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Abstract: Despite the well-demonstrated efficacy of infliximab in inflammatory diseases, treatment
failure remains frequent. Dose adjustment using Bayesian methods has shown in silico its interest in
achieving target plasma concentrations. However, most of the published models have not been fully
validated in accordance with the recommendations. This study aimed to submit these models to an
external evaluation and verify their predictive capabilities. Eight models were selected for external
evaluation, carried out on an independent database (409 concentrations from 157 patients). Each
model was evaluated based on the following parameters: goodness-of-fit (comparison of predic-
tions to observations), residual error model (population weighted residuals (PWRES), individual
weighted residuals (IWRES), and normalized prediction distribution errors (NPDE)), and predictive
performances (prediction-corrected visual predictive checks (pcVPC) and Bayesian simulations). The
performances observed during this external evaluation varied greatly from one model to another. The
eight evaluated models showed a significant bias in population predictions (from −7.19 to 7.38 mg/L).
Individual predictions showed acceptable bias and precision for six of the eight models (mean error
of −0.74 to −0.29 mg/L and mean percent error of −16.6 to −0.4%). Analysis of NPDE and pcVPC
confirmed these results and revealed a problem with the inclusion of several covariates (weight,
concomitant immunomodulatory treatment, presence of anti-drug antibodies). This external evalua-
tion showed satisfactory results for some models, notably models A and B, and highlighted several
prospects for improving the pharmacokinetic models of infliximab for clinical-biological application.

Keywords: infliximab; population pharmacokinetics; external evaluation; Crohn’s disease; ulcerative
colitis; ankylosing spondylitis; psoriatic rheumatism; rheumatoid arthritis

1. Introduction

Infliximab (IFX) is a chimeric IgG1 monoclonal antibody against tumor necrosis factor
alpha (TNFα) used in a wide range of inflammatory diseases [1], such as inflammatory
bowel disease and spondyloarthropathies. Although its efficacy has been proven in several
studies, therapeutic failure is still pretty common [2]. For example, in inflammatory bowel
diseases, primary nonresponse occurs in almost one-third of patients, and secondary loss
of response concerns 20 to 40% of patients initially responding [3]. Efficacy of IFX has been
linked to serum concentrations in rheumatoid arthritis (RA) [4–6], ankylosing spondylitis
(AS) [7], inflammatory bowel diseases (IBD) [8,9], and psoriatic patients [10]. Furthermore,
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suboptimal drug levels have been identified as one reason of therapeutic failure [2]. These
observations have contributed to the use of therapeutic drug monitoring (TDM) for IFX,
and therapeutic thresholds have been established in the main diseases: 3 mg/L for RA [11]
and 5 mg/L for IBD [12].

Nevertheless, therapeutic optimization can be challenging due to IFX’s pharmacoki-
netics (PK), which is strongly influenced by patient-linked specificities [1,13–15]. Several
TDM-based protocols have been tested to adapt IFX doses: stepwise dosing, proportional
dosing, and model-based dosing [16]. An in silico assessment of these adaptive dosing
strategies recently proved the superiority of the model-based approach using Bayesian
forecasting based on a population PK model [16]. Mould et al. also assessed, in pediatric
IBD patients, the benefit of Bayesian adaptive dosing, and showed that dashboard-driven
dosing resulted in observed exposures generally contained within the range of exposures
achieved with label dosing [17]. Even more recently, Strik et al. reported that the use of a
Bayesian dashboard for IFX dosing in maintenance treatment for IBD patients reduced the
incidence of loss of response and decreased fecal calprotectin levels compared to standard
dosing [18]. Moreover, Santacana Juncosa et al. confirmed that IFX TDM combined with
Bayesian forecasting improved the short-term clinical response in a real-world dataset of
patients suffering from IBD [19].

However, many models have been published for IFX and choosing the best one for
clinical practice can be difficult. Before using a model in clinical practice, an essential step
after model building and qualification is model evaluation [20,21]. Yano et al. described
model evaluation as follows: “the goal of model evaluation is objective assessment of the
predictive ability of a model for domain-specific quantities of interest, or to determine
whether the model deficiencies (the final model is never the ‘true model’) have a noticeable
effect in substantive inferences” [22]. A model can be evaluated on the same population
used for model building, i.e., internal evaluation, which can involve basic or more ad-
vanced methods, such as data splitting and/or the resampling technique, or on a different
population coming from an external study, i.e., external evaluation [23–28]. A survey of
the literature from 2002 to 2004 showed that external evaluation was conducted in only
7% of the published population PK models [29]. For IFX, only one external evaluation
of one model has been published in the literature [30]. Thus, the present study aimed to
evaluate published PK models of infliximab using a new dataset of patients treated at
Reims University Hospital.

2. Materials and Methods
2.1. Literature Search

A systematic literature search for published population PK models of IFX up to
February 2020 was performed on Pubmed, Google Scholar, Web of Science, Scopus, and
summaries of gastroenterology, rheumatology, and pharmacology conferences. MeSH
terms “Infliximab/pharmacokinetics” were chosen for the literature review, and the follow-
ing keywords were combined: infliximab, pharmacology, population pharmacokinetics, to
obtain the following search queries:

- (Infliximab [MeSH Terms]) AND (“1900” [Date-Publication]: “2020/02” [Date-Publication])
- (Infliximab/pharmacokinetics [MeSH Terms]) AND (“1900” [Date-Publication]: “2020/

02” [Date-Publication])
- (Infliximab [MeSH Terms]) AND (Pharmacology [MeSH Terms]) OR (Pharmacology,

Clinical [MeSH Terms]) AND (“1900” [Date-Publication]: “2020/02” [Date-Publication])
- (Infliximab) AND (“1900” [Date-Publication]: “2020/02” [Date-Publication]) AND

(population) AND (pharmacokinetic)

A manual search for other relevant studies was conducted by inspecting the refer-
ence lists of identified journal articles. No restriction was made on pathology or study
publication date. The study language was limited to English or French. The following infor-
mation was extracted from the articles: model structure, typical population PK parameters,
inter- and intra-individual variability, residual variability, covariates, software, estimation
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method, and internal evaluation procedure. Models were then selected for analysis if our
dataset enabled their evaluation, i.e., if our population presented more than 20 patients
resembling the construction population and all covariates were available.

2.2. External Evaluation Dataset

Data were collected retrospectively from the medical records of patients treated with
IFX at Reims University Hospital from February 2016 to July 2020. This study was per-
formed in accordance with the Declaration of Helsinki. As the study was based on medical
data systematically recorded at Reims University Hospital for patient care, and authorized
by the French national commission for data privacy (Commission Nationale Informatique
et Libertés, CNIL MR004: 2206749v0), the study did not require approval by an ethics
committee according to the French legislation on human research. Every patient received
an information notice regarding the use of their data extracted during routine TDM pro-
cedures with their consent. No patient data in the external evaluation set had previously
been included in the development of any of the models. Collected data included: IFX
and anti-drug antibodies (ADA) concentration measurements, details about each infusion
received (date of treatment initiation and of each infusion, dose administered, commercial
drug name (Remicade® or biosimilar), adverse effects), information on treated disease (date
of diagnosis, co-medications, clinical and endoscopic evolution, disease activity scores),
biological information (calprotectin, C reactive protein (CRP), albumin), and demographic
data (sex, age, weight, smoking). IFX concentrations were measured using a validated
enzyme-linked immunosorbent assay (Lisa Tracker, Theradiag, France), ranging from
0.3 mg/L to 16 mg/L. Data below the lower limit of quantification (LLOQ) were not in-
cluded in the analysis. Data above the upper limit of quantification (ULOQ) were included
if diluted and under 40 mg/L.

Data were included if at least one infusion of IFX and the respective concentration-time
measurement were available. Data were excluded if there was any uncertainty about the
time of dosing or drug concentration measurement and if dosing information was absent.
Moreover, every evaluated study’s inclusion and exclusion criteria were respected so that
every model was evaluated on a portion of the external evaluation population resembling
its modelling population.

2.3. Evaluation of Predictive Performance

Each selected population PK model was separately implemented in Monolix (version
2019R2, Lixoft, Antony, France) [31] as described in the original article. Parameter values
and covariate relationships for each model were set to those determined in the publications.
Finally, predictions were generated using the doses, sampling times, and covariate values
recorded in the evaluation data set.

Each model’s predictive performance was assessed graphically and by statistical
analysis, as described by Nguyen et al. [20]. First of all, for each model, goodness-of-fit was
assessed graphically by comparing observations to population predictions (PPRED) on the
one hand and individual predictions (IPRED) on the other hand. The correlation coefficient
(R2), mean error (ME), mean percentage error (MPE), and relative root mean square error
(RMSE) were also calculated for PPRED and IPRED. Furthermore, residual error was
evaluated on population-weighted residuals (PWRES), individual-weighted residuals
(IWRES), and normalized prediction distribution errors (NPDE) [32]. PWRES and IWRES
were plotted against PPRED and IPRED, respectively. NPDE represent a better approach
than other metrics because they do not depend on a model approximation and have good
statistical properties [32]. Since NPDE are assumed to follow a normal distribution (0;1), a
quantile-quantile (QQ) plot and a representation of the distribution were produced. Several
statistical tests were used as well: comparison of mean to 0 (Wilcoxon test), comparison of
variance to 1 (Fisher test), Shapiro-Wilk normality test, and symmetry test. NDPE were
also plotted against PPRED, time, and continuous covariates. Boxplots were used for
categorical covariates as well as a Wilcoxon test for each situation (presence and absence
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of the covariate). Finally, each model’s prediction performances were evaluated using
prediction-corrected visual predictive checks (pc-VPCs) performed by simulating 1000 data
sets using each model. VPCs allow the comparison of the distribution of observations and
predictions against an independent variable, time in this case.

Statistical analysis and graphs were performed using Rstudio (https://cran.r-project.
org/ version 4.0.0, ggplot and ggformula packages, accessed on 8 May 2020) with data
from Monolix. The only exceptions were pc-VPC and symmetry tests, which were con-
ducted directly with Monolix. ME, MPE, and RMSE were calculated using the following
formulas [21]:

ME =
1
n
×

n

∑
i=1

(
yi,pred − yi,obs

)
MPE (%) = 100 × 1

n
×

n

∑
i=1

(yi,obs − yi,pred

yi,obs

)

RMSE (%) = 100 ×
√

1
n
×

n

∑
i=1

(yi,obs − yi,pred

yi,obs

)
2

2.4. Bayesian Forecasting

The models were used to perform Bayesian dose simulations to assess their predictive
capabilities. Each model’s population parameters were implemented in Monolix and fixed,
and individual patient parameters were estimated using data of the nth infusion. These
parameters were then used to simulate the concentrations obtained for these patients at
infusions n + 1 and n + 2 using simulx (mlxR: R package version 4.0.6; Inria, Paris, France).
The quality of the predictions was evaluated by calculating ME, MPE, and RMSE for the
predictions of the concentrations obtained at infusions n, n + 1, and n + 2.

3. Results
3.1. Literature Search

A total of 18 population PK models for IFX were found: 5 one-compartment and
13 two-compartment models. Only eight of these models were selected for external evalua-
tion [14–16,33–36] (Figure 1). The other 10 were excluded for lack of data: for five models,
our dataset did not include essential covariates [13,37–40], such as FCGR3A genotype,
body surface area (BSA), or previous anti-TFN exposure; and for the other five, our dataset
did not have enough patients or concentration data compatible with the construction pop-
ulation [41–45]. Characteristics of these models are shown in Table 1 (evaluated models)
and Supplementary Materials Table S1 (models not selected).
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Table 1. Summary of the 8 models selected for the external evaluation.

Model A B C D

Reference Passot et al., 2016 Ternant et al., 2017 PK Ternant et al., 2017 TLD Aubourg et al., 2015

Patients
218 patients with Crohn’s disease,
UC, AS, PsA or RA, adults and
children, no ADA detected

143 patients with Crohn’s disease,
UC, AS, PsA or RA, adults and
children, no ADA detected

143 patients with Crohn’s disease,
UC, AS, PsA or RA, adults and
children, no ADA detected

133 patients with Crohn’s disease, 6
first months of treatment, no
ADA detected

Infliximab measurement 870 trough concentrations measured
by ELISA (in-house)

Trough concentrations
measured by ELISA (in-house)

Trough concentrations
measured by ELISA (in-house)

Peak and trough concentrations
measured by ELISA (in-house)

Tested covariates

Weight, sex, age (2 categories:
pediatrics (<15) and adults (≥15)),
disease (Crohn, UC, AS, PsA, RA),
MTX treatment

Weight, sex, age (2 categories:
pediatrics (<15) and adults (≥15)),
disease (IBD, AS, PsA, RA),
MTX treatment

Weight, sex, age (2 categories:
pediatrics (<15) and adults (≥15)),
disease (IBD, AS, PsA, RA),
MTX treatment

Weight and sex

Clearance(s) (L/day)
CL = 0.23 ×

(
WT
67

)0.603
× e0.181 × Sex

× e0.384 × Crohn × e0.472 × UC ×
e0.392 × RA × e−0.336 × MTX

CL = 0.24 ×
(

WT
67

)0.52
× e0.36 × IBD

× e0.44 × RA × e−0.37 × MTX

CL = 0.20 ×
(

WT
67

)0.68
× e0.43 × IBD

× e0.50 × RA × e−0.47 × MTX

CL = 0.336 × e0.305 × Sex

Q = 1.992

Distribution volume(s) (L)
V = 5.2 ×

(
WT
67

)0.277
×e0.209 × Sex ×

e0.399 × Crohn × e0.417 × UC ×
e−0.396 × Ped

V = 5.3 × e0.14 × Sex × e0.25 × IBD V = 5.3 × e0.19 × Sex × e0.27 × IBD V1 = 2.6 ×
(

WT
60

)0.22
×e0.208 × Sex

V2 = 4.5

Residual error model Combined error
σadd = 0.72 mg/L; σprop = 22.3%

Combined error
σadd = 0.80 mg/L; σprop = 22%

Proportional error
σprop = 29%

Combined error
σadd = 2.3 mg/L; σprop = 21%

Software (algorithm) Monolix (SAEM) Monolix (SAEM) Monolix (SAEM) Monolix (SAEM)

Internal evaluation procedure Goodness of fit plots,
distribution of residuals plots

Learning (2/3) and validation (1/3)
subsets, goodness of fit plots,
distribution of residuals plots

Learning (2/3) and validation (1/3)
subsets, goodness of fit plots,
distribution of residuals plots

Not specified

Model E F G H

Reference Buurman et al., 2015 Dotan et al., 2014 Fasanmade et al., 2011 Wojciechowski et al., 2017
Xu et al., 2012
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Table 1. Cont.

Model E F G H

Patients 42 patients with Crohn’s disease
or UC

54 patients with Crohn’s disease or
UC, adults only

692 patients with Crohn’s disease,
children and adults

788 patients with Crohn’s disease,
UC, RA or Kawasaki, children
and adults

Infliximab measurement

188 trough concentrations measured
by ELISA (in-house); ADA
concentrations measured using a
radioimmunoassay

169 trough concentrations measured
and ADA concentrations measured
by ELISA (Immunodiagnostik)

5757 peak and trough
concentrations measured by ELISA Not specified

Tested covariates

Clinical scores, duration and
extension of disease, treatment
period, weight, smoking, Crohn’s
disease, UC, CRP, albumin,
leucocytes, concomitant
immunosuppressive drugs, prior
infliximab use

Weight, sex, ADA, albumin

Age, weight, sex, race, AST, ALT,
alkaline phosphatase, bilirubin, CRP,
ALB, total protein, platelet and
white blood cell counts, concurrent
use of immunomodulators, ADA

Age, weight, albumin, disease
type, ADA

Clearance(s) (L/day)
CL = 0.199 × 1.345Sex × 1.722ADA ×
1.40Period

Q = 0.068

CL = 0.381 ×
(

WT
70

)0.612
×(

ALB
40

)−1.39
× (1 + 1.59 × ADA)

Q = 0.122 ×
(

WT
70

)1.15

CL = 0.3523 ×
(

WT
65

)−0.313
×(

ALB
41

)−0.855
×1.292ADA × 0.863IMM

Q = 0.1469

CL = 0.294 ×(
WT
70

)0.614
×
(

ALB
30

)−1.17
×e0.257 ×

ADA

Q = 0.079 ×
(

WT
70

)1.1

Distribution volume(s) (L) V1 = 4.94 × 0.964 × (HBI-6)
V2 = 3.13

V1 = 2.37 ×
(

WT
70

)0.696

V2 = 1.37 ×
(

WT
70

)0.604

V1 = 3.406 ×
(

WT
65

)−0.233

V2 = 1.274 ×
(

WT
65

)−0.588

V1 = 3.33 ×
(

WT
70

)0.691

V2 = 1.14 ×
(

WT
70

)0.59

Residual error model Combined error
σadd = 0.98 mg/L; σprop = 21.7% Not specified Combined error

σadd = 0.371 mg/L; σprop = 29.2%
Proportional error
σprop = 17.5561%

Software (algorithm) NONMEM (FOCE) NONMEM NONMEM NONMEM

Internal evaluation procedure Visual predictive checks,
bootstrap analysis

Goodness of fit plots,
visual predictive checks

Bootstrap analysis,
condition number Not specified

UC: ulcerative colitis, AS: ankylosing spondylitis, PsA: psoriatic arthritis, RA: rheumatoid arthritis, ELISA: enzyme-linked immunosorbent assay, MTX: methotrexate, WT: weight, IBD: inflammatory bowel
disease, Ped: pediatrics, ADA: anti-drug antibodies, ALB: albumin levels, HBI: Harvey-Bradshaw index, IMM: concurrent use of immunomodulators, SAEM: stochastic approximation expectation-maximization,
FOCE: first order conditional estimation.
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Model G and J were the only two models to take inter-occasion variability (IOV)
into account, with an effect on the elimination clearance of 18.3% [36] and 3.43% [38],
respectively. For model F, since the residual error model was not specified in the pub-
lication [15], a combined error model with the following parameters was implemented:
σadd = 0.80 mg/L and σprop = 22%. A combined model was chosen because it was used
for 10 of the 18 published models, and the selected values reflect the median of these ten
models’ parameters (see Table 1 and Supplementary Materials Table S1).

Applied covariates varied from one model to another, the most frequently used being
weight (12 models out of 18, to which can be added two models considering BSA and one
model considering fat free mass, both linked to weight), the presence of ADA (10 models
out of 18), and sex (9 models out of 18). Serum albumin levels were frequently used in two-
compartment models (7 models out of 13). Disease type was considered in only 3 models
out of 18, but this can be explained by the fact that most of the remaining 15 models were
developed on a population with a single disease (Crohn’s disease for three models, AS for
two models, RA for two models, UC for two models) or a single group of diseases (IBD for
five models).

3.2. External Evaluation Dataset

The external evaluation dataset consisted of 157 patients, including 82 women and
75 men. The main characteristics of the population are shown in Table 2. In total, 409 resid-
ual IFX concentrations were extracted. ADA were detected in 12 patients, with concen-
trations ranging from 20 to over 200 µg/L. Seven subpopulations were drawn from the
primary database to match the populations on which the evaluated models were built. The
characteristics of these subpopulations and those of the models being assessed are shown
in Supplementary Materials Tables S2–S8.

Table 2. Baseline patients’ characteristics of the external evaluation dataset.

Characteristic Median [Min–Max] or Number (%)

Female 82 (52.2)

Age (years) 39.5 (8.5–87.7)

Weight (kg) 68 (24–150)

Number of infusions per patient 23 (2–45)

Time between two infusions (days) 44 (14–79)

Administered dose per infusion (mg) 400 (180–1000)

Number of samples per patient 2 (1–6)

Infliximab concentration (mg/L) 8.68 (0–439)

Antibody against infliximab (patients) 12 (7.6)

Disease
- Crohn’s disease 116 (73.9)

- Ankylosing spondylitis 22 (14.0)

- Ulcerative colitis 18 (11.5)

- Psoriatic arthritis 3 (1.9)

- Rheumatoid arthritis 3 (1.9)

Other immunomodulators
- Azathioprine 49 (31.2)

- Methotrexate 31 (19.7)

- 6-mercaptopurin 6 (3.8)

- Other 2 (1.3)
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3.3. Evaluation of Predictive Performance
3.3.1. Goodness-of-Fit

The results of the comparison of PPRED and IPRED to the observations for each model
are shown in Figure 2 and Table 3. There was a relative dispersion of PPRED on either
side of the identity line for most models: this shows imprecision, confirmed by R2 capping
at 45%. On this representation, numerous predictions were overestimated compared to
the observations by models A, B, C, E, and H. Conversely, model F seemed to show a
systematic negative bias, with most of the points lying above the identity line. For IPRED,
the dispersion around the identity line was less important for most models, indicating
a better accuracy of IPRED compared to PPRED. Additionally, no systematic bias was
observed for IPRED for any model. This was confirmed by higher R2, at least 85%, and
a significant correlation (Spearman’s test, p < 0.001). The mean absolute error for IPRED
was less than 1 mg/L for most models, except for F (−1.67 mg/L) and H (1.02 mg/L). The
mean absolute error was not significantly different from zero for models A, B, C, and E
(Student’s test, p < 0.05). Model H had the highest absolute values of ME, MPE (assessing
accuracy), and RMSE (assessing precision) for PPRED. Models D, F, and G showed the best
performance for IPRED in terms of MPE and RMSE but not in terms of ME.
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0.0442 −0.4 42.8 

H 45.4 
7.38 

[5.88; 8.87] 
<0.0001 −151.8 428.0 87.0 

1.02 

[0.47; 1.57] 
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Figure 2. Graphs representing for each model (A–H) observations against population and individual predictions. The
identity line is shown in black and a trend line (yellow) has been drawn for each model. Concentrations are shown in mg/L.
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Table 3. Comparison of population predictions (PPRED) and individual predictions (IPRED) to observations for the 8
evaluated models.

Model

Observations vs. PPRED Observations vs. IPRED

R2

(%)
ME (mg/L)

[CI] p MPE
(%)

RMSE
(%)

R2

(%)
ME (mg/L)

[CI] p MPE
(%)

RMSE
(%)

A 34.6 0.04
[−0.81; 0.90] 0.9180 −58.4 279.0 90.3 −0.33

[−0.63; −0.02] 0.0343 −10.7 88.6

B 34.7 −0.59
[−1.48; 0.29] 0.1877 −41.9 236.0 90.5 −0.35

[−0.64; −0.05] 0.0212 −9.5 84.8

C 32.0 2.45
[1.40; 3.50] <0.0001 −94.5 326.9 90.6 −0.29

[−0.60; 0.03] 0.0734 −9.0 89.9

D 27.7 −1.04
[−3.55; 1.46] 0.3940 −20.5 97.0 91.8 −0.74

[−1.45; −0.02] 0.0454 −5.1 43.4

E 33.7 −0.92
[−2.14; 0.31] 0.1413 −20.4 169.5 85.6 −0.45

[−1.02; 0.13] 0.1253 −16.6 115.0

F 41.3 −7.19
[−8.17; −6.21] <0.0001 53.2 96.6 91.5 −1.67

[−2.12; −1.22] <0.0001 8.6 43.7

G 42.5 −2.69
[−4.10; −1.28] 0.0002 3.5 145.0 92.3 −0.53

[−1.05; −0.01] 0.0442 −0.4 42.8

H 45.4 7.38
[5.88; 8.87] <0.0001 −151.8 428.0 87.0 1.02

[0.47; 1.57] 0.0003 −39.6 299.8

R2: correlation coefficient, ME: mean error, CI: 95% confidence interval, p: Student’s test, MPE: mean percentage error, RMSE: root mean
square error.

3.3.2. Residual Error

The results of the residual error assessment are summarized in Figure 3 and Table 4.
Model D showed the best results for these tests, followed by model A. The assumption of
normality of the NPDE distribution by the Shapiro-Wilk test was rejected for all models
except models A and D. However, the variance of NPDE for model D was significantly
different from 1 (2.963; p < 0.05). The mean NPDE was significantly positive for models
B, E, F, and G (0.158, 0.441, 1.595, and 0.447, respectively, p ≤ 0.0001), highlighting an
underestimation of concentrations. Conversely, a significantly negative mean of NPDE
for models C and H (−0.140 and −1.199, respectively, p < 0.0001) pointed towards an
overestimation of concentrations. The variance of the NPDE was significantly different
from 1 for all models except F (Fisher’s test, p < 0.05), highlighting an overestimation of the
variability for models A, B, C, D, and G (variance greater than 1), and an underestimation
for models E and H (variance less than 1). The symmetry test was significant for models B
and C (p < 0.05).

Table 4. Mean, variance, and results of normality and symmetry tests of the NDPE distribution for
the 8 evaluated models.

Model Mean p Variance p Normality (p) Symmetry (p)

A −0.062 0.0972 1.279 0.0100 0.0783 0.0917

B 0.158 0.0001 1.331 0.0026 0.0003 0.0044

C −0.140 <0.0001 2.135 <0.0001 <0.0001 0.0023

D 0.062 0.7841 2.963 0.0067 0.7220 0.5446

E 0.441 <0.0001 0.576 <0.0001 0.0197 0.9934

F 1.595 <0.0001 1.092 0.4333 <0.0001 0.1131

G 0.447 <0.0001 1.402 0.0062 0.0431 0.5513

H −1.199 <0.0001 0.404 <0.0001 0.0003 0.0514
Wilcoxon’s test for the comparison of the NPDE mean to 0, Fisher’s test for the comparison of the variance to 1,
Shapiro-Wilk’s test for testing the hypothesis of normality.
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Figure 3. Distribution of NPDE and pcVPC for the 8 evaluated models (A–H). On the left, quantile-quantile graph of the
NPDEs vs. theoretical normal distribution. In the middle, histogram and density of the NPDE distribution (blue dashed
lines: mean; red dashed lines: density of the normal distribution). On the right, pcVPC (blue dots: observed concentrations;
blue lines: 10th, 50th and 90th percentiles of observed concentrations; blue areas: prediction intervals of the 10th and 90th
percentiles; light red area: prediction interval of the median; dark red area: outliers).

The results of the evaluation without covariates are presented in Supplementary
Materials Figure S1 and Table S9. According to these, covariates’ addition improved the
overall NPDE distribution for models A, B, C, and E. However, results were not notably
different with or without covariates for models D, F, G, and H.

Figure 4 and Supplementary Materials Figure S2 show the relationship between
NPDE and PPRED, time, and continuous covariates considered in the models (weight, HBI
score, and albumin), as well as a boxplot of NPDE for each condition of the categorical
covariates (gender, pathology, concomitant treatment with another immunomodulator,
presence of ADA, induction or maintenance period). The representation of NPDE against
PPRED showed the same results as the graph of observations versus predictions and
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the statistical analysis of NPDE. Indeed, part of the predictions was overestimated by
models A, B, C, E, and H. This manifested by systematically negative NPDE values for
predictions exceeding a certain concentration (about 30 mg/L all models combined). The
means of NPDE for these models were all negative, except for model E. Indeed, model
E overestimated a part of the predictions but underestimated a greater number of them,
which can be seen graphically. Model F underestimated the majority of the predictions.
The same results were observed when studying the evolution of PWRES against PPRED
(Supplementary Materials Figure S3). Conversely, on the representation of IWRES against
IPRED, residuals were better distributed around the identity line, and less deviation was
observed (Supplementary Materials Figure S3). Besides, no model showed a deviation
of NPDE regarding time (Figure 4). On these representations, the points were fairly well
distributed around the identity line for models A and B; there was a slight systematic bias
for models C, E, and G; and a considerable bias for models F and H.
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Figure 4. Evolution of NPDEs according to population predictions, time, and main covariates for the 8 evaluated models
(A–H). Pred: population predictions, Sex: 0 = female and 1 = male except for model E.

For continuous covariates, models A, B, and C overestimated concentrations in low
weight patients (less than 40 kg, p < 0.05), and model E underestimated them in patients
with high HBI scores (greater than 6, p < 0.0001). For categorical covariates, model G un-
derestimated concentrations in patients not taking additional immunomodulatory therapy
(p < 0.0001). Results for patients with ADA also appeared unsatisfactory for models E and F.
However, the small number of patients (five) did not allow for a conclusion. The same was
observed for gender in model D. The inclusion of covariates significantly improved pcVPC
(Supplementary Materials Figure S1 and Figure 3), except for models F and G, where the
improvement was slight. With covariates taken into account, the pcVPC of models A and
B showed satisfactory results. Model C showed acceptable results as well, but the 90th
percentile prediction range was very wide. All prediction intervals were also wide for
model D, this being due to a lack of power. Model E showed an overestimation of the 90th
percentile, which increased strongly with time. Model F showed an overestimation of the
10th, 50th, and 90th percentiles, overestimation for the 90th percentile being significant.
Model G showed a slight overestimation of the 10th percentile and the median, and a larger
overestimation of the 90th percentile, which had a considerable prediction interval. Model
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H showed an underestimation of the 10th percentile and the median, and variable results
for the 90th percentile.

3.4. Bayesian Forecasting

Infusion simulations were performed for 14 patients with Crohn’s disease. Model H
showed the best overall performance for the predictions of infusions n, n + 1, and n + 2
(Table 5). Model F showed the worst performances, with a critical negative bias (mean errors
for infusions n, n + 1, and n + 2: −2.08 mg/L, −3.59 mg/L, and −6.58 mg/L, respectively).
It was also observed that the results deteriorated from infusion to infusion: the predictions
for the (n + 1)th infusion were less accurate and precise than for the nth infusion, and the
same applied to those for the (n + 2)th infusion compared to the (n + 1)th infusion.

Table 5. Simulation results of the nth, (n + 1)th, and (n + 2)th infusions for 7 models.

Model

Infusion n Infusion n + 1 Infusion n + 2

ME
(mg/L)

MPE
(%)

RMSE
(%)

ME
(mg/L)

MPE
(%)

RMSE
(%)

ME
(mg/L)

MPE
(%)

RMSE
(%)

A −0.38 2.64 12.29 −1.35 14.98 23.38 −4.31 37.42 39.44

B −0.50 4.71 14.07 −1.28 16.38 24.88 −4.52 40.60 41.96

C −0.44 5.29 7.29 −1.33 16.23 25.10 −4.47 37.84 39.82

E −0.93 3.54 48.75 −2.02 22.58 32.36 −4.78 47.62 50.73

F −2.08 28.58 34.46 −3.59 37.23 42.67 −6.58 63.62 64.33

G −1.02 13.37 14.22 −0.12 16.34 32.22 −4.45 40.43 43.56

H 0.57 −12.91 28.66 0.50 0.96 22.65 −2.83 26.58 32.52

ME = mean error, MPE = mean percentage error, RMSE = root mean square error. N = 14 patients for infusion n and n + 1, N = 4 patient for
infusion n + 2.

4. Discussion

Before considering using a PK model in current practice, evaluation is an essential step
to assess accuracy, robustness, and predictive performances [46]. In addition to internal
evaluation, which is necessary to test a model’s ability to describe the population with
which it has been constructed, an external evaluation must be carried out [29]. This step
evaluates not only the modelling procedure, but also other factors related to the study and
the starting population. In this study, we evaluated eight PK models for IFX on a new
independent population following published recommendations [20,23,32]. Performance
varied from one model to another, and the evaluated models only partially satisfied the
predefined criteria. Overall, all models showed a significant bias for PPRED, highlighting
that these models will be of limited use for a priori dosage adjustments using only the pop-
ulation parameters and identified covariates. The mean error was much smaller for IPRED
(less than 1 mg/L). However, the use of these models to perform Bayesian simulations
showed that this error increased with the number of predicted infusions. The predictions
of the (n + 1)th infusion were acceptable, so adaptive dosing using the individual parame-
ters estimated by some of these models is possible. Nevertheless, determining infliximab
concentrations will be necessary for each infusion to ensure that they remain within the
therapeutic range.

Results for model A were the most satisfactory, followed closely by model B. Model
D showed the best results when comparing observations to predictions and for residual
error, but the prediction intervals for pc-VPC were very high. Indeed, model D was
constructed considering only the first six months of infliximab treatment, and our database
contained only 19 patients with these characteristics. The power of our external evaluation
for this model was therefore limited. The results for models E, F, G, and H were the least
satisfactory, particularly for the 90th percentile regarding pc-VPC. The study of residual
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errors for these models showed a systematic bias with underestimation of predictions for
models E, F, and G, and overestimation for model H.

All authors had submitted their models to a partial internal evaluation during de-
velopment. The procedure differed from one model to another: basic internal methods
(assessment of the distribution of NPDE, PWRES, and IWRES) were used for models A,
B, and C, whereas more advanced internal evaluation was performed for models E, F,
and G (VPC and bootstrapping). Therefore, the recommendations concerning the eval-
uation of a population PK model have not been fully followed [20], which may explain
the shortcomings observed in terms of prediction. Models B and C underwent advanced
internal evaluation during their development since the starting population was divided
into three groups: one group for model construction and two groups for performance
evaluation. This explains the good predictive capabilities of model B observed in our study.
The results of this evaluation were very close to those obtained here, especially on the bias
observed graphically between the observations and the PPREDs, and on the accuracy and
precision of the IPRED (bias 0.3 vs. −0.35 mg/L for model B; 0.1 vs. −0.29 mg/L for model
C). Model C showed a better performance regarding the prediction of (n + 1)th infusions
during the advanced internal evaluation compared to our external evaluation (bias for
the (n + 1)th infusion: −0.4 vs. −1.17 mg/L). Model G is the only model to have been
previously externally evaluated [30]. In agreement with our results, this evaluation showed
a high correlation of observations and IPRED (R2 = 97.6% vs. 92.3%) and a low relative
bias (MIPE = −6.98% vs. MPE = −0.4%). Contrary to our evaluation, the NPDE mean and
variance were close to the values expected for a normal distribution, i.e., 0 for the mean
(0.01924, p > 0.05) and 1 for the variance (1.012, p > 0.05). The Shapiro-Wilk’s test, however,
rejected the hypothesis of normality of the NPDE distribution (p < 0.05) as in our study.

The following factors can partially explain the different results from one model
to another:

1. The population on which the model was built: Although an effort was made to
ensure that each model was evaluated on a population that closely resembled the
population on which it had been developed, not all patient characteristics were
considered. Indeed, only pathology and the detection or not of ADA were used to
select patients. Differences in other parameters, such as ethnicity, weight, albumin
levels, disease severity, duration of infliximab treatment, or co-medication, may persist
and partly explain the models’ non-applicability to our evaluation population. For
example, model E was developed on a population with a median Harvey–Bradshaw
index (score assessing the severity of Crohn’s disease) much higher than that of
our population, showing a greater disease severity, which may influence the PK of
infliximab [11,14].

2. The model construction study design: A mastered experimental design is necessary
for a good estimation of the parameters. In PK studies, the crucial points to optimize
are the number of subjects and samples as well as the sampling times, in order to min-
imize errors in the estimates [47]. Models A, B, C, E, and F have been developed using
only residual concentrations, which may not be sufficient to estimate the distribution
parameters correctly. However, the residual standard errors (RSE) of the popula-
tion parameters were acceptable for all models except for the peripheral volume of
model E (RSE(V2) = 32%). The RSE represents the estimate’s precision and must be
under 30% for fixed parameters and under 50% for parameters of inter-individual
variability [48].

3. The applied covariates: Many covariates influence the PK of infliximab, and those
taken into account varied greatly from one model to another. Models A and B
were the ones that considered the largest number of covariates and showed the
best results in the external evaluation. However, how covariates are taken into
account could be improved in some models. Indeed, if we take weight as an example,
our results showed that the concentrations of patients with extreme weights were
poorly predicted (p < 0.05). Moreover, the consideration of ADA by models E and
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F was also problematic (p < 0.0001). As shown by the internal evaluation results
during model E’s development, the uncertainty of the relative effect of the antibody
covariate on clearance was considerable (CI: 0.1–1.6). These results can be explained
by the fact that none of the studies predicted the power required to estimate the
covariates’ effects [49]. Indeed, the number of patients presenting these covariates in
the construction populations was low (Supplementary Materials Tables S3, S5 and S6),
and the imprecision on the parameters associated with the covariates was sometimes
large (models B and C: RSE (βMTX) = 49% and 50%, respectively). Moreover, the small
number of data or the presence of uninformative data predisposes to the phenomenon
of shrinkage, thus explaining imprecise and potentially biased predictions [20]. This
is particularly the case for model F, where shrinkage exceeded 40% for the estimation
of all population parameters.

Our study is the first to have evaluated several IFX population PK models on a new
population, but it had some limitations. The first one was its design: it was a monocentric
and retrospective study, which limited the available data. Most of the concentration data
collected for the evaluation consisted of residual concentration data, which do not allow
a good appreciation of the distribution phase of infliximab and the identification of the
peripheral compartment. It is, therefore, possible that one-compartment models may have
had an advantage in the study design compared to two-compartment models. However,
since this evaluation’s ultimate objective was to use these models in daily practice with only
residual concentrations, it was essential to test them under these conditions. The second
limitation of our study concerns the characteristics of the evaluation population. There
is a significant imbalance in the pathologies represented in our population, with patients
with Crohn’s disease being predominant. This disparity may influence the evaluation of
models that include several pathologies, and prevented us from evaluating a number of
models dealing with rheumatic pathologies, which are largely underrepresented in our
population. Finally, the third limitation concerns the different measuring techniques used
in the evaluated studies, which can bias the residual error model. Indeed, differences in
concentration measuring techniques may lead to biased post hoc PK parameter estimates
and decrease the predictability in Bayesian forecasting.

This study highlighted several perspectives for improving the PK models of inflix-
imab, particularly concerning covariates. Some important covariates should be evaluated,
particularly to consider patients presenting several pathologies. Indeed, in models A, B,
and C, which used disease as a covariate, typical values of population parameters were
associated with ankylosing spondylitis, while other pathologies were coded as categorical
covariates. Patients with multiple pathologies were therefore not taken into account in
these models. This concerns, for example, 22 patients in our starting population suffering
from Crohn’s disease associated with ankylosing spondylitis. Most models using ADA as
a covariate showed difficulties in predicting concentrations in these patients. Therefore,
a specific model should be considered, as the PK of IFX is different in the presence of
ADA [50]. Furthermore, given the central distribution of IFX, a different coding of the
weight covariate would have to be tested, considering, for example, the ideal weight.
Finally, since patients are followed over long periods, and certain covariates are linked to
clinical response (weight and albumin in particular), it would be interesting to consider this
additional variability. It would then be necessary to code these covariates into regressors
or, at least, to assess IOV. IOV should make it possible to explain a significant part of the
random variability and to improve the performance of Bayesian estimators [51,52]. Another
perspective of improvement would be to try to build a new model using the parameters
of the existing models. This could be done by aggregating the parameters of structurally
identical models and create a meta-model. Another way would be to re-estimate and
update dynamically the parameters of a given model using a new population. Finally,
in order to compare the use of Bayesian methods for IFX dose adjustment to the usual
strategy, and to obtain hard evidence of improved management, a prospective random-
ized controlled study is needed. Two studies have been performed very recently: a first
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prospective randomized but uncontrolled study using Fasanmade et al.’s model (model
G) [19] and a second prospective randomized controlled study using Xu et al.’s model
(model H) [18]. The first study showed an improvement in the percentage of patients in
clinical remission from 65.7 to 80.4% (p < 0.0001), in the same group of patients, before
and after using Bayesian methods. The second study showed the same improvement,
with an increase from 64 to 88% of patients in remission (p < 0.017) when comparing the
control group not receiving dose adjustments and the group of patients receiving Bayesian
adjustments. However, models G and H showed less satisfactory results than others in our
study, including models A and B. A new study could be initiated using one of these two
models. These two studies also only involved IBD patients, so the use of Bayesian methods
in other indications of infliximab remains to be evaluated.

5. Conclusions

In conclusion, this external evaluation showed satisfactory results for some models,
notably models A, B, and C, and inferior results for others. Several paths for improvement
were highlighted, particularly regarding covariates and the construction of a new model,
as well as the realization of a new randomized controlled study.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13081191/s1, Figure S1: Distribution of NPDE and pcVPC for the 8 evaluated
models, covariates not taken into account, Figure S2: Boxplot of NPDE according to several categorical
covariates for the 8 evaluated models; Figure S3: Evolution of residuals according to predictions:
PWRES against PPRED and IWRES against IPRED, Table S1: Characteristics of models not selected
for external evaluation, Table S2: Characteristics of the evaluation population and the construction
population for model A, Table S3: Characteristics of the evaluation population and the construction
population for model B and C, Table S4: Characteristics of the evaluation population and the
construction population for model D, Table S5: Characteristics of the evaluation population and
the construction population for model E, Table S6: Characteristics of the evaluation population and
the construction population for model F, Table S7: Characteristics of the evaluation population and
the construction population for model G, Table S8: Characteristics of the evaluation population
and the construction population for model H, Table S9: Mean, variance and results of normality
and symmetry tests of the NPDE distribution for the 8 evaluated models, covariates not taken
into account.
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