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The object of the current study is to explore the neural substrate for effects of atomoxetine (ATX) on inhibitory
control in school-aged children with attention deficit hyperactivity disorder (ADHD) using functional near-
infrared spectroscopy (fNIRS). We monitored the oxy-hemoglobin signal changes of sixteen ADHD children
(6–14 years old) performing a go/no-go task before and 1.5 h after ATX or placebo administration, in a random-
ized, double-blind, placebo-controlled, crossover design. Sixteen age- and gender-matched normal controls
without ATX administration were also monitored. In the control subjects, the go/no-go task recruited the right
inferior and middle prefrontal gyri (IFG/MFG), and this activation was absent in pre-medicated ADHD children.
The reduction of right IFG/MFG activation was acutely normalized after ATX administration but not placebo
administration in ADHD children. These results are reminiscent of the neuropharmacological effects of methyl-
phenidate to up-regulate reduced right IFG/MFG function in ADHD children during inhibitory tasks. As with
methylphenidate, activation in the IFG/MFG could serve as an objective neuro-functional biomarker to indicate
the effects of ATX on inhibitory control in ADHD children. This promising technique will enhance early clinical
diagnosis and treatment of ADHD in children, especially in those with a hyperactivity/impulsivity phenotype.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most
prevalent developmental disorders, affecting between 5 and 9% of
school-aged children (Dittmann et al., 2009; Willcutt, 2012). ADHD is
associated with a primary impairment in executive controls, including
response inhibition and working memory (Barkley, 1997; Dias et al.,
2013; Dittmann et al., 2009; Willcutt, 2012). Symptoms of ADHD typi-
cally develop during early elementary school years, and, in most cases,
progress to a chronic state during adulthood (Drechsler et al., 2005). Be-
cause of this, initiating appropriate treatment in youth upon early iden-
tification is important in order to confer long-term positive effects.
Recommended treatments for ADHD children include both medication
and behavioral therapy (Hodgkins et al., 2012).
en).

. This is an open access article under
The non-stimulant drug, atomoxetine (ATX) aswell as the stimulant
drug, methylphenidate (MPH) have been recommended as primary
medications for the improvement of executive function in ADHD pa-
tients (Cubillo et al., 2014; Faraone and Buitelaar, 2010; Faraone et al.,
2007; Newcorn et al., 2008; Sallee et al., 2009). Conventionally, MPH
has stood as the mainstay of medication treatment of ADHD patients
(Banaschewski et al., 2006). MPH is a reuptake inhibitor of catechol-
amines, including dopamine (DA) and noradrenaline (NA), which it
does by blocking their transporters (Aron and Poldrack, 2005; Gatley
et al., 1996). The affinity that MPH has with each catecholamine trans-
porter is different: While the dissociation constant value, or K(i), of
MPH to the NA transporter is 339 nM, that to the DA transporter is
34 nM (Bymaster et al., 2002). Thus, MPH is considered to have by far
a greater effect on the DA system. Conversely, ATX, the first approved
non-stimulant ADHD medication treatment, has been considered a
selective NA reuptake inhibitor (Bolden-Watson and Richelson, 1993).
The affinity that ATX has with these catecholamine transporters is
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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biased toward the NA system with the K(i) of ATX to NA and DA trans-
porters being 5 and 1451 nM, respectively (Bymaster et al., 2002).

These profiles demonstrate that both MPH and ATX act as mono-
amine agonists to normalize brain function in ADHD patients, but that
they do so in different manners. ADHD is considered to include dysfunc-
tion of the DA and NA systems (Del Campo et al., 2011). In many ADHD
neuroimaging studies, MPH has been shown to upregulate hypofunction
in the DA system at the prefrontal cortex and the striatum, improving in-
hibitory functions (Del Campo et al., 2011; Epstein et al., 2007; Lewis et al.,
2001; Rubia et al., 2011; Vaidya et al., 1998; Volkow et al., 2007) (Ellison-
Wright et al., 2008; Frodl and Skokauskas, 2012; Nakao et al., 2011). On
the other hand, it has beenposited, based onfindings from in vitro studies,
that ATX acts on the NA system, mainly located in the locus coeruleus
with axonal projections to the prefrontal and parietal cortices (Arnsten
and Li, 2005; Del Campo et al., 2011; Seidman et al., 2005). However,
there have not been any neuroimaging studies of the NA system in
ADHD patients (Johnston et al., 2014).

Such a plausible functional difference might be reflected in differen-
tial neuropharmacological responses of ADHD children to MPH and
ATX: there is a 30% non-responder rate for one or the other preferential-
ly (Newcorn et al., 2008). Yet, the clinical therapeutic effects of these
medications in ADHD children are not yet clearly understood. In addi-
tion, there is no evidenced-based method with objective markers for
selecting effective medications. Furthermore, while these treatments
have no symptomatic benefits in non-responders, their side effects re-
main present (Garnock-Jones and Keating, 2009). Even patients who
do respond must be appropriately monitored to prevent possible side
effects such as headaches, stomachaches, nausea, abdominal pain,
decreased appetite and vomiting (Barkley, 2003; Garnock-Jones and
Keating, 2009; Loeber et al., 1992;Milich et al., 2001;Murphy et al., 2001).

Preferably, the efficacy of either medication for ADHD children
should be assessed both pre- and post-administration. One promising
approach is the exploration of distinct biological markers and their test-
ing with a non-invasive neuroimagingmodality. A number of neuroim-
aging results for ADHD children (Beauregard and Levesque, 2006;
Derefinko et al., 2008; Durston et al., 2003; Inoue et al., 2012; Ma
et al., 2012; Monden et al., 2012a; Siniatchkin et al., 2012; Smith et al.,
2006; Solanto et al., 2009; Vaidya et al., 1998), adolescents (Schulz
et al., 2004; Tamm et al., 2004) and adults (Dibbets et al., 2009; Karch
et al., 2010; Mulligan et al., 2011; Sebastian et al., 2012; Vasic et al.,
2012) have shown that right middle and inferior frontal hypoactivation
is distinctly associated with response inhibitory dysfunction. This gives
rise to the possibility that activation in the inferior and middle frontal
gyri could be a characteristic candidate as a neuropharmacological bio-
marker for ADHD (Aron and Poldrack, 2005). Indeed, a growing body of
neuroimaging research has started to explore the neural basis for the
clinical effectiveness of MPH in ADHD patients. An increasing number
of fMRI-based neuropharmacological studies of MPH effects have dem-
onstrated acute functional upregulation and normalization of the right
middle and inferior frontal gyri after MPH administration (Epstein
et al., 2007; Marquand et al., 2012; Vaidya et al., 1998).

Meanwhile, our previous fNIRS study (Monden et al., 2012b)
assessed the pharmacological neuromodulation produced by MPH
using a randomized, double-blind, placebo-controlled, crossover design.
We reported that MPH normalized the hemodynamic responses in the
right middle and inferior gyri during a motor-related inhibitory task
(go/no-go task) using fNIRS on young ADHD children (Monden et al.,
2012b), which was in accordance with previous evidence from a study
with adult ADHD patients and fMRI (Morein-Zamir et al., 2014).

As demonstrated in our previous studies, fNIRS offers robust advan-
tages such as its compactness (useful in confined experimental set-
tings), affordable price, tolerance to body motion and accessibility
(Ehlis et al., 2014; Herrmann et al., 2004; Herrmann et al., 2005; Hock
et al., 1997; Matsuo et al., 2000; Matsuo et al., 2003; Miyai et al., 2001;
Moriai-Izawa et al., 2012; Okamoto et al., 2004b; Okamoto et al., 2006;
Shinba et al., 2004; Strangman et al., 2002a; Suto et al., 2004), which,
in addition, have allowed it to be applied to the clinical assessment
of ADHD children (Monden et al., 2012a; Monden et al., 2012b;
Nagashima et al., 2014).

Conversely, it is often difficult to assess neuroactivation patterns
during locomotor tasks with fMRI-based neuroimaging, and this can
often cause problems in the neuro-functional assessment of school-
aged ADHD children with hyperactivity. In fact, the rejection rate of
fMRI studies is high: one study enrolling a relatively young sample of
children (6 years and older) rejected 50% of ADHD subjects and 30% of
normal control subjects (Durston et al., 2003). The high exclusion rate
for ADHD patient populations in fMRI studies is mainly due to motion
and lack of compliance (Yerys et al., 2009). According to the validation
of our study and the fact that our drop rate has been 0% of a total 30
ADHD subjects (6–14 years old), our fNIRS-based examination is favor-
able in particular for measurements of active subjects, such as patients
with ADHD, and should be further extended to neuropharmacological
assessment of ATX effects in ADHD children.

Thus far, several fMRI studies on the effects of ATX have provided
evidence of up-regulation ofmiddle and inferior frontal gyrus activation
in healthy control subjects (e.g., Graf et al., 2011; Hester et al., 2012), as
with MPH. However, there are only three fMRI studies that have per-
formed neuropharmacological assessments, utilizing double-blind,
placebo-controlled designs, of the effects of ATX administration on inhi-
bition function in ADHDpatients including children (Cubillo et al., 2014;
Schulz et al., 2012; Smith et al., 2013), and no fNIRS studies had been
performed until now.

The lack of evidence associating a neuropharmacologicalmechanism
with therapeutic improvement is tantamount to a missed opportunity
for appreciating how ATX works, and such understanding is a vital
step toward developing an objective, evidence-based neuropharmaco-
logical treatment for ADHD children. Thus we performed the current
fNIRS study in order to assess acute neuropharmacological effects of
ATX on inhibitory functions of ADHD children.

In the current study, we enrolled sixteen ADHD children and age-
and sex-matched control subjects, and examined the neuropharmaco-
logical effects of ATX on inhibition control, utilizing a within-subject,
double-blind, placebo-controlled design. We hypothesized that the
ADHD subjects would exhibit hypoactivation in the rightmiddle and in-
ferior frontal gyri in comparison with control subjects, and that ATX
would normalize hemodynamic responses during a go/no-go task
while a placebo would not.

2. Material and methods

2.1. Subjects

Sixteen clinically referred, right-handed Japanese children with a
mean age of 8.9 years (SD 2.2, range 6–14 years) whomet the Diagnos-
tic and Statistical Manual of Mental Disorders-IV (DSM-IV) criteria for
ADHD participated in the study (Table 1). The Wechsler Intelligence
Scale of Children — Third Edition (WISC-III) full IQ scores of subjects
were all over 70 (mean 99.4, SD 14.4, range 75–126). Sixteen right-
handed healthy control subjects werematched with the ADHD subjects
according to age (mean 8.9, SD 2.2, range 6–13 years) and gender (14
boys and 2 girls). IQs of controls (mean 108.6, SD 8.1, range 92–121)
were significantly (t = 2.4, p b 0.05) higher than those of ADHD sub-
jects. All children and their parents gave oral consent for their participa-
tion in the study. Written consent was obtained from the parents of all
subjects. The study was approved by the Ethics Committees of Jichi
Medical University Hospital and the International University of Health
and Welfare. The study was in accordance with the latest version
of the Declaration of Helsinki. This study was registered to the Universi-
ty HospitalMedical InformationNetwork Clinical Trials Registry (UMIN-
CTR; 000007799) as “Monitoring of acute effects of ATX on cerebral
hemodynamics in ADHD children: an exploratory fNIRS study using a
go/no-go task”.



Table 1
Demographic and clinical profiles for ADHD subjects.

ID Age (years) Sex ADHD subtype Complication ATX (mg) WISC-III Full IQ Duration of ATX exposure (months) Other medications 1st day 2nd day

1 10 M Combined none 50 109 27 None Placebo ATX
2 7 M Combined none 35 118 2 None ATX Placebo
3 14 M Combined ASD 35 90 7 None ATX Placebo
4 10 M Combined ASD 40 95 7 None Placebo ATX
5 6 M Combined ASD 25 84 4 None ATX Placebo
6 8 M Inattentive ASD 20 126 6 None Placebo ATX
7 9 M Inattentive ASD 40 110 10 None Placebo ATX
8 10 M Inattentive ASD 10 82 24 None ATX Placebo
9 8 M Combined none 15 92 3 None ATX Placebo
10 6 M Combined ASD 5 75 6 None Placebo ATX
11 11 F Combined ASD 15 85 4 Valproic acid Placebo ATX
12 8 M Inattentive ASD 10 95 3 None ATX Placebo
13 12 M Combined ASD 25 114 18 None ATX Placebo
14 8 M Combined ASD 5 107 12 None ATX Placebo
15 9 F Inattentive ASD 25 101 22 None Placebo ATX
16 6 M Combined ASD 15 107 6 None Placebo ATX
Mean 8.8 23.1 99.3 10
SD 2.2 13.6 14.4 8

Abbreviations: SD, standard deviation; ASD, autism spectrum disorders.
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2.2. Experimental design

Fig. 1 summarizes the experimental procedure. We examined the
effects of ATX in a randomized, double-blind, placebo-controlled, cross-
over study while the subjects performed a go/no-go task. We examined
ADHD subjects twice (the times of day for both measurements were
scheduled to be as close as possible), at least 2 days apart, but within
30 days. Control subjects only underwent a single, non-medicated
session.

On each examination day, ADHD subjects underwent two sessions,
one before drug (ATX or placebo) administration, and the other at
1.5 h after drug administration. Before each pre-administration session
all ADHD subjects underwent a washout period of 2 days. We allowed
subjects to take off the probe during waiting periods between the first
and second sessions. Each session consisted of 6 block sets, each con-
taining alternating go (baseline) and go/no-go (target) blocks. Each
block lasted 24 s andwas preceded by instructions displayed for 3 s, giv-
ing an overall block-set time of 54 s and a total session time of 6 min. In
the go block, we presented subjects with a random sequence of two pic-
tures and asked them topress a button for both pictures. In the go/no-go
block, we presented subjects with a no-go picture 50% of the time, thus
requiring subjects to respond to half the trials (go trials) and inhibit
their response to the other half (no-go trials). Specifically, the instruc-
tions read in Japanese, “You should press the button as quickly as you
can. Remember you want to be quick but also accurate, so do not go
too fast.” Participants responded using the forefinger of the right hand.
A go/no-go ratio of 50% was selected as it has been most often used in
former neuroimaging studies (Dillo et al., 2010; Herrmann et al., 2005;
Liddle et al., 2001; Menon et al., 2001; Vaidya et al., 1998). We present-
ed pictures sequentially for 800 ms with an inter-stimulus interval of
200 ms during go and go/no-go blocks. At the beginning of each block,
we displayed instructions (e.g., “press for giraffe or lion” for go condi-
tions and “do not press for tiger” for go/no-go conditions) for 3 s to
inform the subject about the new block. Each subject performed a prac-
tice block before any measurements to ensure their understanding of
the instructions.

After ADHD subjects performed the first session, either ATX
(Strattera) or a placebo was administered orally. The experimental de-
sign was as previously described (Monden et al., 2012a; Monden et al.,
2012b). All patients were pre-medicatedwith ATX as part of their regu-
lar medication regimen. Specific, acute, experimental doses were the
same as the patient3s regular dose as described in Table 1.
2.3. Behavioral data analysis

Wecalculated the average reaction times (RT) for go trials, and accu-
racy rates for go and no-go trials in each go/no-go block for ADHD and
control subjects. We averaged the accuracy and RTs across go/no-go
blocks, and subjected the resulting values to statistical analyses as
described in a subsequent section.We calculated mean RT for each par-
ticipant by taking the average of RTs for correct go trials in the go/no-go
block. We computed accuracy for go trials by dividing the number of
correct responses (i.e., subjects pressed the button in go trials) by the
total number of go trials for the go/no-go block. Similarly, we computed
accuracy for no-go trials by dividing the number of correct inhibitions
(i.e., subjects did not press the button in no-go trials) by the total num-
ber of no-go trials in the go/no-go block.We set the statistical threshold
at 0.05 with the Bonferroni method for multiple-comparison error
correction (i.e., significant: p b 0.05/2).

2.4. fNIRS measurement

We used the multichannel fNIRS system ETG-4000 (Hitachi Medical
Corporation, Kashiwa, Japan), utilizing two wavelengths of near-infrared
light (695 and 830 nm). We analyzed the optical data based on the mod-
ified Beer–Lambert Law (Cope et al., 1988) as previously described (Maki
et al., 1995). Thismethod enabled us to calculate signals reflecting the ox-
ygenated hemoglobin (oxy-Hb), deoxygenated hemoglobin (deoxy-Hb),
and total hemoglobin (total-Hb) signal changes, obtained in units of
millimolar·millimeter (mM·mm) (Maki et al., 1995).

For statistical analyses, we focused on the oxy-Hb signal because of
its higher sensitivity to changes in cerebral blood flow than that of
deoxy-Hb and total-Hb signals (Hoshi, 2003; Hoshi et al., 2001;
Strangman et al., 2002b), its higher signal-to-noise ratio (Strangman
et al., 2002b), and its higher retest reliability (Plichta et al., 2006).

We set the fNIRS probes so that they covered the lateral prefrontal
cortices and inferior parietal lobe, referring to previous studies
(Garavan et al., 1999; Herrmann et al., 2004; Herrmann et al., 2005;
Liddle et al., 2001; Rubia et al., 2003). Specifically, we used two sets of
3 × 5 multichannel probe holders that consisted of eight illuminating
and seven detecting probes arranged alternately at an inter-probe dis-
tance of 3 cm. This resulted in 22 channels (CH) per set. We defined the
midpoint of a pair of illuminating and detecting probes as a channel loca-
tion. We attached the bilateral probe holders in the following manner:
(1) their upper anterior corners, where the left and right probe holders
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Fig. 1. Experimental design. a) A schematic showing the flow of pre- and post-medication
administration sessions for ADHD subjects. b) fNIRS measurements. Brain activity was
measured while ADHD and control subjects performed the go/no-go task.

(a)

(b)

Fig. 2. Spatial profiles of fNIRS channels. a) Left and right side views of the probe arrange-
ments. fNIRS channel orientation is also illustrated. Detectors are shown as blue circles,
illuminators as red circles, and channels as white squares. Corresponding channel num-
bers are indicated in black. b) Channel locations on the brain. Right- and left-side views
are illustrated. Statistically estimated fNIRS channel locations (centers of blue circles) for
control and ADHD subjects, and their spatial variability (SDs, radii of the blue circles)
associated with the estimation are exhibited in MNI space.
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were connected by a belt, were symmetrically placed across the sagittal
midline; (2) the lower anterior corners of the probe holder were placed
over the supraorbital prominence; and (3) the lower edges of the probe
holders were attached at the upper part of the auricles (Fig. 2). For spatial
profiling of fNIRS data, we adopted virtual registration (Tsuzuki and Dan,
2014; Tsuzuki et al., 2007) for registering fNIRS data to MNI standard
brain space (Brett et al., 2002). Briefly, this method enables us to place a
virtual probe holder on the scalp based on a simulation of the holder3s de-
formation and the registration of probes and channels onto reference
brains in an MRI database (Okamoto et al., 2004a; Okamoto and Dan,
2005). Specifically, we measured the positions of channels and reference
points, consisting of the Nz (nasion), Cz (midline central) and left and
right preauricular points, with a 3D-digitizer in real-world (RW) space.
Weaffine-transformed the RW reference points to the corresponding ref-
erence points in each entry in reference to theMRI database inMNI space.
Adopting these same transformation parameters allowed us to obtain the
MNI coordinates for the fNIRS channels and the most likely estimate of
the locations of given channels for the group of subjects together with
the spatial variability associated with the estimation (Singh and Dan,
2006). Finally, we estimatedmacroanatomical labels using aMatlab func-
tion that reads labeling information coded in a macroanatomical brain
atlas, LBPA40 (Shattuck et al., 2008) and Brodmann3s atlas (Rorden and
Brett, 2000).
2.5. Analysis of fNIRS data

Wepreprocessed individual timelinedata for the oxy-Hbanddeoxy-
Hb signals of each channel with a first-degree polynominal fitting and
high-pass filter using cut-off frequencies of 0.01 Hz to remove baseline
drift, and a 0.8 Hz low-pass filter to remove heartbeat pulsations. Note
that Hb signals analyzed in the current study do not directly represent
cortical Hb concentration changes, but contain an unknown optical
path length that cannot be measured. Direct comparison of Hb signals
among different channels and regions should be avoided as optical
path length is known to vary among cortical regions (Katagiri et al.,
2010). Hence, we performed statistical analyses in a channel-wiseman-
ner. From the preprocessed time series data, we computed channel-
wise and subject-wise contrasts by calculating the inter-trial mean of
differences between the peak Hb signals (4–24 s after go/no-go block
onset) and baseline (14–24 s after go block onset) periods. For the six
go/no-go blocks, we visually inspected the motion of the subjects and
removed the blockswith sudden, obvious, discontinuous noise.We sub-
jected the resulting contrasts to second-level, random-effects group
analyses.

image of Fig.�1
image of Fig.�2


Table 3
ADHD inter-medication (ATXpost-pre vs. PLApost-pre) comparison.

ATXpost-pre minus
PLApost-pre

ATXpost-pre vs. PLApost-pre

Mean SD t p

Performance data
RT for correct trials (ms) 13.8 61.2 0.902 0.381 n.s.
Accuracy for go trials (%) 1.2 4.7 1.002 0.332 n.s.
Accuracy for No-go trials (%) −0.7 6.5 −0.401 0.694 n.s.

Functional data
Oxy-Hb right CH 10 (mM·mm) 0.074 0.112 2.655 0.018 **

Performancedata (RT for correct trials and accuracy rates for go andno-go trials) is presented
for go/no-go blocks. Data for inter-medication comparisons (i.e., ATXpost-pre vs. PLApost-pre) are
shown for ADHD subjects. Mean values were calculated by first subtracting the values of
ATXpost-pre from those of PLApost-pre for each subject and then averaging the resulting values
across subjects. SD were similarly calculated. t-Values, p-values, and statistical significance
were the results of two-sample t-tests between ATXpost-pre and PLApost-pre. Abbreviations:
ATXpost-pre, the difference between post- and pre-ATX; PLApost-pre, the difference between
post- and pre-PLA; SD, standard deviation; t, t-value; p, p-value. Statistical significances are
as follows: *, p b 0.05; **, p b 0.01; and ns, not significant.
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2.6. Statistical analysis

We statistically analyzed oxy-Hb signals in a channel-wise manner.
Specifically, for control subjects, who were examined only once, we
generated a target vs. baseline contrast for the session. For ADHD sub-
jects, we generated the following contrasts: (1) pre-medication con-
trasts: the target vs. baseline contrasts for pre-medication conditions
(either placebo or ATX administration) for the first day exclusively;
(2) post-medication contrasts: the respective target vs. baseline con-
trasts for post-placebo and post-ATX conditions; (3) intra-medication
contrasts: differences between post- and pre-medication contrasts for
each medication (i.e., placebopost-pre and ATXpost-pre contrasts); and
(4) inter-medication contrasts: differences between ATXpost-pre and
placebopost-pre contrasts. To screen the channels involved in go/no-go
tasks in normal control subjects, we performed paired t-tests (two-
tails) on target vs. baseline contrasts. We set the statistical threshold
at 0.05 with Bonferroni correction for family-wise errors. For thus-
screened channels, we performed comparisons between control and
ADHD for the following three ADHD contrasts: (1) pre-medication,
(2) post-placebo, and (3) post-ATX. We performed independent two-
sample t-tests (two-tails) on these contrasts with a statistical threshold
of p b 0.05. To examine the medication effects on ADHD subjects, we
performed paired t-tests (two-tails) with a statistical threshold of
p b 0.05 for comparison between ATXpost-pre and placebopost-pre

(i.e., inter-medication contrast). We performed all statistical analyses
with the PASW statistics (version 18 for Windows) (SPSS Inc., Chicago,
USA) software package.

3. Results

3.1. Behavioral performance

The average accuracy for go and no-go trials and RT for correct go tri-
als in the go/no-go block for control and ADHD subjects and ADHD
inter-medication (placebopost-pre vs. ATXpost-pre) comparisons are
summarized in Tables 2 and 3. We found no significant differences in
accuracy for go and no-go trials or in RT for correct trials between con-
trol and pre-medication, post-placebo and post-ATX ADHD subjects
(Table 2). The inter-medication contrast comparing the effect of ATX
against the placebo revealed no significant differences in behavioral pa-
rameters between ADHD subjects (Table 3).

3.2. fNIRS analyses

First, we screened for any fNIRS channels involved in the go/no-go
task for control and ADHD contrasts (pre-/post-placebo and pre-/post-
ATX conditions; Fig. 3). We found a significant oxy-Hb increase in the
right CH 10 (mean 0.095, SD 0.082, p b 0.05, Bonferroni-corrected,
Cohen3s d= 1.151) in control subjects. Conversely, in ADHD conditions,
Table 2
Go/no-go task performance and functional data for control and ADHD subjects.

Control ADHD

Pre-medication (mean of pre-placeb
and ATX)

Mean SD Mean SD t p

Performance data
RT for correct trials (ms) 426.3 59.4 435.0 50.8 0.444 0.660 n
Accuracy for go trials (%) 96.6 6.0 97.8 3.6 0.711 0.483 n
Accuracy for no-go trials (%) 95.3 5.7 94.4 3.2 0.554 0.584 n

Functional data
Oxy-Hb right CH 10 (mM·mm) 0.095 0.083 0.025 0.077 2.617 0.019 †

Performance data (RT for correct trials and accuracy rates for go and no-go trials) is presen
post-medication with placebo and ATX are shown. t-Values, p-values and statistical significan
SD, standard deviation; t, t-value; p, p-value. Statistical significances are presented as follows: †, p
only post-ATX exhibited a significant oxy-Hb increase in the right CH 10
(mean 0.074, SD 0.063, p b 0.05, Bonferroni-corrected, Cohen3s d =
1.165). Thus, we set the right CH 10 as a region-of-interest (ROI) for
the rest of the study. This channel was located in the border region be-
tween the right MFG and IFG (MNI coordinates x, y, z (SD): 50, 37, 33
(16), MFG 68%, IFG 32%, Table 4) with reference to macroanatomical
brain atlases (Rorden and Brett, 2000).

Comparison betweenoxy-Hb signals of the control andpre-medicated
ADHD subjects revealedmarginally significant activation of oxy-Hb signal
in the right CH 10 in the control subjects (independent two-sample t-test,
p b 0.1 Bonferroni-corrected, Cohen3s d = 0.884; Table 2). This indicates
that the control subjects exhibited higher right prefrontal activation dur-
ing go/no-go tasks than did the pre-medicated ADHD children.

Then, we examined the effects of medication between control sub-
jects and post-placebo-ADHD subjects, and between control subjects
and post-ATX-ADHD subjects (Table 2). Oxy-Hb signal in control
subjects was significantly higher than in post-placebo ADHD subjects
(independent two-sample t-test, thresholded at p b 0.05 Bonferroni-
corrected, Cohen3s d= 1.176), while there was no significant difference
between control subjects and post-ATX-ADHD subjects (independent
two-sample t-test, thresholded at p = 0.430, Cohen3s d = 0.283). This
suggests that ATX administration normalized the impaired right pre-
frontal activation.

Finally, we examined whether there was an ATX-induced, but not
placebo-induced, right prefrontal activation in ADHD subjects. In the
inter-medication contrast, we found the right CH 10 to be significantly
different between conditions (paired t-test, p b 0.05, Cohen3s d =
0.663, Table 3). This result demonstrates that ATX, but not the placebo,
induced an oxy-Hb signal increase during the go/no-go task.
o Post-placebo vs. control Post-ATX vs. control

Mean SD t p Mean SD t p

.s. 435.7 67.7 0.331 0.746 n.s. 429.2 56.8 0.116 0.910 n.s.

.s. 96.7 3.6 0.061 0.953 n.s. 97.7 4.3 0.614 0.549 n.s.

.s. 93.7 6.3 0.936 0.364 n.s. 93.9 5.0 0.834 0.417 n.s.

−0.016 0.105 3.326 0.002 ** 0.074 0.063 0.800 0.430 n.s.

ted for go/no-go blocks. Oxy-Hb data includes right CH 10. For ADHD subjects, data for
ces were the results of t-tests between control and each ADHD condition. Abbreviations:
b 0.10 Bonferroni-corrected; **, p b 0.01 Bonferroni-corrected; and n.s., not significant.
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3.3. Examination on the effects of IQ

Because we did not match the IQ of the ADHD and normal healthy
control subjects, we additionally examined whether there was any
possible effect of IQ. We performed correlation analyses for IQ and acti-
vation in the right CH 10 for ADHD subjects (ADHD post-placebo con-
trast) and control subjects, respectively. In ADHD subjects, Pearson3s
Table 4
Spatial profiles of the channels screened for involvement with go–no-go tasks.

MNI coordinates

x, y, z (SD) Macroanatomy

CH 10 50, 37, 33 (16) R middle frontal gyrus

R inferior frontal gyrus

Abbreviations: Prob, probability; SD, standard deviation; R, right.
correlation coefficient was −0.043 (p = 0.871), while that in control
subjects was −0.023 (p = 0.934): In neither analysis did we find any
significant correlation with a meaningful effect size. Further, we com-
pared the two correlation coefficients, but did not find any significant
difference (Fischer3s z = 0.056, p = 0.956). This led us to conclude
that there was no correlation between IQ and the activation in the
right CH 10 in either group.

4. Discussion

4.1. Overview

Our current study, using a double-blind, placebo-controlled, cross-
over design, provided the first fNIRS-based neuropharmacological evi-
dence of the acute ATX effect on inhibitory control in school-aged
ADHD children. Through assessing cortical activation data of ADHD
and healthy control subjects performing a go/no-go task reflecting func-
tion of themotor-related inhibitory network, we revealed that the right
IFG/MFG is a neural substrate of ATX effects in ADHD children based on
the following findings. First, ADHD children exhibited reduced cortical
activation in the right IFG/MFG during go/no-go task blocks compared
to control subjects. Second, the reduction of right IFG/MFG activation
was acutely normalized after ATX administration in ADHD children.
Third, the ATX-induced right IFG/MFG activation was significantly
greater than placebo-induced activation during go/no-go task blocks.

The recovered right IFG/MFG activation in ADHD children detected
by fNIRS measurements after ATX administration is consistent with
our previous studies using MPH (Monden et al., 2012a,b). These results
suggest that normalized right IFG/MFG activation during a go/no-go
task, as observed using fNIRS, may serve as a robust neurobiological
marker for evaluating ATX effects on ADHD children as with evaluating
MPH effects.

4.2. Behavioral performance for go/no-go task

One of themost commonly used experimental paradigms for evalu-
ating response inhibition is the go/no-go task, inwhich subjects are gen-
erally required to inhibit a prepotent response when no-go stimuli are
presented within a sequence of go stimuli (Simmonds et al., 2008).
This is an essential cognitive function required in daily life, and impaired
response inhibition is a potential biomarker candidate for ADHD in chil-
dren (Barkley, 1997). Because of this, a number of go/no-go paradigms
have been widely adopted to explore the disinhibitory nature of
ADHD in fMRI studies (Aron and Poldrack, 2005; Nigg, 2000).

In general, a go/no-go task allows the assessment of detailed aspects
of inhibitory response controls reflected in a variety of parameters
(Newcorn et al., 2001): Errors of omission (the absence of response to
a standard stimuli) are generally interpreted as a symptom of inatten-
tion; errors of commission and overly reduced reaction times with
standard stimuli are commonly considered indicators of impulsivity
(Newcorn et al., 2001). However, our current study did not show any
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significant differences in behavioral performance between ADHD chil-
dren and control subjects. Thus far, we have observed inconsistency in
behavioral data for ADHD children: our previous studies (Monden
et al., 2012b) showed performance impairment in ADHD children com-
pared with control subjects. However, our fNIRS studies have consis-
tently exhibited hypoactivation in the MFG/IFG in pre-medicated
ADHD childrenwithout corresponding behavioral effects. This tendency
is reminiscent of an fMRI study by Smith et al. (2006) reporting that the
go/no-go task parameters showed no difference between ADHD chil-
dren and IQ- and age-matched healthy controls, while hypoactivation
in the bilateral prefrontal and right parietal lobes was found in the
ADHD patients.

These inconsistencies among the results of both studies represent
the difficulty in interpreting behavioral parameters compared with
brain activation patterns for detecting cognitive dysfunction in ADHD
children.

4.3. fNIRS examination of go/no-go task and ATX effects

In our current study, we detected brain activation in the right MFG/
IFG during go/no-go task blocks in the healthy control subjects. This
activation pattern is in accord with that found in previous fMRI studies,
and this region is regarded as especially important for inhibitory control
(Aron and Poldrack, 2005;Morein-Zamir et al., 2014). This led us to con-
clude that our current fNIRS measurements robustly extracted concur-
rent activations for response inhibition in the right prefrontal cortex in
control subjects.

In ADHD conditions, ATX-induced normalization in the MFG/IFG, as
identified using fNIRS, is consistent with former MPH-related studies
(Monden et al., 2012b). Also, these activation patterns are similar to
the results of previous fMRI studies (Cubillo et al., 2014; Schulz et al.,
2012).

In a different vein of studies using animals, both ATX andMPH led to
increased NA and DA in the prefrontal cortex of mice (Koda et al., 2010)
and rats (Ago et al., 2014). Taken together, it would be natural to con-
clude that administration of either ATX or MPH increases NA and DA
concentration in the prefrontal cortex, leading to normalization of in-
hibitory control in ADHD children. However, this does not necessarily
suggest that both medications affect prefrontal functions via the same
neuropharmacological mechanism. We must note here that ATX and
MPH have an almost opposite affinity to DA and NA transporters.
While MPH has a 10-fold higher affinity to DA than to NA transporters,
ATX has a 300-fold higher affinity to NA than to DA transporters
(Bymaster et al., 2002).

According to this evidence, we speculate that MPH has by far larger
effects on the DA system between the prefrontal and striatal regions,
while ATX has far larger effects on the locus coeruleus NA system be-
tween the prefrontal and coeruleus areas (Singh-Curry and Husain,
2009). Thus, what appears as the similar activation patterns induced
by ATX and MPH in the prefrontal cortex may reflect different neural
substrates. In order to elucidate the precise neuropharmacological
mechanism underlying the right prefrontal functional normalization
by ATX and MPH, further investigation is necessary.

4.4. Clinical implications

In the present study, we selected a go/no-go task paradigm with al-
ternating go blocks as baseline blocks and go/no-go blocks as target
blocks without rest segments in between active (go and go/no-go)
task blocks. Tsujii et al. (2011) and Cui et al. (2011) also adopted a sim-
ilar block designed for go/no-go tasks, and treated the go task period as
the baseline for contrast with the go/no-go task period when analyzing
fNIRS signals. This paradigm was set primarily because of the difficulty
with ADHD patients staying still without performing any tasks, which
may lead to unexpected movements or hyperactive behavior. In addi-
tion, we omitted rest blocks to save time, as a long experiment time
would bore ADHD subjects. Furthermore, the go and go/no-go block de-
sign is commonly used in fMRI studies (Altshuler et al., 2005; Dillo et al.,
2010; Ma et al., 2012; Vaidya et al., 1998). Thus, considering compari-
sons acrossmodalities, the use of the go/no-go task paradigm in the cur-
rent study is appropriate.

Another merit of the block-design paradigm is that the baseline
blocks serve as a motor control for the target blocks. Schecklmann
et al. (2008) used a weekday-reciting task as a baseline block and a
word fluency task as a target block, and used fNIRS to analyze the differ-
ence in signal between the two tasks. In this paradigm, movement and
muscle artifacts in the task condition are expected to be neutralized
with the use of a control conditionwith a similarmotor output. Similar-
ly, we adopted the go task as the baseline task. As the physical move-
ments made by children during the go task are similar to those of
the go/no-go task, movement and muscle artifacts are expected to be
ruled out. Accordingly, activation during the go/no-go task block is con-
sidered to reflect inhibitory control; thus, this paradigm is more appro-
priate than oneusing a rest block as the baseline. Although fNIRS studies
often use a paradigm where rest and task blocks are alternately per-
formed (Herrmannet al., 2005), we suggest that it would bemore appli-
cable for studies involving younger ADHD children to adopt the
alternating go and go/no-go block design.

Reminiscent of our study demonstrating the clinical utility of fNIRS-
based assessment of the efficacy of an acute single dose ofMPH toADHD
children, here ATX has been shown to be similarly effective: the current
study demonstrates the utility of fNIRS-based assessment of the efficacy
of an acute single dose of ATX administered to ADHD children. fNIRS-
based assessment has a fundamental clinical importance as a diagnostic
tool and for therapeutic encouragement. For the diagnostic aspect, we
demonstrated that fNIRS-based measurement can reveal the effects of
an acute single dose of ATX with higher sensitivity than can behavioral
parameters. The moderately large effect size of the acute single dose of
ATX as compared to that of the placebo (Cohen3s d = 0.663) demon-
strates that fNIRS-based assessment can serve as a comparably effective
diagnostic tool for the effect of ATX in ADHDchildren, especially those at
elementary-school ages.

Moreover, fNIRS-basedmeasurement could provide therapeutic en-
couragement to ADHD children and their families. One major problem
of medication treatment, which is common with both AXT and MPH,
is the high discontinuation rate estimated at between 36 and 85%
(Adler and Nierenberg, 2010; Habel et al., 2005). Since guardians3 sub-
jective feelings about the efficacy of medication stand as a major cause
for the discontinuation of medication treatment with ADHD children
(Toomey et al., 2012), encouragement of familymembers of ADHD chil-
dren by demonstrating therapeutic success may facilitate successful
ATX treatment. Objective demonstration of ATX effects as visualized
with cortical activation observed with fNIRS-based measurements
could act as an informative guide, encouraging ADHD children and
their guardians to continue ATX treatment.

4.5. Limitations

As discussed above, the current study has demonstrated the ATX-
effect assessment on inhibitory control in ADHD children using fNIRS.
However, for adequate understanding of current findings, several issues
need to be addressed.

First, IQs of control children (mean 108.6, SD 8.1, range 92–121)
were significantly (t = 2.4, p b 0.05) higher than those of ADHD chil-
dren (mean 99.4, SD 14.4, range 75–126). IQ has been reported as hav-
ing a negative correlation with ADHD scores (Goodman et al., 1995).
Since IQ is not independent of ADHD, IQ matching to control subjects
could remove a disorder-related variance from the ADHD group
(Miller and Chapman, 2001). Further study with a larger sample size
may have to be performed in order to explore the possible effects of IQ.

The second limitation of this study is that controls were only tested
once, while children with ADHD were tested a total of four times. The
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practice effect of multiple testing in ADHD children was controlled for
by the counterbalanced design. Ethical limitations prevented us from
testing healthy controls under stimulant medication, as well as from
having them wait for 90 min to retest; however, we need to explore
ways to eliminate potential training effects with appropriate experi-
mental procedures. Since there are no studies on assessing order and
learning effects of go/no-go tasks associated with fNIRS signals, this
would be an interesting and essential area for future study.

5. Conclusion

The current study examining the effects of a single acute dose of ATX
on inhibitory control in ADHD children using a double-blind, placebo-
controlled, crossover design, revealed the following findings. First, the
activation foci (right IFG/MFG), which are involved in inhibition control,
were activated in control subjects performing a go/no-go task, but not in
ADHD children. Second, the ATX-induced right IFG/MFG activation was
significantly greater than placebo-induced activation during go/no-go
task blocks. Third, the activation in the right IFG/MFG region was nor-
malized after ATX administration. Taken together, these findings led
us to conclude that the activation in the MFG/IFG could provide an ob-
jective neuro-functional biomarker that indicates the effects of ATX on
inhibitory control in ADHD children. This fNIRS-based examination on
the effect of ATX is applicable to ADHD children at elementary school
ages including those as young as 6 years old. Thus, we believe that
fNIRS-based examination is a promising clinical tool that could enable
the early diagnosis and treatment of ADHD children.
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