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Abstract

Background

Gout is an inflammatory disease that is caused by the increased production of Interleukin-

1β (IL-1β) stimulated by monosodium urate (MSU) crystals. However, some hyperuricemia

patients, even gouty patients with tophi in the joints, never experience gout attack, which

indicates that pathogenic pathways other than MSU participate in the secretion of IL-1β in

the pathogenesis of acute gouty arthritis. The ATP-P2X7R-IL-1β axis may be one of these

pathways.

Objective

This study examines the role of Adenosine triphosphate (ATP) in the pathogenesis of gout

and the association of ATP receptor (P2X7R) function with single nucleotide polymorphisms

and gout arthritis.

Methods

Non-synonymous single nucleotide polymorphisms (SNP) loci of P2X7R in Chinese people

were screened to compare the frequencies of different alleles and genotype distribution of

selective SNPs in 117 gouty patients and 95 hyperuricemia patients. Peripheral white blood

cells were purified from the peripheral blood of 43 randomly selected gout patients and 36

hyperuricemia patients from the total group. Cells were cultured with MSU or MSU + ATP,

and supernatants were collected for the detection of IL-1β concentrations using enzyme-

linked immunosorbent assay (ELISA).

Results

1. Eight SNP loci, including rs1653624, rs10160951, rs1718119, rs7958316, rs16950860,

rs208294, rs17525809 and rs2230912, were screened and detected, and rs1653624,

rs7958316 and rs17525809 were associated with gout arthritis. 2. IL-1β concentrations in

supernatants after MSU + ATP stimulation were significantly higher in gouty patients than in
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the hyperuricemia group [(131.08 ± 176.11) pg/ml vs. (50.84 ± 86.10) pg/ml]; Patients

(including gout and hyperuricemia) carrying the susceptibility genotype AA or AT of

rs1653624 exhibited significantly higher concentrations of IL-1β than patients carrying the

non-susceptibility genotype TT [(104.20 ± 164.25) pg/ml vs. (21.90 ± 12.14) pg/ml]; How-

ever, no differences were found with MSU stimulation alone.

Conclusions

ATP promotes the pathogenesis of gouty arthritis via increasing the secretion of IL-1 β, and

its receptor (P2X7R) function associated single nucleotide polymorphisms may be related to

gouty arthritis, which indicates that ATP-P2X7R signaling pathway plays a significant regu-

latory role in the pathogenesis of gout.

Introduction

Gout is an inflammatory disease that is characterized by hyperuricemia and a recurrence of

acute gout attacks. Hyperuricemia may lead to the formation and deposition of monosodium

urate (MSU) crystals in joints and soft tissues and the consequent clinical manifestations of

gout, including episodes of acute gouty arthritis and tophus formation [1–2]. Acute gouty

arthritis is a complex inflammatory process, and in vivo and in vitro studies have demon-

strated that MSU crystals activate a variety of innate immune cells to release interleukin-1 beta

(IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor alpha (TNF-α), and

other inflammatory mediators [3–4]. IL-1β is the major mediator that induces acute gouty

arthritis. The active form of IL-1β is found in joint tissues, including the synovium, synovial

fluid, and cartilage, and it is a classical initiator of inflammation [5]. MSU crystals are an

endogenous danger signal that is recognized by pattern-recognition receptors (PRRs), includ-

ing membrane receptors (TLRs) and intracellular receptors (NLRs). The recognition of MSU

crystals further activates TLRs and NACHT-LRR-PYD-containing protein 3 (NALP3) inflam-

masome signaling transduction pathways, which regulate the secretion of IL-1β. The TLR and

NLR signaling pathways play critical roles in the development of acute gouty arthritis [6–7].

Some individuals with hyperuricemia develop acute gouty arthritis, but not all individuals

with hyperuricemia develop the clinical features of gout [8–10]. Some patients experience no

gout attacks during their normal daily schedule despite the presence of MSU crystals in their

joints [11–12]. Recent imaging studies revealed MSU crystal deposition and subclinical joint

and extra-articular damage in people with asymptomatic hyperuricemia [13–18]. Many people

with tophi also never develop acute arthritis [19–21]. These observations indicate that MSU

crystals alone are not sufficient to induce acute gouty arthritis. Activation of the NALP3

inflammasome signaling pathway by MSU crystals alone cannot stimulate immune cells to

produce sufficient amounts of IL-1β to induce the onset of acute gouty arthritis.

A previous study demonstrated that several signaling pathways regulate IL-1β secretion.

MSU and adenosine triphosphate (ATP) stimulate purinergic receptor P2X ligand-gated ion

channel 7-induced (P2X7R) IL-1β secretion [22]. The primary predisposing factors for the

development of acute gouty arthritis, including strenuous exercise, cold, alcoholism, and over-

eating, share a common characteristic of the presence of dramatic changes in ATP within the

body. This characteristic suggests that changes in ATP may be a second pathogenic signal for

acute gouty arthritis. The present study demonstrated that stimulation of peripheral blood

P2X7R SNPS and gout
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leukocytes with MSU alone produced no differences in supernatant IL-1β concentrations

between gout and hyperuricemia patients. Gout patients produced higher concentration of IL-

1β than hyperuricemia patients following MSU + ATP stimulation. This result suggests that

ATP is a second signal in the pathogenesis of gout arthritis after MSU production. Changes in

ATP may activate the P2X7 signaling pathway and synergize with MSU crystals to induce the

secretion of sufficient IL-1β and further the development of acute gouty arthritis. Therefore,

the functional status of P2X7R may determine whether hyperuricemia patients develop acute

gouty arthritis, and P2X7R may be a key regulator of acute gouty arthritis [23].

P2X7R is an important member of the P2X family. P2X7R is 595 amino acids in length

with two membrane-spanning domains and a longer intracellular C-terminus than the

other P2X receptor proteins [24]. The P2X7R gene is highly polymorphic, and many single-

nucleotide polymorphisms (SNPs) were detected. P2X7R gene polymorphisms affect the

formation of P2X7R membrane pores and K+ outflow and alters the functional status of

P2X7R [25–26]. For example, mutation of Thr-357 to Ser in the P2X7R amino acid sequence

may alter the binding of P2X7R to ATP [27]. Mutation of Glu-496 into Ala impaired ATP-

induced release of IL-1β [28–29]. However, mutation of Ala-348 into Thr enhanced P2X7R-

stimulated IL-1β secretion [30]. Therefore, the functional status of P2X7R, which is medi-

ated by P2X7R SNPs, may determine whether hyperuricemia patients develop acute gouty

arthritis.

The present study classified the common non-synonymous coding SNP loci of gout and

hyperuricemia patients and demonstrated that the rs1653624, rs7958316, and rs17525809

SNPs were associated with gout. Patients with these susceptibility loci produced higher con-

centrations of IL-1β in peripheral blood leukocyte culture supernatants following MSU + ATP

stimulation. This result suggests that SNPs associated with P2X7R function regulate the occur-

rence and development of gout.

Methods

Patients and control subjects

This work was approved by the biomedical ethics committee of Anhui Medical University,

China. A total of 117 gout patients were recruited from the Department of Rheumatology and

Immunology of Anhui Provincial Hospital from September 2015 to December 2016. All gout

patients were diagnosed using the 1990 revised American College of Rheumatology classifica-

tion criteria [10]. All selected cases were male because male individuals are more susceptible to

gout than females. Patients with gout aged from 32 to 80 years old, and the mean age was

53.4 ± 15.6 years. Previous studies demonstrated that urate levels were associated with gout

and the development of gout within five years [31]. We selected hyperuricemia patients with

serum uric acid levels > 540 μmol/L (9 mg/dl) to ensure that these patients would not escalate

to gout. The course of disease was longer than 10 years and without a history of gout for the

control groups. We recruited 95 hyperuricemia patients from the physical examination center

or a related department of the Anhui Provincial Hospital with a mean age of 50.9 ± 14.1 years,

aged from 36 to 76 years old. Patients’ clinical data were collected and followed up during the

experiment.

Selection of SNPs investigated

P2X7R function is related to changes in its amino acid sequence. Therefore, this study selected

non-synonymous coding SNP loci in the P2X7R gene as targets. A search for all SNPs in the

P2X7R gene was performed within the Chinese population in the HapMap project database

(http://www.hapmap.org/), and the locations of these SNP sites within P2X7R were found in

P2X7R SNPS and gout
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the National Center for Biotechnology Information SNP databank (http://www.ncbi.nlm.nih.

gov/SNP/snp_ref.cgi?chooseRs=all&locusId=5027&mrna=NM_002562.5&ctg=NT_029419.

13&prot=NP_002553.3&orien=forward&refresh=rerefre). Non-synonymous coding SNP

loci were screened out, and eight SNPs were selected: rs1653624, rs10160951, rs1718119,

rs7958316, rs16950860, rs208294, rs17525809, and rs2230912. Haploview software was used to

analyze the linkage disequilibrium of these loci, and the results revealed linkage disequilibrium

(Fig 1).

DNA extraction and SNP genotyping

Two groups of genomic DNA samples were extracted from peripheral venous blood using a

Qiagen DNA Kit (Qiagen, Germany) following the standard DNA isolation instructions. An

EP1™ high-throughput gene analysis system (Fluidigm, U.S.) was used to genotype genomic

DNA using a TaqMan SNP Genotyping Assay Kit (ABI, U.S.). P2X7R gene probes rs1653624,

rs10160951, rs1718119, rs7958316, rs16950860, rs208294, rs17525809, and rs2230912 were

synthesized for use in this study. Genomic DNA and probe samples were repackaged on 48.48

Dynamic Array™ IFC chips and exposed to several cycles in an FC1™ PCR Cycler. Genotyping

information was collected from the EP1™ Reader Data Collection.

Fig 1. Analysis of the linkage disequilibrium of different SNPs. The results revealed linkage

disequilibrium between rs1653624, rs10160951, rs1718119, rs7958316, rs16950860, rs208294, rs17525809,

and rs2230912.

https://doi.org/10.1371/journal.pone.0181685.g001
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Isolation and stimulation of peripheral blood leukocytes and

measurement of cytokine levels

Forty-three gout patients and thirty-six hyperuricemia patients were randomly selected, and

hydroxyethyl starch was extracted from peripheral blood leukocytes. The leukocyte concentra-

tion was adjusted to 1 × 107/L in cell culture. Cell suspensions were divided into two 500 μl

tubes and cultured with uric acid sodium (500 μmol/L) and uric acid sodium (500 μmol/L)

+ ATP (200 μmol/L) for 24 h. IL-1β concentrations in supernatants were examined using an

ELISA (R&D Systems, Inc., Minneapolis, MN, U.S.A.) according to the manufacturer’s

instructions.

Statistical analysis

Comparisons of genotype and allele frequencies between the two groups were performed

using chi-square tests in SPSS 10.1 software (SPSS Inc., 2000). Odds ratios (ORs) and 95% con-

fidence interval (CIs) were calculated using non-conditional logistic regression analyses.

Hardy—Weinberg equilibrium (HWE) in gout patients and normal controls was determined

using SHEsis software (http://analysis.bio-x.cn/myAnalysis.php). Quantitative data are pre-

sented as the means ± standard deviation. The t test was used to compare two groups with nor-

mally distributed data, and the Mann-Whitney U rank sum test was used to compare groups

without normal data distribution. P values were calculated based on two-sided tests, and 0.05

was defined as the criterion of significance.

Results

H-W balance testing for all genotyping results revealed that rs1653624, rs10160951, rs1718119,

rs7958316, rs16950860, rs208294, rs17525809, and rs2230912 genotype frequencies were con-

sistent with HWE equilibrium. Only rs10160951 did not conform to the HWE balance, and

this gene locus is not discussed further (Table 1).

Table 1. Hardy-Weinberg equilibrium test of the genotype frequencies distribution in gout and hyper-

uricemia patients.

SNPs GOUT HWE Hyperuricemia HWE

χ2 P χ2 P

rs1653624 AA AT TT AA AT TT

47 58 9 2.388 0.122 26 50 16 0.919 0.338

rs10160951 CC CG GG CC CG GG

113 0 0 NA 93 0 0 NA

rs1718119 AA AG GG AA AG GG

3 23 97 1.252 0.263 2 17 74 0.711 0.400

rs7958316 AA AG GG AA AG GG

25 65 23 2.570 0.108 11 50 33 1.480 0.224

rs16950860 CC CT TT CC CT TT

86 20 2 0.421 0.516 60 14 2 1.054 0.305

rs208294 CC CT TT CC CT TT

12 55 45 0.638 0.424 12 37 42 0.699 0.403

rs17525809 CC CT TT CC CT TT

1 19 89 0.000 0.989 2 37 52 2.473 0.116

rs2230912 AA AG GG AA AG GG

111 3 0 0.020 0.886 91 1 0 0.003 0.958

https://doi.org/10.1371/journal.pone.0181685.t001
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Differences in the distribution of SNP genotypes in P2X7R between gout

and hyperuricemia patients

Differences in the prevalence of rs17525809, rs1653624, and rs7958316 were observed between

gout and hyperuricemia patients. The gout-sensitivity allele at rs1653624 was A (OR = 1.608,

95%CI: 1.077–2.400). Genotype frequencies were significantly different between gout and

hyperuricemia patients. The AA and AT genotypes exhibited a higher risk of gout (AA vs. TT,

OR = 3.214, 95%CI: 1.247–8.283; AA + AT vs. TT, OR = 2.456, 95%CI: 1.031–5.853). The

gout-sensitivity allele at rs7958316 was A (OR = 1.698, 95%CI: 1.147–2.514), and AA and AG

were gout susceptibility genotypes (AA vs. GG, OR = 3.391, 95%CI: 1.402–8.204; AA + AG vs.

GG, OR = 2.140, 95%CI: 1.148–3.992; AA vs. AG + GG, OR = 2.229, 95%CI: 1.036–4.796).

The gout-sensitivity allele at rs17525809 was T (OR = 2.728, 95%CI: 1.545–4.817), and TT was

a gout susceptibility genotype (TT vs. CT + CC, OR = 3.338, 95%CI: 1.763–6.320). There were

no significant differences in allele or genotype frequencies between gout and hyperuricemia

patients at rs1718119, rs16950860, rs208294, or rs2230912 (Table 2).

The genetic patterns of different gout susceptibility gene loci were not identical. The domi-

nant genes rs1653624 and rs7958316 carry dangerous factors. Homozygous and heterozygous

hyperuricemia patients with these alleles exhibit a higher risk of gout than patients without

these alleles. The rs17525809 locus is a recessive gene, and it is only dangerous for homozygous

hyperuricemia patients who exhibit a higher rate of gout. The risk of gout onset may be rela-

tively low in hyperuricemia patients because these patients have a single SNP-susceptible geno-

type, but a patient with two or more SNP-susceptible genotypes would be more prone to

develop gout. Further analysis demonstrated that the more susceptible the genotypes increased

gout risk, and the OR reached 5.07 if a patient had all three susceptible genotypes (rs7958316,

rs1653624, and rs17525809), (Table 3).

Comparison of IL-1β concentrations in the supernatants of cultured

peripheral WBCs in gout and hyperuricemia patients

MSU stimulation alone produced no differences in IL-1β concentrations between the gout and

hyperuricemia groups. However, gout patients produced higher concentrations of IL-1β than

the hyperuricemia patients following MSU + ATP stimulation [(131.08 ± 176.11) pg/ml vs.

(50.84 ± 86.10) pg/ml, P = 0.012)] (Fig 2A). Three SNP polymorphisms of the P2X7R ATP

receptor (rs7958316, rs1653624, and rs17525809) are associated with gout pathogenesis.

Therefore, IL-1β concentrations were analyzed in the supernatants of gout and hyperuricemia

patients who carried all gout susceptibility genes. MSU + ATP stimulation significantly ele-

vated IL-β levels in cell culture supernatants of patients with rs1653624 who carried the

gout susceptible AA or AT genotypes [(104.20 ± 164.25) pg/ml vs. (21.90 ± 12.14) pg/ml,

P<0.001)]. However, no difference in IL-1β concentration was observed with MSU stimula-

tion alone (Fig 2B). No significant difference was observed between patients who carried the

gout susceptible rs7958316 and rs17525809 genotypes (Fig 2C). Patients were further divided

into two groups, rs7958316-susceptible genotypes (TT) and non-susceptible genotypes (CT +

CC) because of the interactions between multiple SNP sites. IL-1β concentrations in samples

from rs17525809 individuals with susceptible genotypes (AA or AG) were compared to non-

susceptible genotypes (GG). The results demonstrated that the IL-1β concentration was signifi-

cantly higher in patients with rs17525809-susceptible genotypes following MSU + ATP stimu-

lation [(116.01 ± 173.00) pg/ml vs. (17.57 ± 14.41) pg/ml, P = 0.015)], but there were no

differences in patients with rs7958316 non-susceptible genotypes (Fig 2D).

P2X7R SNPS and gout
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Discussion

Asymptomatic hyperuricemia patients with MSU or joint tophi never develop acute gouty

arthritis, but local joint inflammation may be observed. An increase in power-Doppler signals

in ultrasonography, which is a surrogate for increased vascularity of inflammation, was

Table 2. Allele and genotype frequencies and genetic model of SNPs in the P2X7R gene in gout and hyperuricemia patients.

SNPs Gout hyperuricemia χ2 Value P Value OR 95%CI

rs1653624

A vs. T 152/76 102/82 5.433 0.02 1.608 1.077–2.400

AA vs. TT 47/9 26/16 6.126 0.013 3.214 1.247–8.283

AT vs. TT 58/9 50/16 2.545 0.111 2.062 0.838–5.072

AA+AT vs. TT 105/9 76/16 4.306 0.038 2.456 1.031–5.853

AA vs. AT+TT 47/67 26/66 3.742 0.053 1.781 0.990–3.204

rs1718119

G vs. A 197/29 165/21 0.227 0.633 0.865 0.475–1.573

GG vs. AA 97/3 74/2 0.021 0.884 0.874 0.142–5.364

AG vs. AA 23/3 17/2 0.011 0.915 0.902 0.135–6.005

GG+AG vs. AA 120/3 91/2 0.019 0.889 0.879 0.144–5.371

GG vs. AG+AA 97/26 74/19 0.016 0.899 0.958 0.493–1.862

rs7958316

A vs. G 117/111 72/116 7.043 0.008 1.698 1.147–2.514

AA vs. GG 26/23 11/33 7.620 0.006 3.391 1.402–8.204

AG vs. GG 65/23 50/33 3.599 0.058 1.865 0.976–3.564

AA+AG vs. GG 91/23 61/33 5.838 0.016 2.140 1.148–3.992

AA vs. AG+ GG 26/88 11/83 4.344 0.037 2.229 1.036–4.796

rs16950860

C vs. T 192/24 146/18 0.002 0.967 0.986 0.516–1.885

CC vs. TT 86/2 66/2 0.069 0.793 1.303 0.179–9.495

CT vs. TT 20/2 14/2 0.114 0.735 1.429 0.179–11.384

CC+ CT vs. TT 106/2 80/2 0.078 0.780 1.325 0.183–9.610

CC vs. CT+TT 86/22 66/16 0.021 0.884 0.948 0.462–1.946

rs208294

T vs. C 145/79 121/61 0.136 0.712 0.925 0.613–1.397

TT vs. CC 45/12 42/12 0.022 0.881 1.071 0.434–2.646

CT vs. CC 55/12 37/12 0.747 0.388 1.486 0.603–3.664

TT+ CT vs. CC 100/12 79/12 0.294 0.587 1.266 0.540–2.970

TT vs. CT+ CC 45/67 42/49 0.732 0.329 0.784 0.448–1.371

rs17525809

T vs. C 197/21 141/41 12.592 0.000 2.728 1.545–4.817

TT vs. CC 89/1 52/2 1.112 0.292 3.423 0.303–38.677

CT vs. CC 19/1 37/2 0.000 0.983 1.027 0.087–12.062

TT+ CT vs. CC 108/1 89/2 0.550 0.458 2.427 0.217–27.206

TT vs. CT+ CC 89/20 52/39 14.324 0.000 3.338 1.763–6.320

rs2230912

A vs. G 225/5 183/1 0.932 0.334 0.246 0.028–2.123

AA vs. GG 111/1 91/0 NA 1.000 0.991 0.974–1.009

AG vs. GG 3/1 1/0 NA 1.000 0.750 0.426–1.321

AA+AG vs. GG 114/1 92/0 NA 1.000 0.991 0.974–1.008

AA vs. AG+ GG 111/4 91/1 1.240 0.265 0.305 0.033–2.776

https://doi.org/10.1371/journal.pone.0181685.t002
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observed in 67% of 12 asymptomatic patients with MSU deposition [32]. However, the present

study found no difference in IL-1β concentrations in supernatants after MSU stimulation of

cultured peripheral leukocytes between gout and hyperuricemia patients. Our results suggest

that the inflammation caused by MSU crystals was not different in gout and hyperuricemia

patients, and MSU crystals alone cannot induce the onset of acute gouty arthritis. However,

MSU + ATP stimulation produced higher IL-1β concentrations in gout patients than those in

hyperuricemia patients. These results suggest that the differences in IL-1β and other cytokine

Table 3. Association between the number of susceptible genotypesand the risk of gout.

SNPs Contains all gout susceptibility genotypes? Gout (n) Hyperuricemia (n) P OR 95%CI

rs1653624 and rs7958316 Yes 86 50 0.001 2.580 1.428–4.662

No 28 42

rs1653624 and rs17525809 Yes 83 41 <0.001 3.971 2.174–7.254

No 26 51

rs7958316 and rs17525809 Yes 69 26 <0.001 4.207 2.316–7.642

No 41 65

rs1653624, rs7958316 and rs17525809 Yes 66 21 <0.001 5.071 2.732–9.413

No 44 71

https://doi.org/10.1371/journal.pone.0181685.t003

Fig 2. IL-1β concentrations in the supernatant of cultured peripheral leukocytes. * P<0.05. (A) There

were no differences in IL-1β concentrations between the gout and hyperuricemia groups following MSU

stimulation alone, but IL-1β concentrations increased significantly in gout patients following MSU + ATP

stimulation. (B) MSU + ATP stimulation significantly elevated IL-1β in patients with rs1653624 who carried the

gout susceptibility genotype AA or AT; there was no difference IL-1β concentrations after MSU stimulation

alone. (C) There were no significant differences between patients who carried the gout susceptibility genotype

of rs7958316 or rs17525809 after MSU + ATP stimulation. (D) IL-1β concentrations in patients who carried

the rs7958316 susceptibility genotype (TT) increased significantly after MSU + ATP stimulation compared to

patients who carried the rs17525809 susceptibility genotype (AA or AG), but there were no differences in

patients who carried the rs17525809-non-susceptible genotypes (GG).

https://doi.org/10.1371/journal.pone.0181685.g002
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secretion caused by the ATP signaling pathway determine the onset of gout. ATP is an energy

carrier that is necessary to maintain metabolism in the human body. All complex organisms

undergo fluctuations in ATP levels, but changes in ATP are not the deciding factor in gout.

Our results suggest that differences in P2X7R receptor function play a critical role.

The P2X7R gene is highly polymorphic. SNPs in the P2X7R coding region may affect recep-

tor expression and function. Mutations in this receptor are divided into loss-of-function and

gain-of-function [33–34]. The present study used a database to screen all of the Chinese non-

synonymous coding SNP loci, and a total of eight sites were noted (Table 4). The rs1718119,

rs208294, and rs17525809 loci exhibited a gain of function, and the rs7958316, rs16950860,

and rs1653624 loci exhibited a loss of function. The results of the present genotyping study

demonstrated that mutations in the P2X7R gene at the rs1653624, rs7958316, and rs17525809

loci were related to gout onset. Allele A of rs1653624 and rs7958316 and allele T of rs17525809

may become dangerous genes if mutated and activate gout. A hyperuricemia patient who car-

ries these dangerous genes at these loci may be more susceptible to a gout attack.

Mutation at the rs1653624 gene locus converts the nucleotide sequence from AAC to ATC,

which replaces asparagine (Asn) with isoleucine (Ile) at gene locus No. 568 of the P2X7R and

hinders normal receptor function. This mutation is a loss-of-function mutation. Mutation at

the rs7958316 gene locus converts the nucleotide sequence from CAT to CGT, which replaces

histidine (His) with arginine (Arg) at gene locus No. 276 of the P2X7R. Arg is an alkaline

amino acid. Previous research demonstrated that mutation at this gene locus partially damaged

the P2X7R channel membrane protein function and reduced P2X7R function. This mutation

is also a loss-of-function mutation. Gout risk should increase if the gout sensitivity alleles at

gene loci rs1653624 and rs7958316 were A, and the loss-of-function did not occur.

Mutation at the rs17525809 gene locus converts the nucleotide sequence from GCG to

GTG, which replaces alanine (Ala) with valine (Val) at gene locus No. 76. Oyanguren reported

that this gene locus was closely related to multiple sclerosis. Flow cytometry revealed a greater

uptake of calcium ions and ethidium bromides by P2X7R on the cell surfaces of patients with

multiple sclerosis than healthy controls [40]. Mutation at this gene locus enhanced P2X7R

function, and it is a gain-of-function mutation. The function of P2X7RA was enhanced when

the gout-sensitive allele at gene loci of rs17525809 was mutant allele T, which rendered an indi-

vidual more prone to suffer a gout attack.

MSU + ATP co-stimulated peripheral blood leukocytes in the present study, and IL-1β lev-

els were higher in cell culture media of a patient with rs1653624 gout-sensitive genes (AA and

AT) than controls. There was no difference between IL-1β levels in the cell culture media of

the other two patients with gout-sensitive genes, but the IL-1β levels of a patient with two

gout-sensitive genotypes increased significantly. This result suggests that the function of

P2X7R was enhanced in all three of these gout-sensitive genotypes, which is consistent with

Table 4. The eight selected non-synonymous coding SNPs in the P2X7R gene.

SNP ID mRNA location (polymorphism) MAF Function

rs10160951 C1432G (Pro430Arg) 0.0423 NA

rs1718119 A1185G (Thr348Ala) 0.4000 Enhance IL-1β secretion [30].

rs7958316 A970G (His276Arg) 0.0124 Impair the function of P2X7R pores [35].

rs16950860 C951T (Arg270Cys) 0.0080 Weaken the function of P2X7R [29].

rs208294 C606T (His155Tyr) 0.4700 Improve affinity to ATP [36].

rs17525809 C370T (Ala76Val) 0.0499 Enhance P2X7R function, synergy with rs208294 [37].

rs1653624 A1846T (Asn568Ile) 0.0058 Hinder the normal transportation of P2X7R [38].

rs2230912 A1522G (Gln460Arg) 0.0693 Alter the structure of P2X7R [39].

https://doi.org/10.1371/journal.pone.0181685.t004
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previous studies. These three genotypes were also associated with an increased risk of gout in

clinical settings.

The risk of developing gout in patients with hyperuricemia who carried two or more of the

gout-sensitive SNP genotypes related to P2X7R function was analyzed further, and the results

demonstrated that patients with two or more of these SNP genotypes were more likely to have

gout. The risk of developing gout increased with increased numbers of loci. Therefore, a

patient with more gout-sensitive gene loci would be more prone to suffer from gout. Result of

the other gene loci, such as rs1718119, rs208294, and rs2230912, suggested no relationship

with gout onset. However, the functions of different genotypes at the SNP gene loci related to

the P2X7R gene are different. Any changes at SNP gene loci may alter P2X7R function.

Changes in SNP gene loci exhibited limited effects on gout severity, but these changes exerted

a detectable impact on gout onset. Mutation at a single SNP locus that changed only one

amino acid produced receptors that maintained some of their original function. However,

mutations at multiple loci that altered several amino acids affected P2X7R function. The risk

of gout onset increased when P2X7R function increased to specific threshold.

Some hyperuricemia patient who did not carry the gout sensitivity gene loci discussed in

this study were still prone to develop gout, which suggests that other factors affect P2X7R func-

tion. For example, changes in the sequences of non-coding and regulatory parts of the P2X7R

gene or its microRNA are currently under widespread investigation. The uric acid signaling

pathway also plays different roles in hyperuricemia patients. Gene polymorphisms of TLRs

and the NALP3 inflammasome in the signaling pathway stimulated by MSU are related to

gout onset [41], which suggests that the signaling pathway stimulated by MSU may cause

more IL-1β secretion in some hyperuricemia patients and increase the risk of gout.

Gout attacks are the result of the interaction of MSU and ATP, and the SNPs present in the

P2X7R gene cause dysfunction of immune cells, which may lead to the occurrence of gout.

These findings provide new theoretical evidence to improve the pathogenesis of acute gouty

arthritis and may explain why some hyperuricemia patients never develop acute gouty arthri-

tis. These results may also explain the clinical phenomena of allopurinol and colchicine. Previ-

ous clinical consensus is that allopurinol induces acute gouty arthritis via the dissolution of

urate crystals when used to reduce uric acid levels. However, allopurinol also significantly

increases ATP levels [42], which suggests that allopurinol stimulates the P2X7R signaling path-

way to induce acute gouty arthritis. Some clinicians recommend colchicine for the treatment

of acute gouty arthritis, and its mechanism is related to the inhibition of leukocyte migration.

Colchicine significantly inhibits gouty inflammation, but it has no effect on other inflamma-

tory diseases. A clinical response to colchicine treatment was the basis for a gout diagnosis, but

there is no plausible mechanism to explain this response. Recent scholars found that colchicine

suppressed ATP-induced activation of the P2X7R signaling pathway and reduced the secretion

of IL-1β [43]. This action may be the major mechanism by which colchicine prevents and

treats acute gouty arthritis, and it provides indirect evidence of a role for the ATP-P2X7R sig-

naling pathways in the pathogenesis of gout. These findings may provide a new therapeutic

strategy for the prevention and treatment of gouty arthritis.

Supporting information

S1 File. Fig A) Joint involvement in rats (No. 1 rat). Fig B) The degree of joint swelling in rats.

E: Normal rat joints, F: Joints in position injected with MSU was swollen. G: The swelling of

foreleg ankle joint of rat No. 1 was more severe than the swelling of F. Fig C) Cytological exam-

ination of HE staining of rat joint inflammation area. K(×100), L(×400) were the results of HE

staining of articular tissue in No.1 rats. M(×100), N(×400) were the results of HE staining of
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articular tissue of common rats. High-power microscope shows that the cells in L are mainly

neutrophils of lobulated nuclei, and the cells in N are mainly lymphocytes of circular nuclei.
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