	Heat shock protein 75, mitochondrial isoform 1 precursor	155722983	8.3	0.3	L	VL	0.05	0.00081	UE in Seminoma
18	Cullin-3 isoform 3	380714665	58.3	2.3	М	VL	0.05	0.00012	UE in Seminoma
19	Lysosomal alpha-glucosidase isoform X1	530411863	5.0	0.3	VL	VL	0.05	0.00074	UE in Seminoma
20	Isoleucine-tRNA ligase, mitochondrial precursor	46852147	40.7	1.7	М	VL	0.05	0.00001	UE in Seminoma
21	Protein FAM71B	222418633	46.7	1.3	Μ	VL	0.05	0.00050	UE in Seminoma
22	Actin-related protein T2	29893808	45.7	1.7	Μ	VL	0.06	0.00004	UE in Seminoma
23	Thioredoxin domain-containing protein 3	148839372	18.3	1.0	L	VL	0.06	0.00016	UE in Seminoma
24	Carnitine O-palmitoyltransferase 1, muscle isoform isoform a	4758050	11.3	1.0	L	VL	0.06	0.00107	UE in Seminoma
25	Phosphoglycolate phosphatase	108796653	15.3	0.3	L	VL	0.06	0.00014	UE in Seminom
26	Ecto-ADP-ribosyltransferase 3 isoform X8	530377706	38.3	1.7	Μ	VL	0.06	0.00004	UE in Seminom
27	EF-hand calcium-binding domain-containing protein 1 isoform a	13375787	11.3	0.3	L	VL	0.07	0.00341	UE in Seminom
28	Izumo sperm-egg fusion protein 2 isoform X1	578833932	9.0	0.3	L	VL	0.07	0.00273	UE in Seminom
29	Sodium/potassium-transporting ATPase subunit alpha-4 isoform 1	153946397	59.7	5.3	М	VL	0.07	0.00006	UE in Seminom
30	Enoyl-CoA delta isomerase 2, mitochondrial isoform 2	260274832	25.3	1.0	М	VL	0.07	0.00081	UE in Seminom
31	Casein kinase II subunit beta isoform 1	23503295	9.3	0.3	L	VL	0.07	0.00181	UE in Seminom
32	Small membrane A-kinase anchor protein	110349742	9.3	0.3	L	VL	0.07	0.00193	UE in Seminom
	60S ribosomal protein L12	4506597	14.3	0.7	L	VL	0.07	0.00044	UE in Seminom
34	Leucine-rich repeat-containing protein 37A3 precursor	75677612	20.3	1.3	Μ	VL	0.07	0.00021	Seminoma
35	NADH dehydrogenase (ubiquinone) iron-sulfur protein 8, mitochondrial isoform X1	530396818	8.0	0.3	L	VL	0.07	0.00305	UE in Seminoma
36	Heat shock 70 protein 4L	31541941	93.3	2.3	Н	VL	0.08	0.00012	UE in Seminom
37	Sperm equatorial segment protein 1 precursor	21717832	100.7	5.0	Н	VL	0.08	0.00000	UE in Seminom
38	Pyruvate dehydrogenase E1 component subunit beta, mitochondrial isoform 1 precursor	156564403	67.3	3.3	Μ	VL	0.08	0.00002	UE in Seminom
39	Choline transporter-like protein 5 isoform B	194239633	8.0	1.3	L	VL	0.08	0.00340	UE in Seminom
40	6-Phosphofructokinase type C isoform 1	11321601	131.3	10.7	Н	L	0.09	0.00000	UE in Seminom
41	26S proteasome non-ATPase regulatory subunit 12 isoform 1	4506221	10.7	0.7	L	VL	0.09	0.00427	UE in Seminom
42	ruvB-like 2	5730023	137.3	7.7	Н	VL	0.09	0.00007	UE in Seminom
43	T-complex protein 1 subunit gamma isoform a	63162572	128.7	7.7	Н	VL	0.09	0.00000	UE in Seminom

	Protein	Accession	Ave	rage SC	Abı	Indance	NSAF ratio	t-test	Expression
			Control	Seminoma	Control	Seminoma	Seminoma/Control	Р	
144	ATP synthase subunit beta, mitochondrial precursor	32189394	354.3	21.7	Н	М	0.09	0.00000	UE in Seminoma
145	Phosphatidylglycerophosphatase and protein-tyrosine phosphatase 1 isoform 1	148224884	11.7	0.7	L	VL	0.09	0.00097	UE in Seminoma
146	26S proteasome non-ATPase regulatory subunit 3	25777612	35.3	3.0	М	VL	0.09	0.00001	UE in Seminoma
147	Importin-5 isoform X2	530423350	24.7	1.7	М	VL	0.10	0.00181	UE in Seminoma
148	Mitochondrial dicarboxylate carrier isoform 2	20149598	56.0	3.7	Μ	VL	0.10	0.00026	UE in Seminoma
149	TMEM189-UBE2V1 fusion protein	40806190	8.3	0.7	L	VL	0.10	0.00394	UE in Seminoma
150	Dynein heavy chain 7, axonemal	151301127	18.0	1.0	L	VL	0.11	0.00033	UE in Seminoma
151	Lysozyme-like protein 1	73390143	9.7	0.7	L	VL	0.11	0.00451	UE in Seminoma
152	Importin subunit alpha-1	4504897	54.7	3.3	Μ	VL	0.11	0.00004	UE in Seminoma
153	Nuclear pore complex protein Nup155 isoform 1	24430149	86.0	8.3	Н	L	0.12	0.00002	UE in Seminoma
154	Mitochondrial 2-oxoglutarate/malate carrier protein isoform 1	21361114	39.0	2.7	Μ	VL	0.12	0.00399	UE in Seminoma
155	Hyaluronidase PH-20 isoform 2	23510418	35.3	2.3	Μ	VL	0.12	0.00063	UE in Seminoma
156	40S ribosomal protein S16	4506691	10.7	0.7	L	VL	0.12	0.00186	UE in Seminoma
157	26S proteasome non-ATPase regulatory subunit 11	28872725	13.0	1.0	L	VL	0.12	0.00032	UE in Seminoma
158	26S proteasome non-ATPase regulatory subunit 6 isoform 2	7661914	18.7	1.7	L	VL	0.13	0.00236	UE in Seminoma
159	T-complex protein 1 subunit zeta-2 isoform X1	578830267	36.7	3.3	Μ	VL	0.13	0.00001	UE in Seminoma
160	Bifunctional ATP-dependent dihydroxyacetone kinase/FAD-AMP lyase (cyclizing) isoform X1	530396576	29.0	3.0	М	VL	0.13	0.00104	UE in Seminoma
161	Ropporin-1B	59891409	92.7	7.3	Н	VL	0.13	0.00003	UE in Seminoma
162	Dynactin subunit 2 isoform 3	387527974	15.7	1.7	L	VL	0.13	0.00423	UE in Seminoma
163	ras-related protein Rab-14	19923483	19.0	1.3	L	VL	0.13	0.00925	UE in Seminoma
164	Proteasome activator complex subunit 4	163644283	52.7	5.7	М	VL	0.13	0.00058	UE in Seminoma
165	T-complex protein 1 subunit alpha isoform a	57863257	132.3	13.0	Н	L	0.13	0.00002	UE in Seminoma
166	Pyruvate dehydrogenase E1 component subunit alpha, testis-specific form, mitochondrial precursor	4885543	50.0	3.7	Μ	VL	0.13	0.00018	UE in Seminoma
167	Dynein light chain roadblock-type 2	18702323	8.7	0.7	L	VL	0.13	0.00338	UE in Seminoma
168	Nuclear transport factor 2	5031985	9.7	0.7	L	VL	0.13	0.00959	UE in Seminoma
169	Metalloreductase STEAP4 isoform 1	100815815	13.3	1.7	L	VL	0.13	0.00942	UE in Seminoma
170	Prenylated Rab acceptor protein 1	222144309	8.3	1.0	L	VL	0.13	0.00233	
171	Heat shock protein 105 isoform 1	42544159	8.7	0.7	L	VL	0.14	0.00595	
172	ATP synthase subunit gamma, mitochondrial isoform L (liver) precursor	50345988	48.7	3.3	Μ	VL	0.14	0.00014	
173	3-Hydroxyisobutyryl-CoA hydrolase, mitochondrial isoform 1 precursor	37594471	11.7	1.0	L	VL	0.14	0.00055	
174	Transmembrane protein 89 precursor	56847630	12.7	1.0	L	VL	0.14	0.00529	

	Protein	Accession	Ave	rage SC	Abundance		NSAF ratio	t-test	Expression
			Control	Seminoma	Control	Seminoma	Seminoma/Control	Р	
175	T-complex protein 1 subunit beta isoform 1	5453603	120.7	12.0	Н	L	0.14	0.00005	UE in Seminoma
176	T-complex protein 1 subunit zeta isoform a	4502643	71.7	7.3	М	VL	0.15	0.00013	
177	Inactive serine protease 54 precursor	122937420	19.0	1.7	L	VL	0.15	0.00060	
178	Nucleoporin p54 isoform 1	26051237	21.7	2.3	Μ	VL	0.16	0.01278	UE in Seminoma
179	T-complex protein 1 subunit theta isoform 1	48762932	77.7	8.3	М	L	0.16	0.00032	UE in Seminoma
180	Sperm protein associated with the nucleus on the X chromosome B/F	190570192	22.0	2.7	М	VL	0.16	0.00428	
181	Histone H2A-Bbd type 2/3	63029935	21.7	2.0	М	VL	0.16	0.00688	UE in Seminoma
182	Transcription elongation factor B polypeptide 2 isoform a	6005890	11.0	1.3	L	VL	0.16	0.00017	UE in Seminoma
183	Protein MENT isoform X1	578801150	97.7	11.0	Н	L	0.17	0.00005	UE in Seminoma
184	ATP synthase subunit d, mitochondrial isoform a	5453559	33.0	3.0	М	VL	0.17	0.00091	UE in Seminoma
185	Ropporin-1A isoform X1	530374814	55.7	5.7	Μ	VL	0.17	0.00001	UE in Seminoma
186	ATP synthase F (0) complex subunit B1, mitochondrial precursor	21361565	35.3	3.7	М	VL	0.17	0.00076	UE in Seminoma
187	NADH dehydrogenase (ubiquinone) flavoprotein 1, mitochondrial isoform 1 precursor	20149568	14.0	1.7	L	VL	0.17	0.00400	UE in Seminoma
188	Apolipoprotein O isoform X1	578837961	40.3	4.3	Μ	VL	0.17	0.00011	UE in Seminoma
189	26S proteasome non-ATPase regulatory subunit 1 isoform 1	25777600	49.0	8.3	Μ	L	0.17	0.00016	UE in Seminoma
190	Elongation factor 1-delta isoform 1	304555581	32.3	3.7	Μ	VL	0.18	0.00006	UE in Seminoma
191	26S proteasome non-ATPase regulatory subunit 8	156631005	25.7	2.3	Μ	VL	0.18	0.00001	UE in Seminoma
192	ATP synthase subunit alpha, mitochondrial isoform a precursor	50345984	265.3	33.0	Н	Μ	0.18	0.00001	UE in Seminoma
193	Heat shock 70 protein 1-like isoform X1	530381921	207.0	24.3	Н	Μ	0.19	0.00038	UE in Seminoma
194	Nitrilase homolog 1 isoform 3	297632348	18.7	2.0	L	VL	0.19	0.00095	UE in Seminoma
195	T-complex protein 1 subunit eta isoform a	5453607	129.7	16.0	Н	L	0.19	0.00010	UE in Seminoma
196	Calcium-binding tyrosine phosphorylation-regulated protein isoform a	24797108	63.3	9.0	Μ	L	0.20	0.00012	UE in Seminoma
197	Tricarboxylate transport protein, mitochondrial isoform b	374717343	15.3	1.7	L	VL	0.20	0.00049	UE in Seminoma
198	T-complex protein 1 subunit epsilon	24307939	78.7	11.3	Μ	L	0.20	0.00001	UE in Seminoma
199	Tissue alpha-L-fucosidase precursor	119360348	19.0	1.7	L	VL	0.20	0.00008	UE in Seminoma
200	GTP-binding nuclear protein Ran	5453555	22.0	2.7	Μ	VL	0.20	0.00007	UE in Seminoma
201	Dipeptidyl peptidase 2 isoform X1	530426726	17.7	1.7	L	VL	0.20	0.00216	UE in Seminoma
202	3'(2'),5'-Bisphosphate nucleotidase 1 isoform X3	530365931	19.3	2.3	L	VL	0.20	0.00871	UE in Seminoma
203	Lysine-tRNA ligase isoform 1	194272210	30.0	3.0	Μ	VL	0.20	0.00462	UE in Seminoma
204	Mitochondrial thiamine pyrophosphate carrier isoform X1	530412630	16.3	2.0	L	VL	0.21	0.00139	UE in Seminoma
205	Vesicle-fusing ATPase isoform X1	578831007	16.7	2.3	L	VL	0.21	0.00045	

	Protein	Accession	Ave	rage SC	Abundance		NSAF ratio	t-test	Expression
			Control	Seminoma	Control	Seminoma	Seminoma/Control	Р	-
206	FUN14 domain-containing protein 2	24371248	60.3	8.0	М	L	0.22	0.00023	UE in Seminom
207	Mitochondrial pyruvate carrier 2	219521872	25.7	5.0	М	VL	0.22	0.00370	
08	Dynein light chain 1, axonemal isoform 1	164607156	14.3	2.0	L	VL	0.23	0.00000	
209	Cytochrome b-c1 complex subunit 2, mitochondrial precursor	50592988	111.0	14.0	Н	L	0.23	0.00006	UE in Seminom
10	ADP/ATP translocase 4	13775208	140.3	25.3	Н	М	0.23	0.00180	UE in Seminom
11	26S protease regulatory subunit 7 isoform 1	4506209	9.7	1.7	L	VL	0.23	0.00149	UE in Seminom
12	Uncharacterized protein C9orf9	33285006	45.0	6.7	Μ	VL	0.23	0.00005	UE in Seminom
13	ADP/ATP translocase 2	156071459	35.7	8.3	Μ	L	0.24	0.00081	UE in Seminom
14	Synaptojanin-2-binding protein	157388993	28.3	5.0	Μ	VL	0.24	0.00057	UE in Seminom
15	Heat shock 70 protein 1A/1B	167466173	54.7	8.0	Μ	L	0.24	0.00086	UE in Seminom
16	26S protease regulatory subunit 6B isoform 1	5729991	16.0	2.3	L	VL	0.24	0.00222	UE in Seminom
17	Mannose-6-phosphate isomerase isoform 1	4505235	9.0	1.3	L	VL	0.25	0.00220	UE in Seminom
18	Nuclear pore membrane glycoprotein 210 precursor	27477134	23.3	3.3	Μ	VL	0.25	0.00026	UE in Seminom
19	AryIsulfatase A isoform a precursor	313569791	28.0	3.3	Μ	VL	0.25	0.00335	UE in Seminom
20	Leucine-rich repeat-containing protein 37A isoform X5	530413292	165.7	27.7	Н	Μ	0.26	0.00002	UE in Seminom
21	Solute carrier family 2, facilitated glucose transporter member 5 isoform X2	578799621	31.0	7.7	М	VL	0.26	0.00472	UE in Seminom
22	Protein-glutamine gamma-glutamyltransferase 4	156627577	232.3	44.0	Н	Μ	0.26	0.00006	UE in Seminom
23	Protein FAM162A	49355721	9.0	1.3	L	VL	0.26	0.00288	UE in Seminom
24	26S protease regulatory subunit 6A	21361144	22.3	4.0	Μ	VL	0.27	0.00780	UE in Seminom
25	Myosin regulatory light chain 12B	15809016	11.7	2.3	L	VL	0.27	0.00058	UE in Seminom
26	Hexokinase-1 isoform X2	530393498	345.3	64.0	Н	Μ	0.27	0.00001	UE in Seminom
27	NADH dehydrogenase (ubiquinone) iron-sulfur protein 7, mitochondrial	187281616	9.7	2.0	L	VL	0.27	0.00101	UE in Seminom
28	Cytochrome b-c1 complex subunit Rieske, mitochondrial	163644321	27.0	4.7	Μ	VL	0.27	0.00004	UE in Seminom
29	Leucine-rich repeat-containing protein 37B precursor	53829385	176.3	40.3	Н	Μ	0.27	0.00007	UE in Seminom
30	ES1 protein homolog, mitochondrial-like isoform X1	578797780	35.0	5.7	Μ	VL	0.27	0.00001	UE in Seminom
31	Lysosomal Pro-X carboxypeptidase isoform 1 preproprotein	4826940	13.3	1.7	L	VL	0.27	0.00077	UE in Seminom
32	Transmembrane protein 190 precursor	21040263	33.3	5.7	Μ	VL	0.28	0.00004	UE in Seminom
33	UTP-glucose-1-phosphate uridylyltransferase isoform a	48255966	20.3	5.0	Μ	VL	0.28	0.00603	UE in Seminom
34	26S protease regulatory subunit 10B	195539395	21.3	4.3	Μ	VL	0.29	0.00659	UE in Seminom
35	Dynactin subunit 1 isoform 4	205277396	21.7	3.7	Μ	VL	0.29	0.00497	UE in Seminor
36	26S protease regulatory subunit 8 isoform 1	24497435	17.0	3.7	L	VL	0.29	0.00479	UE in Seminom

	Protein	Accession	Average SC		Abundance		NSAF ratio	t-test	Expression
			Control	Seminoma	Control	Seminoma	Seminoma/Control	Р	
237	Ethanolamine-phosphate cytidylyltransferase isoform 6	532524977	16.0	3.0	L	VL	0.29	0.00018	UE in Seminoma
238	60 heat shock protein, mitochondrial isoform X1	530370277	125.7	16.3	Н	L	0.30	0.00029	UE in Seminoma
239	Beta-galactosidase-1-like protein isoform X1	530370954	35.3	4.7	Μ	VL	0.30	0.00099	UE in Seminoma
240	Adenylate kinase isoenzyme 1 isoform X1	530390694	45.3	7.7	Μ	VL	0.30	0.00114	UE in Seminoma
241	Dynein light chain Tctex-type 1	5730085	10.0	1.7	L	VL	0.30	0.00600	UE in Seminoma
242	Chitinase domain-containing protein 1 isoform X2	530395670	17.3	3.3	L	VL	0.31	0.00482	UE in Seminoma
243	A-kinase anchor protein 4 isoform 1	21493037	156.3	28.0	Н	Μ	0.31	0.00000	UE in Seminoma
244	Hypoxia up-regulated protein 1 isoform X2	530397761	177.0	37.0	Н	Μ	0.31	0.00002	UE in Seminoma
245	Diablo homolog, mitochondrial isoform 1 precursor	9845297	27.3	6.7	Μ	VL	0.32	0.00223	UE in Seminoma
246	Zona pellucida-binding protein 2 isoform 2 precursor	40556389	45.7	9.0	Μ	L	0.32	0.00009	UE in Seminoma
247	Ubiquitin-like modifier-activating enzyme 1 isoform X1	530421539	75.0	11.3	Μ	L	0.32	0.00035	UE in Seminoma
248	40S ribosomal protein S15a	14165469	12.7	2.3	L	VL	0.33	0.00231	UE in Seminoma
49	Prohibitin isoform 1	527498279	22.7	4.7	Μ	VL	0.33	0.00192	UE in Seminoma
50	Long-chain-fatty-acid-CoA ligase 6 isoform e	327412327	39.0	6.0	Μ	VL	0.33	0.00042	UE in Seminoma
51	Importin subunit beta-1 isoform 1	19923142	54.7	11.7	Μ	L	0.34	0.00045	UE in Seminoma
252	Long-chain-fatty-acid-CoA ligase 1 isoform X3	530377352	170.7	45.7	Н	Μ	0.34	0.00024	UE in Seminoma
253	AP-1 complex subunit beta-1 isoform b	260436860	12.0	2.3	L	VL	0.34	0.00257	UE in Seminoma
254	Acrosin precursor	148613878	255.7	65.3	Н	Μ	0.34	0.00011	UE in Seminoma
255	Glutathione S-transferase omega-2 isoform 2	300360567	10.3	2.0	L	VL	0.34	0.00400	UE in Seminoma
256	Carboxypeptidase D isoform 1 precursor	22202611	36.3	7.0	Μ	VL	0.34	0.02105	UE in Seminoma
257	Phosphate carrier protein, mitochondrial isoform b precursor	4505775	38.3	14.0	Μ	L	0.35	0.00176	UE in Seminoma
258	Heat shock 70 protein 4	38327039	44.7	7.7	Μ	VL	0.35	0.00303	UE in Seminoma
59	Fatty acid-binding protein, epidermal	4557581	30.7	6.0	Μ	VL	0.35	0.00328	UE in Seminoma
260	Ras-related protein Rab-2A isoform a	4506365	156.7	37.3	Н	Μ	0.36	0.00002	UE in Seminoma
261	3-hydroxyacyl-CoA dehydrogenase type-2 isoform 1	4758504	43.0	9.3	Μ	L	0.36	0.00138	UE in Seminoma
262	T-complex protein 1 subunit delta isoform a	38455427	108.3	25.7	Н	Μ	0.36	0.00075	UE in Seminoma
263	cAMP-dependent protein kinase type II-alpha regulatory subunit isoform X1	530372834	109.7	29.0	Н	Μ	0.36	0.00000	UE in Seminoma
264	Glutamine synthetase isoform X1	578800828	23.3	5.3	М	VL	0.36	0.01626	UE in Seminoma
265	Calmodulin isoform X1	578826144	75.0	20.7	Μ	Μ	0.37	0.00004	
266	Elongation factor 1-beta	4503477	10.0	2.3	L	VL	0.37	0.00022	
267	ruvB-like 1	4506753	99.7	20.3	Н	Μ	0.37	0.00684	

	Protein	Accession	Ave	rage SC	Abundance		NSAF ratio	t-test	Expression
			Control	Seminoma	Control	Seminoma	Seminoma/Control	Р	
268	Elongation factor 1-alpha 1	4503471	155.0	51.3	Н	М	0.38	0.00001	UE in Seminoma
269	hsc70-interacting protein isoform 1	19923193	30.3	7.3	Μ	VL	0.38	0.01230	UE in Seminoma
270	Transmembrane protein 126A isoform 1	14150017	22.0	6.0	Μ	VL	0.38	0.00020	UE in Seminoma
271	26S proteasome non-ATPase regulatory subunit 2 isoform 1	25777602	56.0	9.0	Μ	L	0.39	0.00049	UE in Seminoma
272	Arachidonate 15-lipoxygenase B isoform d	85067501	23.7	4.3	М	VL	0.40	0.00236	UE in Seminoma
273	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 9, mitochondrial precursor	6681764	9.7	2.3	L	VL	0.40	0.00078	UE in Seminoma
274	electron transfer flavoprotein subunit beta isoform 1	4503609	22.0	5.0	Μ	VL	0.41	0.00000	UE in Seminoma
275	Tubulin alpha-3C/D chain	156564363	242.3	60.7	Н	Μ	0.41	0.00001	UE in Seminoma
276	Fumarylacetoacetate hydrolase domain-containing protein 2B	40786394	31.0	7.7	Μ	VL	0.41	0.00018	UE in Seminoma
277	Peroxiredoxin-5, mitochondrial isoform a precursor	6912238	78.0	20.7	Μ	Μ	0.41	0.00039	UE in Seminoma
278	NADH-ubiquinone oxidoreductase 75 subunit, mitochondrial isoform 4	316983156	21.0	4.0	Μ	VL	0.42	0.03074	UE in Seminoma
279	Probable C-mannosyltransferase DPY19L2 isoform X1	578823598	101.0	26.0	Н	Μ	0.42	0.00052	UE in Seminoma
280	L-lactate dehydrogenase A-like 6B	15082234	145.0	42.7	Н	Μ	0.42	0.00021	UE in Seminoma
281	Acrosin-binding protein precursor	17999524	288.3	74.7	Н	Μ	0.43	0.00003	UE in Seminoma
282	Tubulin beta-4B chain	5174735	287.3	81.3	Н	L	0.43	0.00004	UE in Seminoma
283	Electron transfer flavoprotein subunit alpha, mitochondrial isoform a	4503607	46.0	12.0	Μ	L	0.44	0.00065	UE in Seminoma
284	Serpin B6 isoform d	425876768	79.0	33.3	Μ	М	0.46	0.00013	UE in Seminoma
285	Lysozyme-like protein 4 isoform X2	578805633	29.3	8.0	Μ	L	0.46	0.00114	UE in Seminoma
286	cAMP-dependent protein kinase type I-alpha regulatory subunit isoform a	443497964	42.0	12.0	Μ	L	0.47	0.00245	UE in Seminoma
287	Vesicle-associated membrane protein-associated protein A isoform 2	94721252	38.7	12.0	Μ	L	0.47	0.00220	UE in Seminoma
	Acrosomal protein SP-10 isoform a precursor	4501879	64.3	20.0	Μ	Μ	0.48	0.00064	UE in Seminoma
289	Carnitine O-acetyltransferase isoform 2	383209673	41.0	11.7	Μ	L	0.48	0.00294	UE in Seminoma
290	Endoplasmin precursor	4507677	543.7	146.0	Н	Н	0.49	0.00066	UE in Seminoma
291	Izumo sperm-egg fusion protein 4 isoform 1 precursor	89903025	119.3	39.0	Н	Μ	0.53	0.00058	UE in Seminoma
292	Heat shock-related 70 protein 2	13676857	442.0	126.0	Н	Н	0.53	0.00000	Seminoma
293	Elongation factor 2	4503483	84.3	30.0	Н	Μ	0.56	0.00021	UE in Seminoma
294	Clathrin heavy chain 1 isoform X2	530411491	122.7	51.3	Н	Μ	0.58	0.00014	Seminoma
295	Sperm acrosome membrane-associated protein 1 precursor	13569934	176.0	83.7	Н	Н	0.60	0.00073	Seminoma
296	Zona pellucida-binding protein 1 isoform 1 precursor	229577313	278.7	110.3	Н	Н	0.61	0.00002	UE in Seminoma
297	Phosphoglycerate kinase 2	31543397	204.3	79.0	Н	Μ	0.65	0.00034	UE in Seminoma
298	2,4-Dienoyl-CoA reductase, mitochondrial precursor	4503301	180.7	70.0	Н	Μ	0.65	0.00211	UE in Seminoma

	Protein	Accession	Average SC		Abundance		NSAF ratio	t-test	Expression
			Control	Seminoma	Control	Seminoma	Seminoma/Control	Р	
299	Aminopeptidase N isoform X1	530407092	218.0	186.3	Н	Н	1.54	0.00040	OE in Seminoma
300	Calreticulin precursor	4757900	125.0	106.7	Н	Н	1.55	0.00511	
301	Dipeptidyl peptidase 4	18765694	138.0	122.0	Н	Н	1.61	0.00164	OE in Seminoma
302	Plastin-2 isoform X2	530402335	116.7	100.0	Н	Н	1.62	0.00036	OE in Seminoma
303	Angiotensin-converting enzyme isoform 1 precursor	4503273	141.3	124.7	Н	Н	1.62	0.01310	OE in Seminoma
304	Transitional endoplasmic reticulum ATPase	6005942	145.0	97.0	Н	Н	1.75	0.00238	OE in Seminoma
305	Neprilysin	116256327	85.3	59.3	Н	Н	2.01	0.00052	OE in Seminoma
806	Adipocyte plasma membrane-associated protein	24308201	54.0	66.7	Μ	Μ	2.01	0.00011	OE in Seminoma
307	Carboxypeptidase Z isoform 1 precursor	62388877	29.3	28.0	Μ	Μ	2.06	0.00040	OE in Seminoma
808	Annexin A5	4502107	41.0	48.0	Μ	Μ	2.08	0.00049	OE in Seminoma
309	Annexin A2 isoform 2	50845386	46.7	57.7	Μ	Μ	2.09	0.00126	OE in Seminoma
810	Lysosome-associated membrane glycoprotein 1 precursor	112380628	18.0	20.0	L	Μ	2.14	0.00275	OE in Seminoma
11	Plasma serine protease inhibitor preproprotein	194018472	40.7	45.7	М	Μ	2.15	0.00208	OE in Seminoma
12	Dehydrogenase/reductase SDR family member 7 isoform X1	530403978	22.3	35.7	Μ	Μ	2.46	0.00033	OE in Seminoma
13	Cysteine-rich secretory protein 1 isoform 1 precursor	25121982	24.0	35.7	Μ	Μ	2.53	0.00587	OE in Seminoma
14	Annexin A4	4502105	22.3	31.3	Μ	Μ	2.56	0.01438	OE in Seminoma
15	Calnexin precursor	66933005	34.3	51.3	Μ	Μ	2.56	0.00094	OE in Seminoma
16	Clusterin isoform X1	578815184	116.7	175.3	Н	Н	2.71	0.00034	OE in Seminoma
817	Gastricsin isoform 1 preproprotein	4505757	18.0	29.7	L	Μ	2.76	0.00296	OE in Seminoma
818	Metalloproteinase inhibitor 1 precursor	4507509	9.3	14.7	L	L	2.80	0.00553	OE in Seminoma
19	Lactotransferrin isoform 1 precursor	54607120	702.3	996.7	Н	Н	2.87	0.00000	OE in Seminoma
20	Protein S100-A9	4506773	23.7	45.0	М	Μ	3.35	0.00011	OE in Seminoma
21	Glyceraldehyde-3-phosphate dehydrogenase, testis-specific	7657116	48.7	106.7	Μ	Н	3.41	0.00000	OE in Seminoma
322	Protein disulfide-isomerase precursor	20070125	85.0	185.0	Н	Н	3.53	0.00012	OE in Seminoma
23	Histone H4	4504301	13.7	27.7	L	Μ	3.56	0.00040	OE in Seminoma
824	Maltase-glucoamylase, intestinal isoform X1	578814724	16.7	33.0	L	Μ	3.58	0.00342	OE in Seminoma
25	Alpha-actinin-4	12025678	44.0	48.7	М	Μ	3.62	0.00001	OE in Seminoma
826	Lysozyme C precursor	4557894	7.7	16.3	VL	L	3.76	0.00087	OE in Seminoma
827	Alpha-1-antichymotrypsin precursor	50659080	18.7	33.7	L	Μ	3.82	0.00044	OE in Seminoma
828	Protein S100-A8	21614544	15.0	33.3	L	Μ	3.98	0.00483	OE in Seminoma
329	Thioredoxin-dependent peroxide reductase, mitochondrial isoform b	32483377	3.3	8.3	VL	L	4.38	0.00328	

	Protein	Accession	Ave	rage SC	Abundance		NSAF ratio	t-test	Expression
			Control	Seminoma	Control	Seminoma	Seminoma/Control	Р	
30	Semenogelin-2 precursor	4506885	261.3	682.7	Н	Н	4.41	0.00044	OE in Seminoma
31	Prosaposin isoform a preproprotein	11386147	20.0	48.0	М	М	4.73	0.00704	
32	Olfactomedin-4 precursor	32313593	15.3	35.7	L	Μ	4.90	0.00039	OE in Seminoma
33	Lactadherin isoform a preproprotein	167830475	8.3	25.0	L	М	4.91	0.00144	OE in Seminoma
34	Mucin-5B precursor	301172750	22.0	65.0	М	Μ	4.97	0.00001	OE in Seminoma
35	Prolactin-inducible protein precursor	4505821	238.3	849.0	Н	Н	4.99	0.00045	OE in Seminoma
36	Alpha-1-antitrypsin precursor	189163528	13.7	34.7	L	Μ	5.01	0.00000	OE in Seminoma
37	Histone H3.3	4885385	5.7	18.7	VL	L	5.70	0.00001	OE in Seminoma
38	Annexin A11 isoform X1	530393508	4.0	16.0	VL	L	6.08	0.00010	OE in Seminoma
39	Ectonucleotide pyrophosphatase/phosphodiesterase family member 3	111160296	7.0	24.3	VL	Μ	6.24	0.00214	OE in Seminoma
40	Cathepsin D preproprotein	4503143	3.3	11.7	VL	L	6.46	0.00352	OE in Seminom
41	BPI fold-containing family B member 1 precursor	40807482	4.7	15.3	VL	L	6.64	0.00033	OE in Seminom
42	Fibronectin isoform 1 preproprotein	47132557	112.7	505.0	Н	Н	7.15	0.00001	OE in Seminom
43	Nucleobindin-2 isoform X1	578820554	13.0	51.3	L	Μ	7.44	0.00026	OE in Seminom
44	Semenogelin-1 preproprotein	4506883	94.0	422.3	Н	Н	7.78	0.00187	OE in Seminom
45	Cytoskeleton-associated protein 4	19920317	1.3	8.0	VL	L	8.24	0.00084	OE in Seminom
46	Ribonuclease pancreatic precursor	38201684	0.7	4.7	VL	VL	8.79	0.00074	OE in Seminom
47	Transketolase isoform 1	205277463	3.7	15.3	VL	L	8.84	0.00097	OE in Seminom
48	Neutrophil defensin 1 precursor	124248516	8.7	36.0	L	Μ	9.32	0.00010	OE in Seminom
49	Neutrophil gelatinase-associated lipocalin precursor	38455402	9.3	58.7	L	М	9.97	0.00000	OE in Seminom
50	Myeloperoxidase precursor	4557759	69.3	368.7	Μ	Н	10.30	0.00000	OE in Seminom
51	Myeloblastin precursor	71361688	6.0	34.0	VL	М	10.33	0.00005	OE in Seminom
52	Catalase	4557014	1.7	8.3	VL	L	10.41	0.00009	OE in Seminom
53	Azurocidin preproprotein	11342670	15.7	95.0	L	Н	11.52	0.00000	OE in Seminom
54	Carcinoembryonic antigen-related cell adhesion molecule 1 isoform 1 precursor	19923195	2.0	14.0	VL	L	12.42	0.00321	Seminom
55	Erythrocyte band 7 integral membrane protein isoform a	38016911	9.3	58.7	L	М	13.46	0.00055	Seminom
56	Apolipoprotein B-100 precursor	105990532	1.7	12.0	VL	L	13.65	0.00031	OE in Seminom
57	Cysteine-rich secretory protein 3 isoform 1 precursor	300244560	0.7	5.3	VL	VL	14.12	0.00098	OE in Seminom
58	Mucin-6 isoform X1	578840955	3.7	29.3	VL	Μ	14.30	0.00214	OE in Seminom
59	ERO1-like protein alpha precursor	7657069	0.7	8.7	VL	L	15.45	0.00087	OE in Seminom
60	Annexin A3	4826643	4.0	45.7	VL	Μ	17.62	0.00001	OE in Seminom

	Protein	Accession	Ave	rage SC	Abundance		NSAF ratio	t-test	Expression
			Control	Seminoma	Control	Seminoma	Seminoma/Control	Р	
61	Neutrophil elastase preproprotein	4503549	2.3	23.0	VL	М	17.84	0.00006	OE in Seminoma
62	Phospholipase B-like 1 precursor	110227598	1.7	22.7	VL	М	22.14	0.00036	
63	Laminin subunit alpha-5 precursor	21264602	4.3	39.0	VL	М	22.30	0.00613	OE in Seminoma
64	Moesin isoform X1	530421753	0.3	4.0	VL	VL	25.18	0.00003	OE in Seminom
65	Eosinophil cationic protein precursor	45243507	1.0	20.3	VL	М	27.03	0.00057	OE in Seminom
66	Carcinoembryonic antigen-related cell adhesion molecule 6 precursor	40255013	2.0	24.3	VL	Μ	27.08	0.00170	OE in Seminom
67	Syntenin-1 isoform X1	530388518	0.3	5.7	VL	VL	30.17	0.00085	OE in Seminom
68	CD63 antigen isoform A	383872447	1.0	14.7	VL	L	31.84	0.00518	OE in Seminom
69	Collagen alpha-1 (XVIII) chain isoform 1 precursor	110611235	1.0	27.0	VL	Μ	33.62	0.00154	OE in Seminom
70	Laminin subunit gamma-1 precursor	145309326	1.0	22.0	VL	Μ	40.70	0.00062	OE in Seminom
71	Integrin alpha-M isoform 1 precursor	224831239	5.3	176.0	VL	Н	50.91	0.00002	OE in Seminom
72	Laminin subunit beta-2 isoform X1	530372442	1.3	45.0	VL	Μ	61.08	0.00000	OE in Seminom
73	Alpha-1-acid glycoprotein 1 precursor	167857790	0.7	20.7	VL	Μ	64.68	0.00005	OE in Seminom
74	Integrin beta-2 precursor	188595677	2.3	124.0	VL	Н	71.24	0.00000	OE in Seminom
75	Carcinoembryonic antigen-related cell adhesion molecule 8 precursor	21314600	0.3	18.0	VL	L	103.73	0.00001	OE in Seminom
76	Cytochrome b-245 heavy chain	6996021	0.3	15.0	VL	L	112.04	0.00002	OE in Seminom
77	Bactericidal permeability-increasing protein precursor	157276599	0.3	49.0	VL	Μ	300.57	0.00002	OE in Seminom
78	Matrix metalloproteinase-9 preproprotein	74272287	0.0	90.0	ni	Н	Seminoma only	0.00000	Unique to Seminom
79	Leukocyte elastase inhibitor	13489087	0.0	23.0	ni	Μ	Seminoma only	0.00006	Unique to Seminom
80	Arachidonate 5-lipoxygenase isoform 2	371877525	0.0	12.7	ni	L	Seminoma only	0.00000	Unique to Seminom
81	Prostate and testis expressed protein 4 precursor	221554530	0.0	8.0	ni	L	Seminoma only		Unique to Seminom
	Chitinase-3-like protein 1 precursor	144226251	0.0	10.3	ni	L	Seminoma only		Unique to Seminom
83	ADP-ribosyl cyclase 2 precursor	168229159	0.0	13.7	ni	L	Seminoma only	0.00009	Unique to Seminom
84	Peptidoglycan recognition protein 1 precursor	4827036	0.0	10.7	ni	L	Seminoma only		Unique to Seminom
85	Neutrophil collagenase preproprotein	4505221	0.0	16.3	ni	L	Seminoma only		Unique to Seminom
86	Haptoglobin isoform 2 preproprotein	186910296	0.0	11.3	ni	L	Seminoma only		Unique to Seminom
87	Resistin precursor	301129180	0.0	6.0	ni	VL	Seminoma only		Unique to Seminom
88	Matrilin-2 isoform a precursor	62548860	0.0	3.0	ni	VL	Seminoma only	0.00002	Unique to Seminom
89	Immunoglobulin alpha Fc receptor isoform a precursor	4503673	0.0	3.7	ni	VL	Seminoma only	0.00018	Unique to Seminom
90	Vascular non-inflammatory molecule 2 isoform X1	578813045	0.0	6.0	ni	VL	Seminoma only	0.00025	Unique to Seminom
91	Integrin beta-2 isoform X1	578836536	0.0	6.3	ni	VL	Seminoma only	0.00029	Unique to Seminom

	Protein	Accession	Ave	Average SC		Indance	NSAF ratio	t-test	Expression
			Control	Seminoma	Control	Seminoma	Seminoma/Control	Р	
392	Flotillin-2 isoform X1	530410971	0.0	6.3	ni	VL	Seminoma only	0.00055	Unique to Seminoma
393	Cathepsin G preproprotein	4503149	0.0	3.3	ni	VL	Seminoma only	0.00065	Unique to Seminoma

H: high; L: low; M: medium; ni: not identified; NSAF: normalized spectral abundance factor; OE: overexpressed; SC: spectral counts; UE: underexpressed; VL: very low