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Diabetic kidney disease (DKD) is a common diabetic complication. Salvia

miltiorrhiza has significant therapeutic effects on diabetes complications,

although the mechanism remains unclear. Here, biochemical indicators and

pathological changes were used to screen out the optimal Salvia miltiorrhiza

multi-bioactive compounds combination. Metabolomics, transcriptomics and

proteomics were used to explore the pathogenesis of DKD. RT-PCR and parallel

reaction monitoring targeted quantitative proteome analysis were utilized to

investigate treatment mechanisms of the optimal Salvia miltiorrhiza multi-

bioactive compounds combination. The db/db mice showed biochemical

abnormalities and renal lesions. The possible metabolic pathways were

steroid hormone biosynthesis and sphingolipid metabolism. The

727 differential genes found in transcriptomics were associated with

biochemical indicators via gene network to finally screen 11 differential

genes, which were mainly key genes of TGF-β/Smad and PI3K/Akt/FoxO

signaling pathways. Salvia miltiorrhiza multi-bioactive compounds

combination could significantly regulate the Egr1, Pik3r3 and Col1a1 genes.

11 differentially expressed proteins involved in the two pathways were selected,

of which 9 were significantly altered in db/db mice compared to db/m mice.

Salvia miltiorrhiza multi-bioactive compounds combination could callback

Q9DBM2, S4R1W1, Q91Y97, P47738, A8DUK4, and A2ARV4. In summary,

Salvia miltiorrhiza multi-bioactive compounds combination may ameliorate

kidney injury in diabetes through regulation of TGF-β/Smad and PI3K/Akt/

FoxO signaling pathways.
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Introduction

Diabetic kidney disease (DKD) is one of the most common

microvascular complications in diabetic patients, which is also

the main cause of end-stage kidney disease (ESKD) (Chapman

et al., 2016). Recently, the pooled data from 54 countries reveal

that more than 80% of ESKD cases are caused by diabetes,

hypertension or a combination of both (United States Renal

Data System, 2012). The pathogenesis of DKD is dynamic and

complex, which involves interplays of a variety of factors, such

as glucose metabolism disorder, kidney hemodynamic

changes, abnormal expression of various cytokines,

oxidative stress, kidney tissue inflammation and heredity

(Mauer et al., 1984; Forbes and Cooper, 2013; Fakhruddin

et al., 2017). At present, clinic treatments for DKD mainly rely

on the control of blood glucose and lipid, with applications of

angiotensin-converting enzyme inhibitor or angiotensin

receptor antagonist medicine (Lv et al., 2015; Sharma et al.,

2017). However, the therapeutic effect is unsatisfactory and

the occurrence and development of DKD cannot be effectively

regressed.

DanShen is derived from the root of Salvia miltiorrhiza

(Xiang et al., 2019). Emerging evidence suggests that Salvia

miltiorrhiza can be used as a potential adjunctive drug in the

treatment of diabetic microangiopathy including diabetic

retinopathy and DKD (Zequn et al., 2021). The main

bioactive components of Salvia miltiorrhiza include water-

soluble phenolic acids and fat-soluble tanshinones (Xiang

et al., 2019). Previously, we determined the main components

in the stem and leaves of Salvia miltiorrhiza, mostly containing

salvianolic acid B, rosmarinic acid, and other water-soluble

salvianolic acid components. Importantly, we found that the

extract of root, stem and leaves of Salvia miltiorrhiza and their

total phenolic acid components showed protective effects on

diabetic kidney damage and gastrointestinal damage (Gu et al.,

2017; Cai et al., 2018; Xiang et al., 2019). However, the molecular

mechanism of salvianolic acid and tanshinone has not been

investigated.

Recently, metabolomics is increasingly used as a technical

means to discover biomarkers in epidemiology, which can

capture metabolic changes and identify biomarkers of the

disease procession (Connor et al., 2010; Mao et al., 2017).

Transcriptomics utilizes high-throughput sequencing

technology to comprehensively determine almost all

transcripts in organs or tissues, and is mainly used for

screening differentially expressed genes, searching for new

functional genes, exploring the relationship between disease

and gene expression, and molecular diagnosis of disease

(Papadopoulos et al., 2017; Li Z. et al., 2019). Further,

quantitative proteomics based on tandem quality markers

and LC-MS/MS has been widely used for the detection of

proteins in cells and tissues with high sensitivity (Chen et al.,

2017).

Here, we sought to explore the pathogenesis of DKD via

multi-omics approaches, including metabolomics,

transcriptomics, and proteomics, and clarify the effects

mechanism of Salvia miltiorrhiza bioactive compounds.

Materials and methods

Animal experiments

All the experimental procedures and protocols used in

this study were reviewed and approved by the Institutional

Animal Ethics Committee of Nanjing University of Chinese

Medicine (Nanjing, China), Animal license number: SCXK

(su) 2015–0001. Seven-week-old male congenital gene-

deficient db/db mice and age-matched wild-type db/m

littermates were purchased from the Animal Model

Research Center of Nanjing University. Before and

throughout experimentation, the animals were housed in a

specific pathogen-free barrier facility with constant humidity

(ca. 60% ± 2%) and temperature (ca. 22 ± 2°C), and with a

light/dark cycle of 12 h. Mice had unrestricted access to water

and chow.

In this biological activity experiment, five bioactive

compounds were combined with a ratio of stem-leaf and

root, including salvianolic acid B, rosmarinic acid,

lithospermic acid, Danshensu, and tanshinone ⅡA. Multi-

bioactive compounds combination compatibility proportion

was shown in Supplementary Table S1. As shown in

Supplementary Table S2, the db/db mice were randomly

divided into different groups after the adaptation period of

2 weeks.

Body weight and fasting blood glucose levels were

monitored weekly. Blood glucose levels were measured

from tail vein using a One Touch Ultra II blood glucose

monitoring system (Life Scan). After drug administration,

mice fasted in the metabolic cages for 12 h urinary

collection. At the end of the study, mice were sacrificed

under anesthesia, and blood was collected for biochemical

parameters and metabolomics study. The blood samples were

centrifuged at 3,000 rpm for 10 min. Then the serum samples

were separated and stored at -80°C. The right kidney was

removed and fixed with 10% neutral-buffered formalin for

pathological analysis. The kidney cortex was isolated and

frozen in liquid nitrogen (Dai et al., 2018).
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Biochemical indicators measurements
and pathological analysis

The therapeutic efficacy of db/db mice was evaluated for the

levels of FBG (fasting blood glucose), INS (insulin), TC (total

cholesterol), TG (triglycerides), Scr (Serum creatinine), and BUN

(blood urea nitrogen) in serum. Part of the kidney cortex was

removed for hematoxylin eosin (HE) and periodic acid-schiff

(PAS) staining to observe pathological changes in kidney tissue,

degrees of fibrosis tissue hyperplasia, and structures of glomeruli

and tubules through electron microscope (× 200).

Metabolomics study on serum and urine
samples (Dai et al., 2018)

Serum samples were extracted with three times the volume of

acetonitrile, and urine samples were extracted with one time the

volume of acetonitrile to precipitate proteins. The mixture was

vortexed for 1.5 min and centrifuged at 13,000 rpm for 15 min

2 µL of the supernatant was injected into the UPLC-QTOF/MS

and analyzed in positive and negative modes. For other details see

Supplementary Materials.

Transcriptomics study on kidney tissues

RNAseqwas performed to identify differentially expressed genes

between the control and diabetic mice. Total RNA was extracted

using the mirVana miRNA Isolation Kit (Ambion) following the

manufacturer’s protocol. RNA integrity was evaluated using the

Agilent 2100 Bioanalyzer (Agilent Technologies). The samples with

RNA Integrity Number ≥7 were subjected to the subsequent

analysis. The libraries were constructed using TruSeq Stranded

mRNA LTSample Prep Kit (Illumina) according to the

manufacturer’s instructions. These libraries were sequenced on

the Illumina sequencing platform (HiSeqTM 2500 or Illumina

HiSeq × Ten) and 125 bp/150 bp paired-end reads were

generated. Raw data (raw reads) were processed using the

Trimmomatic (version 0.36) software (Bolger et al., 2014). In this

step, clean data (clean reads) were obtained by removing reads

containing adapter and ploy-N or low quality reads that percentage

of bases with Qphred ≥ 20 were more than 50%. Volume and

concentration of libraries and quality of raw sequence reads

(Supplementary Table S3) can be seen in Supplementary Materials.

Real-time fluorescence quantitative PCR

Total RNA was extracted from kidney tissue samples using

mirVanaTM RNA Isolation Kit according to the manufacturer’s

specifications (Ambion). The yield of RNAwas determined using

a NanoDrop 2000 spectrophotometer (ThermoFisher), and the

integrity was evaluated using agarose gel electrophoresis stained

with ethidium bromide. Quantification was performed with a

two-step reaction process: reverse transcription and real-time

PCR. Real-time fluorescence quantitative PCR was performed

with a two-step reaction process: reverse transcription (RT) and

PCR. Each RT reaction has two steps. The first step was 0.5 μg

RNA, 2 μL of 4×gDNA wiper Mix, add Nuclease-free H2O to

8 μL. Reactions were performed in a GeneAmp® PCR System

9700 (Applied Biosystems, United States) for 2 min at 42°C. The

second step: 2 μL of 5 × HiScript II Q RT SuperMix (cat. no.

R223-01, Vazyme) was added to gDNA-removed reaction.

Reactions were performed in a GeneAmp® PCR System 9700

(Applied Biosystems, United States) for 15 min at 50°C, 5 s at

85°C. The 10 μL RT reaction mix was then diluted×10 in

nuclease-free water and held at -20°C. Real-time PCR was

performed using LightCycler® 480 Ⅱ Real-time PCR

Instrument (Roche, Swiss) with 10 μL PCR reaction mixture

that included 1 μL of cDNA, 5 μL of 2×ChamQ SYBR qPCR

Master Mix (cat. no. Q311-02, Vazyme), 0.2 μL of forward

primer, 0.2 μL of reverse primer and 3.6 μL of nuclease-free

water. Reactions were incubated in a 384-well optical plate

(Roche, Swiss) at 95°C for 30 s, followed by 40 cycles of 95°C

for 10 s, 60°C for 30 s. Each sample was run in triplicate for

analysis. At the end of the PCR cycles, melting curve analysis was

performed to validate the specific generation of the expected PCR

product. The expression levels of mRNAs were normalized to

Gapdh and were calculated using the 2-△△Ct method (Livak and

Schmittgen, 2001). Data was analyzed using student’s t test by

Microsoft Excel. The primer sequences were designed based on

the mRNA sequences obtained from the NCBI database as

Supplementary Table S4.

Proteomics study on kidney tissues

Kidney tissue samples were ground and pulverized in liquid

nitrogen and transferred into low protein binding tubes and lysed

with 300 µL lysis buffer supplemented with 1 mM PMSF. Then,

samples were further lysed with sonication on ice. The

parameters were set as 1s/1s intervals, 3 min, and 80 W of

power. After sonication, samples were centrifuged at 12,000 g

for 10 min at room temperature to remove insoluble particles

that were repeated once to further exclude precipitation. Protein

concentration was determined by Bradford assay and the samples

were aliquoted and stored at −80°C. Total proteins (15 µg) of each

sample were acquired and separated by 12% SDS-PAGE gel. All

samples were then trypsinized and labeled. The labeling peptide

solutions were lyophilized and stored at -80°C. Protein separation

was performed on an 1100 HPLC System (Agilent) using an

Agilent Zorbax Extend RP column (5 μm, 150 mm × 2.1 mm).

Tryptic peptides were separated at a flow rate of 300 μL/min and

monitored at 210 and 280 nm. Dried samples were harvested

from 8 min to 50 min and elution buffer was collected every
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minute and numbered from 1 to 10 with the pipeline. The

separated peptides were lyophilized for MS detection. The

MS/MS data were analyzed for protein identification and

quantification using Proteome DiscovererTM 2.2

(ThermoFisher Crop.). The local false discovery rate was

estimated with the integrated PSPEP tool in the ProteinPilot

Software to be 1.0% after searching against a decoy concatenated

uniport Mus musculus protein database. Other protein

separations and the separated peptides detection details see

Supplementary Materials.

PRM targeted quantitative proteome
analysis

The sample mix was fractionated on an Agilent 1100 liquid

chromatograph at pH 10. A total of six fractions were collected

and run in DDA mode to obtain the protein lists, which were

used to set up a scheduled PRM assay. The DDA raw files were

searched against database in which the Biognosys iRT peptide

sequences were added with ProteomeDiscover (version 2.3).

Trypsin was used as the digestion enzyme. Search criteria

included carbamidomethylation of cysteine as a fixed

modification and oxidation of methionine and acetyl (protein

N terminus) as variable modifications. Up to two missed

cleavages were allowed. The mass tolerance for the precursor

was 10 ppm and 0.02 Da for MS/MS, respectively. Identifications

were filtered to obtain FDR of 1% at the peptide and the protein

levels. A list of peptides from DDA analysis was prepared for

PRM validation. Samples were loaded onto a precolumn

(100 μm × 3 cm, C18, 3 μm, 150 Å) and separated on an

analytical column (75 μm × 15 cm, C18, 3 μm, 120 Å) at a

flow rate of 300 nL/min (mobile phases A: 2% acetonitrile,

0.1% formic acid; mobile phases B: 95% acetonitrile, 0.1%

formic acid). For other details see Supplementary Materials.

Statistical analysis

SPSS 16.0 software (SPSS Inc.) was used for statistical

analysis. Statistical results were expressed as the mean ±

standard deviation. Comparisons between groups were made

using one-way ANOVA, followed by Tukey’s multiple

comparison test. p-value < 0.05 was considered as significant.

Results

Biochemical indicators and
histopathological changes

After 2 weeks of adaptive feeding, the average fasting blood

glucose level (fasting 8–12 h) of db/db mice was approximately

11.1 mmolL −1, which can be considered diabetic (Li K. et al.,

2019). They were then randomly divided into administration

groups (Supplementary Table S1).

During 8 weeks of treatment of multiple bioactive

compounds from Salvia miltiorrhiza, body weight and blood

glucose levels were recorded (Figures 1A,B). The levels of FBG,

TC, TG, BUN, and Scr in serum of db/db model group were

increased significantly compared with that of the control group

(Figure 1C), which indicates that the mouse model had

significant kidney lesions. After the preventive treatment, the

blood glucose in TJH, TJL, TGH, TGL, FJH, FJL, FGH, VJL, and

VGH group showed a trend of decreasing compared with the

disease group. The levels of multiple biochemical indicators

showed different degrees of a callback trend, especially VGH

group, which had a significant regulating effect on all six

indicators detected. TJH and TJL can significantly reduce

BUN and Scr, which are important indicators to evaluate the

degree of kidney injury. At the same time, TJH and TJL have

significant up-regulated effects on Ins, which can be used to

evaluate the diagnosis and classification of diabetes (Figure 1C).

As shown in Figure 2A, the results of HEwere consistent with

the biochemical analysis. The kidney lesions in the db/db model

group were more severe and the pathological scores were

significantly higher than those in the control group (p <
0.001). The kidney tissue was extensively necrotic and the

structure was disordered. Also, the kidney tubular structure

disappeared and the kidney tubular epithelial cells were

necrotic. The cell nucleus was deep-stained or fragmented and

dissolved, as shown by the black arrow in Figure 2A; necrosis,

structural disorder in the glomerular cells, as shown by the red

arrow; a small amount of kidney tubular necrosis calcification

can be observed, as shown by the green arrow; many

inflammatory cells can be seen in the tubulointerstitial, as

indicated by the yellow arrow. According to the results of

pathological scoring (Figure 2B), after multi-bioactive

compounds combination administration, except for VGL

groups, the extent of lesions in the other groups was

significantly different from that in the disease group. Fewer

areas of tissue necrosis were observed in VGL group and little

areas of inflammatory cells infiltrated could be seen in TJH, TJL,

TGL, FJL, VJH, and VJL groups. The histomorphology of TGH,

FGH, FGL, and VGH groups was nearly restored to the control

group.

PAS staining can reveal the thickening degree of glomerular

basement membrane, which has been widely used in the

diagnosis and research of diabetes (Fu and Campbell-

Thompson, 2017). The results of PAS staining showed that

compared with the control group, the glomerular area was

increased, the basement membrane was thickened, and the

average optical density value was elevated significantly in the

db/db group (p < 0.01). (Figures 2C,D). Compared with the

disease group, the average optical values of TJL group had the

most significant downregulation effect, and the results of TGL,
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FJL and VGH groups were particularly similar to those of the

blank group.

Optimal ratio screening

Cluster analysis was performed based on the results of

biochemical indicators and pathological section results

(Supplementary Figure S1). The results showed that both

the db/db model group and the control group were

separately classified into a single category, indicating that

the two groups could be significantly distinguished. TJH

and TJL groups can be classified into one class with the

positive drug group. VGH group can be classified into one

class with positive drug group in the secondary level. Initially,

we determined the optimal ratio was three monomers

combined with ratio of stem-leaf (TJ) and five monomers

combined with ratio of root (VG).

Metabolomics alternations

The data of serum and urine metabolic profiles of control and

model mice were patterned by orthogonal partial least squares

discriminant analysis (Supplementary Figure S2), which

indicates that metabolic abnormalities occurred in db/db mice

compared with control group. Potential markers were chosen

based on their contribution to the variation and correlation of the

data set of VIP-plot. The differential metabolites, generally the

metabolites with VIP >1 are considered as differential

metabolites. The t-test (student’s t test) was used to verify

whether the differences in metabolites between groups were

FIGURE 1
(A). Multi-week weight change curve (n = 10); (B). Blood glucose change curve (n = 10); (C). Determination of biochemical indicators among
control group, model group and administration groups; (#p < 0.05; ##p < 0.01; ###p < 0.001: models vs. control; *p < 0.05; **p < 0.01; ***p < 0.001:
treatment groups vs. models).
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significant. A total of 14 endogenous metabolites in serum and

113 metabolites in urine samples were identified in db/db mice

compared with the control group (Supplementary Table S5).

These potential metabolites were imported into MetPA (https://

www.metaboanalyst.ca/) and KEGG database to access related

metabolic pathways. Serum samples metabolic pathway value

larger including ether lipid metabolism and biotin metabolism;

urine samples metabolic pathway value larger including

FIGURE 2
(A). Pathological section of kidney tissue revealed by HE staining (×200); (B). Pathological section score; (C). Pathological section of kidney
tissue revealed by PAS staining (×400); (D). Average optical (#p < 0.05; ##p < 0.01; ###p < 0.001: models vs control; *p < 0.05; **p < 0.01; ***p < 0.001:
treatment groups vsmodels) (Black arrow: the cell nucleus was deep-stained or fragmented and dissolved. Red arrow: necrosis, structural disorder in
the glomerular cells. Green arrow: a small amount of kidney tubular necrosis calcification. Yellow arrow: inflammatory cells in the
tubulointerstitial).
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ubiquinone and other terpenoid-quinone biosynthesis,

D-glutamine and D-glutamate metabolism, and pantothenate

and CoA biosynthesis. Steroid hormone biosynthesis and

sphingolipid metabolism are common pathways involved in

both serum and urine samples (Figure 3A). As revealed by the

PLS-DA score plots for serum and urine samples from each

group shown (Figure 3B), after treatment with multi-bioactive

compounds combination from Salvia miltiorrhiza, the animals’

abnormal metabolic profile was improved and the affected

metabolites in TJ and VG groups tended to return to normal

levels.

Transcriptomics alternations

The results of sequencing data quality preprocess can be seen in

Supplementary Table S6. A total of 727 differentially expressed genes

were found, including 340 up-regulated genes and 387 down-

regulated genes. Further analyses revealed distinct gene clusters

between disease and control groups (Figures 4A,B). This was

corroborated by unsupervised gene-level clustering, revealing

distinctive patterns of significantly upregulated and

downregulated genes when comparing the db/db model groups

and control groups (Figure 4C). After the differentially expressed

FIGURE 3
(A). Summary of pathway analysis with MetPA of potential metabolites in serum (S) and urine (U); (B). PLS-DA scores plots for serum (S) and urine
(U) samples from models, controls and treatment group in positive and negative ion mode.
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genes were obtained, gene ontology (GO) enrichment analysis was

performed to describe their functions from the three levels of

biological process (BP), cellular component (CC) and molecular

function (MF) (Figure 4D). Molecular functional level analysis

showed diabetic pathway-related processes, including UDP-

glycosyltransferase activity, glucuronosyl-transferase activity,

steroid hydroxylase activity, monooxygenase activity, and

oxidoreductase activity. We also conducted pathway enrichment

analysis of differentially expressed genes by KEGG database

(combined with KEGG annotation results) and calculated the

FIGURE 4
The differentially expressed genes in the control and model groups of MA map (A), volcano map (B) and heat map (C). Analysis result of GO (D)
between the control and model groups. KEGG enrichment (E) of the control and model groups.
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significance of pathway enrichment of differentially expressed genes

in each pathway entry by hypergeometric distribution test

(Figure 4E). The results suggest the involvement of diabetic

pathway-related, including arachidonic acid metabolism,

phenylalanine metabolism, steroid hormone biosynthesis, and

pentose and glucuronate interconversions.

Weighted gene co-expression network
analysis

As an efficient and accurate bioinformatics and biological data

mining method, weighted gene co-expression network algorithm

(WGCNA) has been continuously improved and applied broadly

(Zhang andHorvath, 2005). Here, the differential genes found at the

transcriptome were correlated with the biochemical indicators that

detected in the type 2DKDmodel, and the gene networkwas further

constructed. Other details see Supplementary Materials. The

screening results of the power value of the network construction

are shown in Supplementary Table S7and Figures 5A,B. Figure 5A

showed the correlation coefficients corresponding to different

powers, and Figure 5B showed the average connectivity of the

network constructed with different power values, which showed

that when the power was 14, the correlation coefficient was high, as

well as the average connection degree of the network, so the power

value used in the subsequent module construction was 14.

Based on the selected power value 14, a weighted co-

expression network model was established and finally a total

FIGURE 5
(A,B). Power value filtering based on network; (C). Geneticmodule classification; (D). Heatmap of correlation betweenmodule and biochemical
index (”***”: p < 0.001; “**”: 0.001 ≤ p < 0.01; “*”: 0.01 ≤ p < 0.05; “.”: 0.05 ≤ p ≤ 0.1; P＞0.1, it will not be displayed); (E). Relative expression of candidate
genes different groups of samples (#p < 0.05; ##p < 0.01; ###p < 0.001: models vs control; *p < 0.05; **p < 0.01; ***p < 0.001: treatment groups vs.
models). Real-time fluorescence quantitative PCR validation of candidate genes.
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of 15,386 genes were divided into 25 modules by different colors.

The gray module was a gene set that could not be attributed to

any module, so it has no reference significance. The number of

genes in the genes in each module is shown in Figure 5C, and the

upper part of the figure is the gene clustering tree constructed by

the dissTOM matrix constructed by the weighted correlation

coefficient. The lower part of the Figure 5C shows the

distribution of each module gene and the same color

represents the same module. If the module features of the two

different modules are genetically similar, they are automatically

merged.

The Pearson correlation algorithm was used to calculate the

correlation coefficient and p value of the module characteristic

genes and biochemical indicators. In this experiment, the

biochemical indicators were correlated with genes, including

weight, fasting blood glucose level after 8 weeks of

administration, levels of triglyceride, total cholesterol, serum

creatinine and serum urea nitrogen. The heat map can be

seen in Figure 5D. In Figure 5D, the vertical axis represents

each module and the horizontal axis represents each trait. The

result shows the correlation between the module and the trait.

We found that the two modules with significant and

inconsistent correlation trends were lightcyan module and cyan

module; there are nine modules with significant correlation with

the blank group, including tan, salmon, magenta, red, brown,

black, green, yellow and lightyellow module. There were three

modules that were significantly related to the db/db model group,

including lightgreen, darkgrey and greenyellow module. Based on

the significance of different modules, we queried the top 50 genes

in each screening module for their association with DKD in

combination with the network gene database (https://www.ncbi.

nlm.nih.gov/gene/). A total of 11 candidate genes were identified,

including Egr1, Foxo3, Pik3r3, Fgf1, Sost, Wnt10a, Tgif2, Akt2,

Mep1b, Col1a1, and Apoe (Figure 5E), which were mainly key

genes in TGF-β/Smad and PI3K/Akt/FoxO signaling pathway. The

detailed parameters of the genes can be seen in Table 1.T
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38 TABLE 2 Candidate genes validation.

Gene FC-Value con vs. MDL P-Value con vs. MDL

Egr1 3.822322 0.175687

Foxo3 1.599497 0.00031

Pik3r3 1.551625 0.002654

Fgf1 0.295552 0.018858

Sost 2.850806 0.065136

Wnt10a 4.653438 0.014783

Tgif2 1.6666 0.060593

Akt2 0.75556 0.084682

Mep1b 0.293199 0.010849

Col1a1 2.293331 0.159263

Apoe 2.54738 0.105881
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Real-time fluorescence quantitative PCR
validation of candidate genes

The results of WGCNA analysis were further verified by real-

time PCRquantification. The experimental results were based on the

expression of the blank group and the difference between the disease

group and the blank group was evaluated by FC-value and p-value.

FC > 1.5 or FC < 0.67 indicated a significant difference between

experimental group and blank group. The verification results are

listed in Table 2. Except for Akt2 gene, the FC-value of other

candidate genes had a significant difference between disease group

and blank group; the p-value of Foxo3, Pik3r3, Fgf1, Wnt10a, and

Mep1b genes showed a significant difference.

After the treatment of multi-bioactive compounds combination

of Salvia miltiorrhiza, the differential candidate genes were changed

to varying degrees (Table 3). Metformin and multi-bioactive

compounds combination from Salvia miltiorrhiza may regulate

different molecular pathways to treat DKD. The positive drug

group could significantly change the Foxo3, Fgf1, Sost, Akt2, and

Mep1b genes. TJ group and VG group could significantly regulate

the Egr1, Pik3r3 and Col1a1 genes.

Proteomics alternations

According to the score of Score Sequest HT > 0 and unique

peptide ≥1 with the blank value removed, the screening results

were as the following: 3,104 reliable proteins were found in the

trusted protein 1; 3,107 trusted proteins were identified in letter

protein 2; 3,103 trusted proteins were discovered in authentic

protein 3. There were 2,637 trusted proteins identified in the

three groups.

Based on the selected trusted proteins, the results are

combined using the index function for differential

screening. T-test was performed for three replicate values

of each group to calculate the difference fold FC value and

the difference significance p-value of each comparison

group. Then the differentially significant protein was

screened by FC > 1.2 or FC < 5/6 and p-value < 0.05. After

comparing the blank group with the disease group,

539 significant differential proteins were identified

(Supplementary Figure S3).

Based on the two related pathways predicted and verified by

combining transcriptome and WGCNA analysis results of

differentially expressed genes, 11 candidate differential

proteins were selected, including A8DUK4 (Beta-globin),

A2ARV4 (Low-density lipoprotein receptor-related protein 2),

Q91Y97 (Fructose-bisphosphate aldolase B), Q91VB8 (Alpha-

globin), Q9DBM2 (Peroxisomal bifunctional enzyme), P09411

(Phosphoglycerate kinase 1), P26443 (Glutamate dehydrogenase

1, mitochondrial), S4R1W1 (Glyceraldehyde-3-phosphate

dehydrogenase), P47738 (Aldehyde dehydrogenase,

mitochondrial), A0A087WS56 (Fibronectin), and P52503

(NADH dehydrogenase [ubiquinone] iron-sulfur protein 6,

mitochondrial), which correspond to the genes are Hbb-bs,

Lrp2, Aldob, Hba-a1, Ehhadh, Pgk1, Glud1, Gm3839, Aldh2,

Fn1, and Ndufs6, respectively.

PRM targeted quantitative proteome
analysis validation of candidate proteins

Parallel Reaction Monitoring (PRM) is a derivative

technology of Selected Reaction Monitoring (SRM). The entire

TABLE 3 Regulation of multi-bioactive compounds combination on differential candidate genes.

Gene FC-Value P-Value

MDL vs. MH MDL vs.
TJH

MDL vs.
VGH

MDL vs. MH MDL vs.
TJH

MDL vs.
VGH

Egr1 0.705968 0.549043 0.500241 0.518296 0.341142 0.303367

Foxo3 0.851511 1.1245 0.877599 0.002549 0.072078 0.316091

Pik3r3 1.299359 0.744304 0.82166 0.075605 0.005148 0.020719

Fgf1 1.482029 1.283115 1.061877 0.011011 0.251666 0.665722

Sost 0.627235 0.782331 0.871475 0.272875 0.340254 0.554061

Wnt10a 1.577122 0.736772 0.95392 0.148055 0.224915 0.848578

Tgif2 1.033512 0.884769 0.956578 0.821024 0.614892 0.803241

Akt2 1.143723 1.007503 1.04592 0.014682 0.784118 0.471872

Mep1b 2.069585 0.929148 0.927403 0.104949 0.471726 0.479246

Col1a1 0.870926 0.478604 0.642959 0.686801 0.184324 0.416325

Apoe 1.287144 0.84279 1.163685 0.318679 0.545231 0.678083
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fragment ion map of each target parent ion can be continuously

recorded throughout the liquid phase separation process by PRM

technology. Compared to SRM which only detects the pattern of

the target ion pair, PRM detects all fragment information in the

selected parent ion window (Peterson et al., 2012; Ronsein et al.,

2016). The quantitative information of the target peptide is

derived, and the quantitative value of the protein is calculated

by peptide addition and used for statistical analysis between

groups (Cox and Mann, 2008). The fold change was calculated

using the ratio of experimental and control groups and the genes

corresponding to each protein are listed in the Table 4. As shown

in Figure 6, except for Q91VB8, P09411, and

A0A087WS56 proteins, the other proteins in the disease

group have shown a significant difference, compared with the

control group. The positive drug metformin could significantly

callback P52503 and P26443 protein; TJH could significantly

callback Q9DBM2 and P47738 protein; VGH could significantly

callback S4R1W1, Q91Y97, P47738, A8DUK4 and

A2ARV4 protein, which showed that different drugs could

improve the progress of the disease by regulating different

proteins.

Discussion

Arachidonic acid metabolism is mainly involved in chronic

inflammatory responses (Soto et al., 2018). Based on the results of

biochemical indicators and metabolomics, we speculated that long-

term high blood glucose levels in vivo would affect the expression of

oxidative kinases and protein kinases in vivo, thereby modulating the

expression of growth and transformation factors, leading to

abnormal levels of biochemical indicators, and at the same time

causing chronic inflammation and metabolic disorders, such as

arachidonic acid and fatty acid metabolic disorders. Based on the

results of transcriptomics, the pathogenesis of diabetic kidney disease

may involve 11 candidate differential genes: Egr1, Foxo3, Pik3r3,

Fgf1, Sost,Wnt10a, Tgif2, Akt2,Mep1b, Col1a1, Apoe. Among them,

Foxo3, Pik3r3, Fgf1, Akt2, and Col1a1 are associated with PI3K/

AKT/FoxO signaling pathway, and Tgif2 is related to TGF-β/Smad

signaling pathway (https://www.kegg.jp). According to the results of

transcriptomic, 11 related differential proteins involved in theTGF-β/
Smad and PI3K/Akt/FoxO signaling axis were selected and verified

by proteomics, including A8DUK4 (Beta-globin), A2ARV4 (Low-

density lipoprotein receptor-related protein 2), Q91Y97 (Fructose-

bisphosphate aldolase B), Q91Y97, Q91VB8 (Alpha-globin),

Q9DBM2 (Peroxisomal bifunctional enzyme), P09411

(Phosphoglycerate kinase 1), P26443 (Glutamate dehydrogenase 1,

mitochondrial), S4R1W1 (Glyceraldehyde-3-phosphate

dehydrogenase), P47738 (Aldehyde dehydrogenase,

mitochondrial), A0A087WS56 (Fibronectin), and P52503 (NADH

dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial).

According to the experimental results, the therapeutic effect

of TJ and VG group was generally similar to that of positive drug,

which preliminarily verified that multi-bioactive compounds

combination from Salvia miltiorrhiza had a good therapeutic

effect on DKD. After treatment by multi-bioactive compounds

combination from Salvia miltiorrhiza, the differential candidate

genes and proteins have changed. Based on the results of multi-

omics and verification experiments, the molecular mechanism of

multi-bioactive compounds combination from Salvia

miltiorrhiza for improving DKD was predicted, which

involved the TGF-β/Smad and PI3K/Akt/FoxO signaling axis.

Col1a1 (collagen type I α1 chain) is a protein-coding gene

whose associated pathways include angiotensin activation of

ERK and collagen-chain trimerization (Ortuño et al., 2013).

The GO annotation associated with this gene includes the

TABLE 4 Relative quantitative results of target proteins.

Protein ID Protein Gene Fold change

MDL/
CON

MH/
MDL

TJH/
MDL

VGH/
MDL

MH/
TJH

MH/
VGH

A0A087WS56 Fibronectin Fn1 1.10 1.49 1.17 0.64 1.27 2.31

A2ARV4 Low-density lipoprotein receptor-related protein 2 Lrp2 1.21 0.96 0.94 0.74 1.02 1.30

A8DUK4 Beta-globin Hbb-bs 1.12 1.00 0.92 0.62 1.09 1.62

P09411 Phosphoglycerate kinase 1 Pgk1 1.03 0.94 1.03 0.83 0.90 1.12

P26443 Glutamate dehydrogenase 1, mitochondrial Glud1 2.12 0.77 0.97 0.93 0.79 0.82

P47738 Aldehyde dehydrogenase, mitochondrial Aldh2 1.31 0.88 0.83 0.82 1.06 1.08

P52503 NADH dehydrogenase [ubiquinone] iron-sulfur
protein 6, mitochondrial

Ndufs6 1.28 0.86 1.05 0.94 0.82 0.92

Q91VB8 Alpha globin 1 Hba-a1 1.07 1.15 1.12 0.72 1.02 1.59

Q91Y97 Fructose-bisphosphate aldolase B Aldob 1.14 1.06 1.06 0.96 1.00 1.11

Q9DBM2 Peroxisomal bifunctional enzyme Ehhadh 0.33 0.89 1.09 0.88 0.81 1.02

S4R1W1 Glyceraldehyde-3-phosphate dehydrogenase Gm3839 1.08 1.11 1.00 0.77 1.10 1.45
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same protein binding and platelet-derived growth factor binding.

In the previous experiments, we can also find that the expression

levels of E-cadherin and TGF-β1 in the model group were

significantly changed. TGF-β1 stimulates the expression of

Col1a1 and phosphorylation of phosphoinositide three kinase

(PI3k) and Akt (Foretz et al., 2010; Yang et al., 2013). E-cadherin

can induce the activation of PI3k/Akt signaling in cells, and

down-regulates early growth response gene 1 (Egr1) by inhibiting

phosphatase and angiotensin homologues (Lau et al., 2011).

High glucose level in the body also affects the expression of

Q91Y97 protein (gene Aldob), which can further affect glycolysis

gluconeogenesis, pentose phosphate pathway and tricarboxylic

acid (TCA) cycle (Zhou et al., 2020; Potter et al., 2021).

Q91Y97 protein is involved in step of the subpathway that

synthesizes D-glyceraldehyde 3-phosphate and glycerone

phosphate from D-glucose. The knockdown of

Q91Y97 protein (gene Aldob) expression can prevent

fructose-induced methylglyoxal overproduction and vascular

FIGURE 6
Quantitative comparison of target proteins. (ns: P＞ 0.05, not significant; #p < 0.05; ##p < 0.01; ###p < 0.001: models vs. control; *:p < 0.05; **:
p < 0.01; ***: p < 0.001; ****: p < 0.0001)
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smoothmuscle cell proliferation. Moreover, fructose significantly

increased carbohydrate-responsive element-binding protein

(ChREBP), phosphorylated FoxO1/3α and Akt1 levels (Cao

et al., 2017). P26443 protein (gene Glud1) is mitochondrial

glutamate dehydrogenase that converts L-glutamate into

alpha-ketoglutarate, which plays a key role in glutamine

anaplerosis by producing alpha-ketoglutarate and is an

important intermediate in the TCA cycle (Csibi et al., 2013).

Also, it may be involved in learning and memory reactions by

increasing the turnover of the excitatory neurotransmitter

glutamate and can contribute to glucose-stimulated insulin

secretion in murine β-cells, but not to basic insulin release

(Petraki et al., 2019; Roy et al., 2019).

Lrp2 is a type of macromembrane glycoprotein and belongs

to the family of low-density lipoprotein receptor proteins.

Megalin, an endocytic receptor, is thought to be an important

component of many pathological conditions, including diabetic

nephropathy. The expression of megalin may be severely

compromised in disease states, and the mechanism may be

related to activation of the renin-angiotensin system, increased

TGF-β signaling, etc (Marzolo and Farfán, 2011). The results

showed that Lrp2 was significantly increased in db/db mice, and

the VG group could be significantly recalled.

From the factors mentioned above, we may summarize the

molecular mechanism of multi-bioactive compounds

combination from Salvia miltiorrhiza for improving DKD.

Multi-bioactive compounds combination may improve DKD

by regulating TGF-β/Smad and PI3K/Akt/FoxO signaling

pathways and abnormal protein expression, thereby affecting

the process of oxidative stress, ECM collagen deposition and

kidney tissue fibrosis (Figure 7). Pathological deposition of

collagen is identified as a hallmark of kidney fibrosis (Baues

et al., 2020). High glucose level in the body also affects the

expression of Q91Y97 protein, which can further affect glycolysis

gluconeogenesis, pentose phosphate pathway and TCA cycle.

In this experiment, we first time revealed the pathogenesis of

DKD via multi-omics approaches. The pathogenesis of DKD

may involve 11 candidate differential genes and TGF-β/Smad

and PI3K/Akt/FoxO signaling pathways. The multi-bioactive

compounds combination of Salvia miltiorrhiza may ameliorate

kidney injury in diabetes through downregulation of the TGF-β/
Smad and PI3K/Akt/FoxO signaling pathways and ameliorating

oxidative stress, ECM collagen deposition, and kidney tissue

fibrosis. Our study may therefore provide a scientific basis

and support for the clinical diagnosis of DKD and therapeutic

explorations to tackle this devastating disorder.

Data availability statement

Mass spectrometry proteomics data has been deposited into

the ProteomeXchange Consortium (http://proteomecentral.

FIGURE 7
Molecular mechanism ofmulti-bioactive compounds combination from Salvia miltiorrhiza to improve DKD. (The red arrows represent changes
in db/db model mice).
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proteomexchange.org/cgi/GetDataset?ID=PXD036837) with the

dataset identifier PXD036837. Other data that support the

findings of this study are available from the corresponding

author upon reasonable request.
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