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Oral cancer is one of the lethal diseases among the available malignant tumors globally, and it has become a challenging health
issue in developing and low-to-middle income countries. (e prognosis of oral cancer remains poor because over 50% of patients
are recognized at advanced stages. Earlier detection and screening models for oral cancer are mainly based on experts’ knowledge,
and it necessitates an automated tool for oral cancer detection. (e recent developments of computational intelligence (CI) and
computer vision-based approaches help to accomplish enhanced performance in medical-image-related tasks. (is article de-
velops an intelligent deep learning enabled oral squamous cell carcinoma detection and classification (IDL-OSCDC) technique
using biomedical images. (e presented IDL-OSCDC model involves the recognition and classification of oral cancer on
biomedical images. (e proposed IDL-OSCDC model employs Gabor filtering (GF) as a preprocessing step to eliminate noise
content. In addition, the NasNet model is exploited for the generation of high-level deep features from the input images.
Moreover, an enhanced grasshopper optimization algorithm (EGOA)-based deep belief network (DBN) model is employed for
oral cancer detection and classification. (e hyperparameter tuning of the DBN model is performed using the EGOA algorithm
which in turn boosts the classification outcomes. (e experimentation outcomes of the IDL-OSCDC model using a benchmark
biomedical imaging dataset highlighted its promising performance over the other methods withmaximum accuy, precn, recal, and
Fscore of 95%, 96.15%, 93.75%, and 94.67% correspondingly.

1. Introduction

Oral cancer is leading cancer globally and is considered by
late diagnoses, morbidity higher, and mortality rates. Two-
third of the total occurrence arises in low- and middle-in-
come countries (LMICs), and half of the cases are in South
Asia [1, 2]. Excessive usage of alcohol and tobacco are the
main risk factor for oral tumors. (e major factor in South
and Southeast Asia is betel quid chewing which usually

comprises slaked lime, betel leaf, and areca nut and might
comprise tobacco [3]. Currently, they are commercially
offered in sachets and are common in public because of their
dynamic marketing strategy. (e oral lesion is related to late
presentation, mainly in LMIC, around two-third present at a
late stage, and consequently, the survival rate is poor [4].
Cancer management, particularly at the late stage, is too
expensive [5]. (e lack of knowledge of health professionals
and lack of public awareness concerning oral lesions are
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major reasons for late diagnosis. (e OPMD diagnosis has a
risk of malignant transformation, is of great significance to
reduce mortality and morbidity from oral tumors, and has
been the major emphasis of the screening program [6]. But
the application of this program depends on visual inspection
has turned out to be challenging in real-time settings as they
depend on healthcare professionals, who are not experienced
or adequately trained to identify this lesion [7, 8].

Earlier identification of OSCC gains significant impor-
tance for improved diagnosis, treatment, and survival [5, 6].
Late diagnosis has hampered the quest for precision med-
icine in spite of the advancements in the understanding of
the molecular mechanism of cancer. (us, machine learning
(ML) and deep learning (DL) models have been employed
for improving recognition and thereby reducing cancer-
specific death rates and morbidity [7]. Automated image
examination clearly has the significance of assisting pa-
thologists and clinicians in the earlier detection of OSCC and
decision-making in management. (e considerable het-
erogeneity in the presence of oral cancer makes the detection
highly complex for healthcare professionals and common
cause of delays in inpatient referral to oral lesion specialists
[9]. In addition, early-stage OSCC lesions and OPMD are
generally asymptomatic and might seem like small, harmless
lesions, leading to late presentation of the patient and
eventually leading to diagnosis delay [10, 11]. Advancement
in the fields of deep learning and computer vision offers an
effective method to propose adjunctive technology that
could implement an automatic screening of the oral cavity
and present feedback to individuals for self-examination and
healthcare professionals at the time of patient examination.

Bhandari et al. [12] aim to improve the performance of
classifying and detecting oral tumors within a minimized
processing time. (e presented technique comprises a
convolution neural network with an adapted loss function to
minimize the error in classifying and predicting oral tumors
by supporting multiclass classification and minimizing the
over-fitting of the data. Lu et al. [13] presented an automatic
approach for oral tumor diagnosis on slide cytology images.
(e pipeline comprises per-cell focus selection, CNN-based
classification, and fully convolution regression-based nu-
cleus recognition.(e proposed method offers faster per-cell
focus decisions at human-level accuracy. Song et al. [14]
introduced an image classification method based on auto-
fluorescence and white-light images with the DL method.
(e data are fused, extracted, and calculated to feed the DL-
NN. Next, compared and investigated the efficiency of
regularization, convolution neural network, and transfer
learning technique for classifying oral tumors.

Figueroa et al. [15] designed a DL training model which
provides understandability to its prediction and guides the
network to remain focused and precisely delineate the tu-
morous region of the image. Lim et al. [16] developed a DL
architecture called D’OraCa to categorize oral lesions with
photographic images. It develops a mouth landmark rec-
ognition method for the oral image and integrates it with
oral cancer classification as guidance to enhance the clas-
sification performance. Shamim et al. [17] evaluated and
applied the effectiveness of six deep convolutions neural

network (DCNN) models with transfer learning, for rec-
ognizing precancerous tongue lesions through a smaller data
set. DCNN model can distinguish between five kinds of
tongue cancer and differentiate between benign and pre-
cancerous tongue lesions.

In comparison with conventional ML models, the DL
models receive input and do not involve a complicated
feature extraction process. Besides, the heterogeneous pat-
tern can result in variance over distinct instances and
thereby causes complexity in handcrafted features with
restricted generalization ability. In addition, the DL models
exhibit high scalability owing to the capability of processing
large amounts of data. (e considerable heterogeneity in the
presence of oral lesions makes the detection process difficult
and is considered to be the leading cause of delays in in-
patient referrals to oral cancer specialists. In addition, early-
stage OSCC lesions remain symptomless and may look like
small, inoffensive lesions, resulting in the late demonstration
of the patient and eventually leading to additional diagnosis
delay. (erefore, it is needed to design effective OSCC
classification models.

(is article presents an intelligent deep learning enabled
oral squamous cell carcinoma detection and classification
(IDL-OSCDC) model using biomedical images. (e sug-
gested model employs Gabor filtering (GF) as a pre-
processing process to eliminate noise content. In addition,
the NasNet model is exploited for the generation of high-
level deep features from the input images. Moreover, an
enhanced grasshopper optimization algorithm (EGOA)-
based deep belief network (DBN) model is employed for oral
cancer classification and detection. (e hyperparameter
tuning of the DBN model is performed using the EGOA
algorithm which in turn boosts the classification outcomes.
(e experimentation outcomes of the IDL-OSCDC model
are performed using a benchmark biomedical imaging
dataset.

(e rest of the paper is organized as follows. Section 2
provides the proposed IDL-OSCDC model, and Section 3
offers the performance validation. At last, Section 4 con-
cludes the study.

2. The Proposed IDL-OSCDC Model

In this article, a novel IDL-OSCDC model was introduced
for the identification and classification of oral tumors using
biomedical images. At the initial stage, the IDL-OSCDC
model utilized the GF technique to get rid of noise content.
Following this, the NasNet model is exploited for the
generation of higher-level deep features from the input
images. Finally, the EGOA-DBN model is utilized to detect
and categorize oral cancer. Figure 1 illustrates the overall
process of the IDL-OSCDC technique.

2.1. Image Preprocessing Using GF Technique. In this study,
the IDL-OSCDC model utilized the GF technique to get rid
of noise content.(e GF is a bandpass filter that is effectively
executed for variation of image processing and machine
vision application. In 2D, the Gabor function is an oriented
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complex sinusoidal grating reduced by a 2D Gaussian en-
velope. In a 2D co-ordinate (a, b) scheme, the GFs con-
taining real components and imaginary ones are
demonstrated as [18]

Gδ,θ,ψ,σ,c(a, b) � exp −
a
’2

+ c
2
b
’2

2σ2
􏼠 􏼡 × exp j 2π

a′
δ

+ ψ􏼠 􏼡􏼠 􏼡,

(1)

where

a′ � a cos θ + b sin θ,

b′ � − a sin θ + b cos θ,
(2)

in which δ implies the wavelength of sinusoidal factors, and
θ signifies the orientation separation angle of the Gabor
kernel. Notably, it can be required only to assume θ from the
interval [0°, 180°] as symmetry creates other directions
redundant. ψ defines the phase offset, σ demonstrates the
standard derivation (SD) of the Gaussian envelope, and c

denotes the ratio of spatial features (the default value is 0.5)
identifying the ellipticity of supports of the Gabor functions.
(e parameter 0 has been defined by 6 and spatial frequency
bandwidth bw as

σ �
δ
pi

����
ln 2
2

􏽲
2bw

+ 1
2bw

− 1
. (3)

2.2. Feature Extraction: NASNet Model. For the effectual
derivation of feature vectors, the NASNet model is utilized
[19]. (e NASNetMobile model is a recently developed DL

model with 53,26,716 parameters. It exhibits high reliability.
(e fundamental component of the NASNet model is the
block, and a collection of blocks is integrated to form a cell.
(e searching space involved in the NASNet is the factor-
ization of the networks to cells and again splits into blocks.
(e number and type of cells/blocks are not predefined.
However, they need to be optimized for the chosen dataset.
(e probable functioning of the block comprises convolu-
tion, separable convolution, max pooling, average pooling,
and identify map. (e block has the ability of mapping two
inputs into an output feature map. It performs element-wise
addition. When the cell receives a block with a feature map
size of H×W and stride of 1, the outcome will be the
identical size of the feature map. Figure 2 depicts the
framework of the NASNet model.

Once the stride is 2, the size is decreased by 2. (e cells
have been integrated from an optimizing method. (e
network progress is concentrated on 3 features: the cell
infrastructure, the amount of cells that are stacked (N), and
the amount of filters from the primary layer (F). Primarily N
and F are set in the search. (en, N and F from the primary
layer are changed for controlling the depth as well as the
width of networks. If the search was complete, methods are
created with various sizes for fitting the data set. (e cell is
then related in an optimizing method for developing the
NASNet infrastructure. All the cells are associated with 2
input states named hidden state. For providing higher ac-
curacy, NASNetLarge is obtained N as 6, but the essential
concern to NASNetMobile is for running with restricted
resources. In order to both normal as well as reduce cells, an
input size of 224× 224× 3 was decreased to a size of 7× 7 at
the output with a chosen group of functions utilizing
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Figure 1: Overall process of IDL-OSCDC technique.
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5B cells. A novel model named scheduled DropPath was
presented in NASNet, whereas all the paths from the cell
were dropped with linearly enhancing probability as trained
of network progress.

2.3. Image Classification: DBN Model. During image clas-
sification process, the DBN model allocates proper class
labels to it. DBN is a probabilistic generation model com-
prising a stack of restricted Boltzmann machine (RBM) and
backpropagation (BP) neural networks. It encompasses the
visible layer, n hidden, and output layers [20]. (e input/
visible layer is placed at the end of the model, and the
features are passed via many hidden layers at the time of the
learning procedure. At last, the proper class label will be
allocated at the output layer. In addition, RBM comprises
input and hidden layers where bidirectional links exist
among two layers. Consider that there are m units in the
input layer with vector v � v1, v2, · · · , vi, · · · vm􏼈 􏼉 and n units
in the hidden layer with vector h � h1, h2, · · · hn􏼈 􏼉. (e en-
ergy function of the RBM can be represented using the
following equation:

E(v, h; θ) � − 􏽘
m

i�1
􏽘

n

j�1
ωijvihj − 􏽘

m

i�1
aivi − 􏽘

n

j�1
bjhj, (4)

where θ signifies the parameters of RBM, comprising unit
bias of input layer ai and unit bias of hidden layer bi, and ωij

denotes link weight among the nodes that exist among the
input and hidden layers. Based on the energy function of the
RBMmodel, the joint distribution can be defined as follows:

p(v, h) �
1

R(θ)
e

− E(v,h)
,

R(θ) � 􏽘
v,h

e
− E(v,h)

,

(5)

where R(θ) is termed as a normalization factor. (e inde-
pendent probability distribution of the input layer can be
formulated as follows:

p(v) � 􏽘
h

p(v, h) �
1

R(θ)
􏽘
h

e
− E(v,h)

. (6)

As there exist no links among the nodes in the equivalent
layer, the conditional probability distribution of all layers
can be defined as follows:

p hj � 1|v; θ􏼐 􏼑 � σ 􏽘
m

i�1
ωijvj + bj

⎛⎝ ⎞⎠,

p vi � 1|h; θ( 􏼁 � σ 􏽘
n

j�1
ωijhj + ai

⎛⎝ ⎞⎠,

(7)

where σ(x) � 1/(1 + exp (x)) indicates sigmoid function.
(e intention of RBM is the maximization of probability
p(v) via modifying bias ai, bj, and weight ωij. (e RBM
parameters set θ � ai, bi,ωii􏼈 􏼉 is attained from training data
by the use of the maximum likelihood estimation approach.
(e gradient value of the parameters can be represented as
follows:

z lnp(v)

zωij

�〈vihj〉data − 〈vijh〉model,

z lnp(v)

zai

�〈vi〉data − 〈vi〉model,

z lnp(v)

zbj

�〈hj〉data − 〈h〉model,

(8)

where 〈·〉data signifies the probability of p(hv) derived by
RBM, 〈·〉model characterizes probability p(v, h) provided by
the reconstructed RBM. Also, the parameter set θ can be
reorganized using the contrast divergence model.

ω(t+Δt)
ij � ω(t)

ij +
α
β
〈vihj〉data − 〈Vihj〉model􏼐 􏼑,

ai � aj +
α
β
〈vj〉data − 〈vj〉mode1􏼐 􏼑􏼠􏼠 ,

b
(t+Δt)
j � b

(t)
j +

α
β
〈hj〉data − 〈hj〉model􏼐 􏼑,

(9)

where α and β indicate learning rate and batch size. Once the
initial training process of RBM is done, the present hidden
layer turned it into the visible layer of the succeeding RBM.
Once every RBM training is done, the deep features are
classified.

2.4. Hyperparameter Optimization: EGOA Algorithm. (e
hyperparameter tuning of the DBN model is performed
using the EGOA algorithm which in turn boosts the clas-
sification outcomes. GOA emulates the behavior of grass-
hopper insects. (is insect affects agriculture and crop
productivity, and the life cycle comprises egg, nymph, and
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Figure 2: Structure of NASNet model.
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adulthood [21]. In the nymph stage, the key feature includes
moving and jumping in the rolling cylinder (with slow
movement and small steps). In the adulthood stage, grass-
hopper migrates a longer distance in a swarm (with long-
range and abrupt movement). Such behaviors are arith-
metically expressed by taking the location of the grasshopper
into account (xi).

xi � Si + Gi + Ai, i � 1, 2, . . . , N, (10)

whereas Si signifies social interaction of the ith grasshopper
as follows:

Si � 􏽘
N

j�1,i≠ j

s dij􏼐 􏼑􏽣dij, dij � xi − xj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (11)

Now, dij indicates the distance between the ith and jth
grasshoppers whereas s denotes the strength of social force
function.

s(y) � fe
− y/1

− e
− y

. (12)

In which Gi and Ai represents the gravity force and wind
advection for ith grasshopper correspondingly, l and f

indicate the attractive length scale and the intensity of at-
traction as follows:

Gi � − g􏽢eg,

Ai � u􏽢ew,
(13)

where ew and eg represent the unity vector to the direction of
the wind and the center of Earth, and g and u represent the
gravitational constant and constant drift correspondingly.
But equation (10) could be directly used for finding the
solution to the optimization issue; hence, the researcher is
rewritten as the following equation:

xi � c 􏽘
n

j�1,i≠ j

c
u − 1
2

s xj − xi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
xj − xi

dij

⎛⎝ ⎞⎠ + 􏽣Td, (14)

where l and u represent the lower and upper bounds of the
searching region, correspondingly; Td denotes the value of
the optimal solution, and s is determined in equation (12).
But, in equation (14), gravity is not taken into account, and
the direction of the wind is often considered as 􏽢Td. Now, c

represents a reduction coefficient to shrink the attraction,
comfort, and repulsion zones.

c � cmax − t
cmax − cmin

tmax
, (15)

where cmax and cmin represent the maximal value (equiv-
alent to 1) and minimal value (equivalent to 0.00001) of c,
correspondingly; t denotes the existing iteration, and tmax
represent the maximal amount of iterations. At last, the
pseudocode of the GOA is given in Algorithm 1.

In the EGOA, the OBL approach was utilized for de-
termining the opposite solution to the existing solution, and
it then utilizes the value of fitness function (f ) for deter-
mining if the opposite has superior to the existing solutions.
(e fundamental explanation of OBL is presented in [22], by

considering the opposite value x to the real value x ∈ u[ that
is computed as

x � u + l − x. (16)

(is definition is the generalization to n-dimensional by
utilizing the following subsequent formula:

x � ui + li − xi, i � 1, 2, . . . , N, (17)

whereas x ∈ Rn refers to the opposite vector in the real vector
x ∈ Rn. Besides, with the optimized procedure, the 2 solu-
tions x( and x) are calculated, and the optimum solution is
saved, but the other was eliminated by relating the fitness
function. For sample, if f(x) < f(x) (to minimized), x is
stored; else, x is saved.

3. Results and Discussion

(is section investigates the oral cancer classification per-
formance of the IDL-OSCDC model using the benchmark
Kaggle repository [23]. (e dataset includes images of lips
and tongue which are classified into cancerous and non-
cancerous groups. A sample image is demonstrated in
Figure 3.

Figure 4 showcases various confusion matrices created
by the IDL-OSCDCmodel on distinct sets of TR/TS datasets.
On the training/testing (TR/TS) set of 90 :10, the IDL-
OSCDC model categorized 9 samples into cancer and 4
samples into noncancer. In line with the TR/TS set of 80 : 20,
the IDL-OSCDC technique has categorized 18 samples into
cancer and 7 samples into noncancer. Meanwhile, on the
TR/TS set of 70 : 30, the IDL-OSCDC approach has cate-
gorized 24 samples into cancer and 14 samples into non-
cancer. Eventually, on the TR/TS set of 60 : 40, the IDL-
OSCDC system has categorized 28 samples into cancer and
22 samples into noncancer.

Table 1 and Figure 5 report an extensive oral cancer
classification performance of the IDL-OSCDC approach on
the test and training dataset. (e results are inspected under
distinct sizes of TR/TS data. (e experimental outcome
signified that the IDL-OSCDC model has reached proficient
values under all sizes of TR/TS data. For instance, with TR/
TS set of 90 :10, the IDL-OSCDCmodel has provided accuy,
precn, recal, and Fscore of 92.86%, 90%, 95%, and 91.81%,
respectively.

Following this, with a TR/TS set of 80 : 20, the IDL-
OSCDC methodology has offered accuy, precn, recal, and
Fscore of 92.59%, 88.89%, 95%, and 91.12% correspondingly.
Along with that, with TR/TS set of 70 : 30, the IDL-OSCDC
model has given accuy, precn, recal, and Fscore of 95%,
96.15%, 93.75%, and 94.67% correspondingly. Furthermore,
with TR/TS set of 60 : 40, the IDL-OSCDC method has
provided accuy, precn, recal, and Fscore of 94.34%, 94.11%,
94.49%, and 94.27% correspondingly.

A brief precision-recall examination of the IDL-OSCDC
model on different TR/TS datasets is portrayed in Figure 6.
By observing the figure, it is noticed that the IDL-OSCDC
model has accomplished maximum precision-recall per-
formance under all datasets.
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Initialize the value of the parameters namely population size (N), cmax , cmin and maximal amount of iteration (tmax )

Produce a population (X) randomly
Set the recent iteration t � 1
While (t< tmax ) do
Calculate the fitness function f

Choice of the optimal solution 􏽢Td

Upgrade the value of c by equation (15)
for i � 1: N do
Normalize the distance among the solutions in X.
Upgrade xi ∈ X by equation (14)

end for
t � t + 1

End while
Return 􏽢Td.

Where t

ALGORITHM 1: Pseudo-code of GOA

Figure 3: Sample images.
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Figure 4: Continued.
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Figure 7 demonstrates the ROC inspection of the IDL-
OSCDC model under different sets of training and testing
datasets. (e result indicates that the IDL-OSCDC model
has resulted in the highest performance on the testing
dataset over the other ones.

Figure 8 illustrates the training and validation accuracy
investigation of the IDL-OSCDC approach on the applied
dataset.(e figure conveyed that the IDL-OSCDCmodel has
offered maximum training/validation accuracy in the clas-
sification process.

Next, Figure 9 represents the training and validation loss
examination of the IDL-OSCDC model on the applied
dataset. (e figure reported that the IDL-OSCDC model has
exhibited reduced loss values.

Table 2 investigates the comparative study of the IDL-
OSCDC technique with recent approaches [24]. Figure 10

inspects the detailed accuy examination of the IDL-OSCDC
model with other models. (e figure revealed that the SVM
method has resulted in least performance with a lower accuy

of 88.38%. In addition, the ANN-SVM technique has
reached a slightly enhanced outcome with accuy of 90.48%
whereas the fuzzy technique has depicted a moderately
improved accuy of 92.76%. Following this, the RF and
CapsNet technique have shown closer results than the other
methods. However, the IDL-OSCDC model has shown an
effectual outcome with a maximum accuy of 95%.

Figure 11 examines the detailed precn, recal, and Fmeasure
examination of the IDL-OSCDC model with other tech-
niques. (e figure exposed that the SVM system has resulted
in least performance with lower precn, recal, and Fmeasure of
89.82%, 90.65%, and 88.01%. Furthermore, the ANN-SVM
model has reached slightly enhanced outcome with precn,
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Figure 4: Confusion matrix of IDL-OSCDC technique with different TR/TS datasets.

Table 1: Classification results of IDL-OSCDC technique on TR/TS datasets.

Class labels Accuracy Precision Recall F-score
Training/Testing (90 :10)
Cancer 92.86 100.00 90.00 94.74
Noncancer 92.86 80.00 100.00 88.89
Average 92.86 90.00 95.00 91.81
Training/Testing (80 : 20)
Cancer 92.59 100.00 90.00 94.74
Noncancer 92.59 77.78 100.00 87.50
Average 92.59 88.89 95.00 91.12
Training/Testing (70 : 30)
Cancer 95.00 92.31 100.00 96.00
Noncancer 95.00 100.00 87.50 93.33
Average 95.00 96.15 93.75 94.67
Training/Testing (60 : 40)
Cancer 94.34 96.55 93.33 94.92
Noncancer 94.34 91.67 95.65 93.62
Average 94.34 94.11 94.49 94.27
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Figure 6: Precision-recall analysis of IDL-OSCDC technique with diverse TR/TS datasets.
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Figure 7: ROC analysis of IDL-OSCDC technique with different TR/TS datasets.
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recal, and Fmeasure of 92.24%, 90.13%, and 91.94% whereas
the fuzzy method has portrayed moderately enhanced precn,
recal, and Fmeasure of 88.03%, 89.43%, and 91.53%.

Afterward, the RF and CapsNet models have revealed closer
results over the other methods. Finally, the IDL-OSCDC
algorithm has shown effectual outcome with maximum
precn, recal, and Fmeasure of 96.15%, 93.75%, and 94.67%.
After observing the abovementioned figures and tables, it is
apparent that the IDL-OSCDC model has resulted in
maximum performance over the other methods.

4. Conclusion

In this article, a novel IDL-OSCDC model has been estab-
lished for the identification and classification of oral lesions
using biomedical images. At the initial stage, the IDL-OSCDC
model utilized the GF technique to get rid of noise content.
Following this, the NasNet model is exploited for the gen-
eration of higher-level deep features from the input images.
Finally, the EGOA-DBN model is utilized to detect and
categorize oral cancer. (e hyperparameter tuning of the
DBNmodel is performed using the EGOA algorithmwhich in
turn boosts the classification outcomes. (e experimentation
outcomes of the IDL-OSCDC model are performed using a
benchmark biomedical imaging dataset. An extensive com-
parison study highlighted its promising performance over the
other methods. In the future, advanced DL models can be
utilized as a classifier to optimize the detection performance.
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