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SUMMARY

In high-dimensional multivariate regression problems, enforcing low rank in the coefficient
matrix offers effective dimension reduction, which greatly facilitates parameter estimation and
model interpretation. However, commonly used reduced-rank methods are sensitive to data cor-
ruption, as the low-rank dependence structure between response variables and predictors is easily
distorted by outliers. We propose a robust reduced-rank regression approach for joint modelling
and outlier detection. The problem is formulated as a regularized multivariate regression with a
sparse mean-shift parameterization, which generalizes and unifies some popular robust multivari-
ate methods. An efficient thresholding-based iterative procedure is developed for optimization.
We show that the algorithm is guaranteed to converge and that the coordinatewise minimum point
produced is statistically accurate under regularity conditions. Our theoretical investigations focus
on non-asymptotic robust analysis, demonstrating that joint rank reduction and outlier detection
leads to improved prediction accuracy. In particular, we show that redescending ψ-functions can
essentially attain the minimax optimal error rate, and in some less challenging problems convex
regularization guarantees the same low error rate. The performance of the proposed method is
examined through simulation studies and real-data examples.

Some key words: Low-rank matrix approximation; Non-asymptotic analysis; Robust estimation; Sparsity.

1. INTRODUCTION

Given n observations of m response variables and p predictors, denoted by yi ∈ R
m and xi ∈ R

p

for i = 1, . . . , n, we consider the multivariate regression model

Y = X B∗ + E ,

where Y = (y1, . . . , yn)
T, X = (x1, . . . , xn)

T, B∗ ∈ R
p×m is an unknown coefficient matrix,

and E = (e1, . . . , en)
T ∈ R

n×m is a random error matrix. Such a high-dimensional multivariate
problem, in which both p and m may be comparable to or even exceed the sample size n, has
drawn increasing attention in both applied and theoretical statistics.
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Conventional least-squares linear regression ignores the multivariate nature of the problem and
may fail when p is large relative to n. Dimension reduction holds the key to characterizing the
dependence between responses and predictors in a parsimonious way. Reduced-rank regression
(Anderson, 1951; Izenman, 1975) achieves this by restricting the rank of the coefficient matrix,
i.e., by solving the problem

min
B∈Rp×m

tr{(Y − X B)�(Y − X B)T} subject to r(B) � r, (1)

where tr(·) and r(·) denote trace and rank, and � is a prespecified positive-definite weighting
matrix (Reinsel & Velu, 1998). The ranks are typically much smaller than m and p. A global
solution to (1) can be obtained explicitly. See Reinsel & Velu (1998) for a comprehensive account
of reduced-rank regression under the classical large-n asymptotic regime. Finite-sample theories
on rank selection and estimation accuracy of the penalized form of reduced-rank regression were
developed by Bunea et al. (2011). The nuclear norm and Schatten p-norms can also be used to
promote sparsity of the singular values of B or X B; see Yuan et al. (2007), Koltchinskii et al.
(2011), Rohde & Tsybakov (2011), Agarwal et al. (2012), Foygel et al. (2012) and Chen et al.
(2013), among others. Reduced-rank regression is closely connected with principal component
analysis, canonical correlation analysis, partial least squares, matrix completion, and many other
multivariate methods (Izenman, 2008).

Although reduced-rank regression can substantially reduce the number of free parameters in
multivariate problems, it is extremely sensitive to outliers, which are bound to occur; so in real-
world data analysis, the low-rank structure could easily be masked or distorted. This is even more
serious in high-dimensional or big-data applications. For example, in cancer genetics, multivariate
regression is commonly used to explore the associations between genotypical and phenotypical
characteristics (Vounou et al., 2010), where employing rank regularization can help to reveal
latent regulatory pathways linking the two sets of variables; but pathway recovery should not be
distorted by abnormal samples or subjects. As another example, financial time series, even after
stationarity transformation, often contain anomalies or have heavier tails than those of a normal
distribution, which may jeopardize the recovery of common market behaviours and asset return
forecasting; see § 3 in the Supplementary Material.

In this work, we deem explicit outlier detection to be as important as robust low-rank estimation.
Indeed, the reduced-rank component may not be of direct interest in some applications, as it
often represents common background information shared across the response variables, while
capturing unusual changes or jumps is helpful. The robustification of low-rank matrix estimation
is nontrivial. A straightforward idea might be to use a robust loss function ρ in place of the
squared error loss in (1), leading to

min
B

n∑
i=1

ρ{‖�1/2(yi − BTxi)‖2} subject to r(B) � r, (2)

but such an estimator may be difficult to compute. To the best of our knowledge, even when ρ
is Huber’s loss function (Huber, 1981) there is no algorithm for solving (2), let alone when it
involves nonconvex losses, which are known to be more effective in dealing with multiple gross
outliers with possibly high leverage values. Another motivation is that non-asymptotic theory on
the topic is limited. Classical robust analysis, ignoring the low-rank constraint, deals with either
deterministic worst-case studies or large-n asymptotics with p and m held fixed, which may not
meet modern needs.
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We propose a novel robust reduced-rank regression method for concurrent robust modelling
and outlier identification. We explicitly introduce a sparse mean-shift outlier component and
formulate a shrinkage multivariate regression in place of (2), where p and/or m can be much
larger than n. The proposed robust reduced-rank regression provides a general framework and
includes M-estimation and principal component pursuit (Huber, 1981; Hampel et al., 2005; Zhou
et al., 2010; Candès et al., 2011). All the techniques developed in this work apply to high-
dimensional sparse regression with a single response. In § 2 we show that low-rank estimation
can be ruined by a single rogue point, and propose a robust reduced-rank estimation framework.
A universal connection between the proposed robustification and conventional M-estimation
is established, regardless of the size of p, m or n. In § 3 we conduct finite-sample theoretical
studies of the proposed robust estimators, with the aim of extending classical robust analysis to
multivariate data with possibly large p and/or m. A computational algorithm developed in § 4
is easy to implement and leads to a coordinatewise minimum point with theoretical guarantees.
Applications to real data are demonstrated in § 5. All the proofs and results of simulation studies,
as well as a financial example, are given in the Supplementary Material.

The following notation will be used throughout the paper. We denote by N the set of natural
numbers. We use a∧b to denote min(a, b) and e to denote the Euler constant. Let [n] = {1, . . . , n}.
Given any matrix A, PA denotes the orthogonal projection matrix onto the range of A, i.e.,
A(ATA)−AT, where − stands for the Moore–Penrose pseudo-inverse. When there is no ambiguity,
we also use PA to denote the column space of A. Let ‖A‖F denote the Frobenius norm and
‖A‖2 the spectral norm, and let ‖A‖0 = ‖vec(A)‖0 = |{(i, j) : A(i, j) |= 0}| with | · | denoting
the cardinality of the enclosed set. For A = (a1 . . . an)

T ∈ R
n×m, ‖A‖2,1 = ∑n

i=1 ‖ai‖2 and
‖A‖2,0 =∑n

i=1 1‖αi‖ |=0, which gives the number of nonzero rows of A. Given J ⊂ [n], we often
denote

∑
i∈J ‖ai‖2 by ‖AJ ‖2,1. Threshold functions are defined as follows.

DEFINITION 1 (Threshold function). A threshold function is a real-valued function �(t; λ)
defined for −∞ < t < ∞ and 0 � λ < ∞ such that (i) �(−t; λ) = −�(t; λ); (ii) �(t; λ) �
�(t′; λ) for t � t′; (iii) limt→∞�(t; λ) = ∞; and (iv) 0 � �(t; λ) � t for 0 � t <∞.

DEFINITION 2 (Multivariate threshold function). Given any �, 
� is defined for any vector
a ∈ R

m by 
�(a; λ) = a�(‖a‖2; λ)/‖a‖2 for a |= 0 and 0 otherwise. For any matrix A =
(a1 . . . an)

T ∈ R
n×m, 
�(A; λ) = { 
�(a1; λ) . . . 
�(an; λ)}T.

2. ROBUST REDUCED-RANK REGRESSION

2·1. Motivation

Although reduced-rank regression is associated with a highly nonconvex problem (1), a global
minimizer B̂ can be obtained in explicit form. Given any r such that 1 � r � min(m, q) with
q = r(X ),

B̂(r) = R(X , Y ,�, r) = (X TX )−X TY�1/2PV (X ,Y ,�,r)�
−1/2, (3)

where V (X , Y ,�, r) is formed by the leading r eigenvectors of�1/2Y TPX Y�1/2; see, e.g., Reinsel
& Velu (1998) for a detailed justification. When� = I , we abbreviate R(X , Y , I , r) to R(X , Y , r).
The reduced-rank regression estimator is denoted by B̂(r) to emphasize its dependence on the
regularization parameter.
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Outliers are unavoidable in real data. We define the finite-sample breakdown point for an
arbitrary estimator B̂ in the spirit of Donoho & Huber (1983): given finite data (X , Y ,�) and an
estimator B̂(X , Y ,�), its breakdown point is

ε∗(B̂) = 1

n
min

{
k ∈ N ∪ {0} : sup

Ỹ∈Rn×m:‖Ỹ−Y‖0�k

‖X B̂(X , Ỹ ,�)‖F = +∞
}

.

In addition to the reduced-rank regression estimator B̂(r), we take into account a general
low-rank estimator obtained by imposing a singular value penalty

B̂(λ) ∈ arg min
B

1

2
tr{(Y − X B)�(Y − X B)T} +

p∧m∑
s=1

P(σB�1/2

s ; λ). (4)

Here λ is a regularization parameter and the σB�1/2

s are the singular values of B�1/2. The penalty
P is constructed from an arbitrary thresholding rule �(· ; λ) by

P(t; λ)− P(0; λ) = P�(t; λ)+ q(t; λ), P�(t; λ) =
∫ |t|

0
[sup{s : �(s; λ) � u} − u] du, (5)

for some nonnegative q(· ; λ) satisfying q{�(s; λ); λ} = 0 for all s ∈ R.

THEOREM 1. Given any finite (X , Y ,�) and r � 1 with � positive definite and X |= 0, let B̂(r)
be a reduced-rank regression estimator which solves (1). Then its finite-sample breakdown point
is exactly 1/n. Furthermore, for any B̂(λ) as in (4), ε∗{B̂(λ)} = 1/n still holds for any finite value
of λ.

The result indicates that a single outlier can completely ruin low-rank matrix estimation,
whether one applies a rank constraint or, say, a Schatten p-norm penalty. This limits the use of
ordinary rank reduction in big-data applications. Because with the low-rank constraint, directly
using a robust loss function as in (2) may result in nontrivial computational and theoretical
challenges, we will apply a novel additive robustification, motivated by She & Owen (2011).

2·2. The additive framework

We introduce a multivariate mean-shift regression model to explicitly encompass outliers:

Y = X B∗ + C∗ + E , (6)

where B∗ ∈ R
p×m gives the matrix of coefficients, C∗ ∈ R

n×m describes the outlying effects
on Y , and E ∈ R

n×m has independently and identically distributed rows following N (0,
).
Obviously, this leads to an overparameterized model, so we must regularize the unknown matrices
appropriately. We assume that B∗ has low rank and C∗ is a sparse matrix with only a few nonzero
entries because outliers are inconsistent with the majority of the data. Given a positive-definite
weighting matrix �, we propose the robust reduced-rank regression problem

min
B,C

1

2
tr{(Y − X B− C)�(Y − X B− C)T} + P(C; λ) subject to r(B) � r. (7)
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Here P(· ; λ) is a sparsity-promoting penalty function with λ to adjust the amount of shrinkage,
but it can also be a constraint, such as in (12). The following form of P can handle elementwise
outliers:

P(C; λ) =
n∑

i=1

m∑
k=1

P(|ci,k |; λ). (8)

It is more common in robust statistics to assume outlying samples, or outlying rows in (Y , X ),
which corresponds to

P(C; λ) =
n∑

i=1

P(‖ci‖2; λ),

where cT
i is the ith row vector of C. Unless otherwise specified, we consider row-wise outliers.

But all our algorithms and analyses can handle elementwise outliers after simple modification.
In the literature on reduced-rank regression, it is common to regard the weighting matrix � as

known (Reinsel & Velu, 1998;Yuan et al., 2007; Izenman, 2008). The choice of� is flexible and is
usually based on a pilot covariance estimate 
̂. For example, it can be 
̂−1 when 
̂ is nonsingular,
or a regularized version (
̂ + δI )−1 for some δ > 0. Although it sounds intriguing to consider
jointly estimating the high-dimensional mean and the even higher-dimensional covariance matrix
in the presence of outliers, this is beyond the scope of the present paper. When a reliable estimate
of
 is unavailable, a standard practice in finance and econometric forecasting is to reduce � to a
diagonal matrix or, equivalently, an identity matrix after robustly scaling the response variables.
For ease of presentation, we shall take � to be the identity matrix, unless otherwise noted, and
mainly focus on the following robust reduced-rank regression criterion:

min
B,C

1

2
‖Y − X B− C‖2F + P(C; λ) subject to r(B) � r. (9)

We show that the proposed additive outlier characterization indeed comes with a robustness
guarantee and, interestingly, generalizes M-estimation to the multivariate rank-deficient setting.
We write Y = (y1, . . . , yn)

T and C = (c1, . . . , cn)
T.

THEOREM 2. (i) Suppose that�(· ; λ) is an arbitrary thresholding rule satisfying Definition 1,
and let P be any penalty associated with � through (5). Consider

min
B,C

1

2
‖Y − X B− C‖2F +

n∑
i=1

P(‖ci‖2; λ) subject to r(B) � r. (10)

For any fixed B, a globally optimal solution for C is C(B) = 
�(Y − X B; λ). By profiling out
C with C(B), (10) can be expressed as an optimization problem with respect to B only, and it is
equivalent to the robust M-estimation problem

min
B

n∑
i=1

ρ(‖yi − BTxi‖2; λ) subject to r(B) � r, (11)
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where the robust loss function ρ is given by

ρ(t; λ) =
∫ |t|

0
ψ(u; λ) du, ψ(t; λ) = t −�(t; λ).

(ii) Given � ∈ {0, 1, . . . , n}, consider

min
B,C

1

2
‖Y − X B− C‖2F subject to r(B) � r, ‖C‖2,0 � �. (12)

Similarly, (12), after profiling out C, can be expressed as an optimization problem with respect
to B only, and it is equivalent to the rank-constrained trimmed least-squares problem

min
B

1

2

n−�∑
i=1

r(i) subject to r(B) � r, ri = ‖yi − BTxi‖2,

where r(1), . . . , r(n) are the order statistics of r1, . . . , rn satisfying |r(1)| � · · · � |r(n)|.
Remark 1. Theorem 2 connects P to ρ through �. As is well known, changing the squared

error loss to a robust loss amounts to designing a set of multiplicative weights for yi − BTxi
(i = 1, . . . , n). Our additive robustification achieves the same robustness but leaves the original
loss function untouched. The connection is also valid in the case of elementwise outliers, with
P and ρ applied in an elementwise manner. In fact, the identity constructed in Lemma 2 of the
Supplementary Material,

1

2
{r −�(r; λ)}2 + P�{�(r; λ); λ} =

∫ |r|
0

ψ(t; λ) dt (r ∈ R),

implies that the equivalence holds much more generally, with B subject to an arbitrary constraint
or penalty, regardless of the number of response variables and the number of predictors. This
extends the main result of She & Owen (2011) to multiple-response models with p possibly larger
than n.

Remark 2. Theorem 2 holds for all thresholding rules, and commonly used convex and non-
convex penalties are all covered by (5). For example, the convex group 1 penalty λ

∑ ‖ci‖2
is associated with the soft-thresholding �S(s; λ) = sgn(s)(|s| − λ)+. The group 0 penalty
(λ2/2)

∑n
i=1 1‖ci‖2 |=0 can be obtained from (5) with the hard-thresholding�H (s; λ) = s1|s|>λ and

with q(t; λ) = 0·5(λ−|t|)210<|t|<λ. Our�-P coupling framework also covers p for 0 < p < 1,
the smoothly clipped absolute deviation penalty (Fan & Li, 2001), the minimax concave penalty
(Zhang, 2010a), and the capped 1 penalty (Zhang, 2010b) as particular instances; see She (2012).

Remark 3. The universal link between (10) and (11) provides insight into the choice of reg-
ularization. It is easy to verify that the 1-norm penalty as commonly used in variable selection
leads to Huber’s loss, which is prone to masking and swamping and may fail with even moderately
leveraged outliers occurring. To handle gross outliers, redescending ψ-functions are often advo-
cated, which amounts to using nonconvex penalties in (10). For example, Hampel’s three-part ψ
(Hampel et al., 2005) can be shown to yield Fan and Li’s smoothly clipped absolute deviation
penalty; the skipped mean ψ corresponds to the exact 0 penalty; and rank-constrained least
trimmed squares can be rephrased as the 0-constrained form in (12). Our approach not only
provides a unified way to robustify low-rank matrix estimation but also facilitates theoretical
analysis and computation of reduced-rank M-estimators in high dimensions.
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2·3. Connections and extensions

Before we dive into theoretical study, it is worth pointing out some connections and extensions
of the proposed framework. First, one can set � equal to the inverse covariance matrix of the
response variables to perform robust canonical correlation analysis; see Reinsel & Velu (1998).
Although we mainly focus on the rank-constrained form, there is no difficulty in extending our
discussion to

min
B,C

1

2
‖Y − X B− C‖2F +

p∧m∑
s=1

PB(σ
B
s ; λB)+ PC(C; λC), (13)

where the σB
s are the singular values of B, and PB and PC are sparsity-inducing penalties.

Our robust reduced-rank regression subsumes a special but important case, Y = B+C+E . This
problem is perhaps less challenging than its supervised counterpart, but has wide applications in
computer vision and machine learning (Wright et al., 2009; Candès et al., 2011).

Finally, our method can be extended to reduced-rank generalized linear models; see, for exam-
ple, Yee & Hastie (2003) and She (2013) for computational details. In these scenarios, directly
robustifying the loss can be messy, but a sparse outlier term can always be introduced with-
out altering the form of the given loss, so that many algorithms designed for fitting ordinary
generalized linear models can be seamlessly applied.

3. NON-ASYMPTOTIC ROBUST ANALYSIS

Theorem 2 provides robustness and some helpful intuition for the proposed method, but it
might not be enough from a theoretical point of view. For example, can one justify the need
for robustification in estimating a matrix of low rank? Is using redescending ψ-functions still
preferable in rank-deficient settings? Unlike in traditional robust analysis, we cannot assume an
infinite sample size and a fixed number of predictors or response variables, because p and/or m can
be much larger than n in modern applications. Conducting non-asymptotic robust analysis would
be desirable. The finite-sample results in this section contribute to this type of robust analysis.

For simplicity we assume that the model is given by Y = X B∗ + C∗ + E , where E has
independent and identically distributed N (0, σ 2) entries, and consider the robust reduced-rank
regression problem defined in (9). The noise distribution can be more general. For example, in all
of the following theorems except Theorem 5, E can be sub-Gaussian. Given an estimator (B̂, Ĉ),
we focus on its prediction accuracy measured by M (B̂− B∗, Ĉ − C∗), where

M (B, C) = ‖X B+ C‖2F.

This predictive learning perspective is always legitimate in evaluating the performance of an
estimator, and requires no signal strength or model uniqueness assumptions. The 2-recovery
of M (B̂ − B∗, Ĉ − C∗) is fundamental, and such a bound, together with additional regularity
assumptions, can easily be adapted to obtain estimation error bounds in different norms as well
as selection consistency (Ye & Zhang, 2010; Lounici et al., 2011); see Theorem 10 in the Sup-
plementary Material, for instance. Given a penalty function P or, equivalently, a robust loss ρ,
we will study the performance of the set of global minimizers to show the ultimate power of the
associated method; but our techniques of proof apply more generally (see, e.g., Theorem 7).
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For any C = (c1, . . . , cn)
T, define

J (C) = {i : ci |= 0}, J (C) = |J (C)| = ‖C‖2,0.

We let r∗ = r(B∗) denote the rank of the true coefficient matrix, and J ∗ = J (C∗) the number of
nonzero rows in C∗, i.e., the number of outliers. Let q = r(X ).

To handle problems in arbitrary dimensions, we construct some finite-sample oracle inequal-
ities (Donoho & Johnstone, 1994). The first theorem considers a general penalty P(C; λ) =∑n

i=1 P(‖ci‖2; λ). Here we assume that P(· ; λ) takes λ as the threshold parameter and satisfies

P(0; λ) = 0, P(t; λ) � PH (t; λ), (14)

where PH (t; λ) = (−t2/2+ λ|t|)1|t|<λ+ (λ2/2)1|t|�λ. The latter inequality is natural in view of
(5), because a shrinkage estimator with λ as the threshold is always bounded above by the hard-
thresholding function�H (· , λ). From Theorem 2, (14) covers allψ-functions bounded below by
the skipped mean ψH (s; λ) = s1|s|�λ for any s � 0.

THEOREM 3. Let λ = Aσ(m+ log n)1/2 with A a constant, and let (B̂, Ĉ) be a global minimizer
of (9). Then, for any sufficiently large A, the following oracle inequality holds for any (B, C) ∈
R

p×m × R
n×m satisfying r(B) � r:

E{M (B̂− B∗, Ĉ − C∗)} � M (B− B∗, C − C∗)+ σ 2(q+ m)r + P(C; λ)+ σ 2, (15)

where � means that the inequality holds up to a multiplicative constant.

COROLLARY 1. Under the same conditions as in Theorem 3, if r � 1 and P is a bounded
nonconvex penalty satisfying P(t; λ) � λ2 for any t ∈ R, then

E{M (B̂− B∗, Ĉ − C∗)}
� inf
(B,C): r(B)�r

{
M (B− B∗, C − C∗)+ σ 2(q+ m)r + σ 2J (C)m+ σ 2J (C) log n

}
.

(16)

Remark 4. Both (15) and (16) involve a bias term M (B− B∗, C − C∗). Upon setting r = r∗,
B = B∗ and C = C∗ in, say, (16), we obtain a prediction error bound of the order

σ 2(q+ m)r∗ + σ 2J ∗(m+ log n). (17)

On the other hand, the presence of the bias term ensures applicability of robust reduced-rank
regression to weakly sparse C∗, and similarly r may also deviate from r∗ to some extent, as a
benefit derived from the bias-variance trade-off.

Remark 5. Our scheme of proof can also be used to show similar conclusions for the doubly
penalized form (13) and the doubly constrained form (12), under the general assumption that the
noise matrix has sub-Gaussian marginal tails. The following theorem states the result for (12),
which is one of our favoured forms in practical data analysis.

THEOREM 4. Let (B̂, Ĉ) be a solution to (12). With the convention 0 log 0 = 0, we have

E{M (B̂− B∗, Ĉ − C∗)}
� inf

r(B)�r, J (C)��
M (B− B∗, C − C∗)+ σ 2{(q+ m)r + �m+ � log(en/�)} + σ 2.
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Theorem 4 reveals some breakdown point information as a by-product. Specifically, fixing
Ȳ = X B, we contaminate Y in the set B(�) = {Y ∈ R

n×m : Y = Ȳ +C+E , ‖C‖2,0 � �}, where
vec(E) is sub-Gaussian and � ∈ N ∪ {0}. Given any estimator (B̂, Ĉ) which implicitly depends
on Y , we define its risk-based finite-sample breakdown point by ε∗(B̂, Ĉ) = (1/n) × min{� :
supY∈B(�) E{M (B̂−B, Ĉ−C)} = +∞}, where the randomness of the estimator is well accounted
for by taking the expectation. Then, for the estimator defined by (12), it follows from Theorem 4
that ε∗ � (� + 1)/n.

We emphasize that neither Theorem 3 nor Theorem 4 places any requirement on X , in contrast
to Theorem 6 below.

Remark 6. The benefit of applying a redescending ψ is clearly shown by Theorem 3. As an
example, for Huber’s ψ , which corresponds to the popular convex 1 penalty due to Theorem 2,
P(C; λ) on the right-hand side of (15) is unbounded, while Hampel’s three-part ψ gives a finite
rate as seen in (16). Furthermore, we show that in a minimax sense, the error rate obtained in
Corollary 1 is essentially optimal. Consider the signal class

S(r, J ) = {(B∗, C∗) : r(B∗) � r, J (C∗) � J } (1 � r � q ∧ m, 1 � J � n/2).

Let (·) be a nondecreasing loss function with (0) = 0,  |≡ 0.

THEOREM 5. Let Y = X B∗ + C∗ + E where E has independently and identically distributed
N (0, σ 2) entries. Assume that n � 2, 1 � J � n/2, 1 � r � q ∧ m, r(q + m − r) � 8, and
σmin(X )/σmax(X ) is a positive constant, where σmax(X ) and σmin(X ) denote the largest and
smallest nonzero singular values of X , respectively. Then there exist positive constants c̃ and c,
depending on (·) only, such that

inf
(B̂,Ĉ)

sup
(B∗,C∗)∈S(r,J )

E
(

[
M (B̂− B∗, Ĉ − C∗)/{c̃Po(J , r)}]) � c > 0,

where (B̂, Ĉ) denotes any estimator of (B∗, C∗) and

Po(J , r) = σ 2{r(q+ m)+ Jm+ J log(en/J )}.
We give some examples of  to illustrate the conclusion. Using the indicator function (u) =

1u�1, for any estimator (B̂, Ĉ), M (B̂− B∗, Ĉ − C∗) � σ 2{r(q+m)+ Jm+ J log(en/J )} holds
with positive probability. For (u) = u, Theorem 5 shows that the risk E{M (B̂ − B∗, Ĉ − C∗)}
is bounded from below by Po(J , r) up to some multiplicative constant. Therefore, (17) attains
the minimax optimal rate up to a mild logarithmic factor, showing the advantage of utilizing
redescending ψ-functions in robust low-rank estimation. The analysis is non-asymptotic and
applies to any n, p and m.

Convex methods are however sometimes useful. In some less challenging problems, where
some incoherence regularity condition is satisfied by the augmented design matrix, Huber’s ψ
can achieve the same low error rate. The result of the following theorem can be extended to any
subadditive penalties with the associated ψ sandwiched between Huber’s ψ and ψH .

THEOREM 6. Let (B̂, Ĉ) = arg min(B,C) ‖Y − X B − C‖2F/2 + λ‖C‖2,1 subject to r(B) � r,
with λ = Aσ(m+ log n)1/2 where A is a large enough constant. Then

E{M (B̂− B∗, Ĉ − C∗)} � M (B− B∗, C − C∗)+ σ 2

+ σ 2(q+ m)r + σ 2K2J (C)(m+ log n)
(18)
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for any (B, C) with rank(B) � r, if given J = J (C), X satisfies (1+ ϑ)‖C ′J ‖2,1 � ‖C ′J c‖2,1+
K |J |1/2‖(I − Pr)C ′‖F for all C ′ and all Pr such that Pr ⊂ PX and r(Pr) � 2r, where K � 0
and ϑ is a positive constant.

Compared with (16), (18) has an additional factor of K on the right-hand side. Some numerical
experiments on the magnitude of K , presented in the Supplementary Material, show that the error
bound obtained in Theorem 6 is comparable to (16) in some settings. Also, under a different
regularity condition, an estimation error bound on B∗ can be obtained. See the Supplementary
Material for more details.

Remark 7. The results obtained can be used to argue the necessity of robust estimation when
outliers occur. Similar to Theorem 3, we can show that the ordinary reduced-rank regression,
which sets Ĉ = 0, satisfies

E{M (B̂− B∗, Ĉ − C∗)} � inf
r(B)�r

‖X B− (X B∗ + C∗)‖2F + σ 2(q+ m)r + σ 2. (19)

Taking r = r∗, the error bound of the reduced-rank regression, evaluated at the optimal B
satisfying X B = X B∗ + PX B∗C∗ and r(B) � r, is of order

σ 2(q+ m)r∗ + ‖(I − PX B∗)C
∗‖2F. (20)

Because X B∗ has low rank, I − PX B∗ is not null in general. Notable outliers that can affect the
projection subspace in performing rank reduction tend to occur in the orthogonal complement of
the range of X B∗, and so (20) can be arbitrarily large, which echoes the deterministic breakdown-
point conclusion in Theorem 1.

To control the size of the bias term, a better way is to use a larger rank value in the presence
of outliers. Concretely, setting B = B∗ + (X TX )−X TC∗ in (19) yields

σ 2J ∗q+ σ 2J ∗m+ σ 2(q+ m)r∗ + ‖(I − PX )C
∗‖2F, (21)

where we have used r(B) � r∗ + J ∗. When p > n we have PX = I , and so (21) offers an
improvement over (20) by giving a finite error rate ofσ 2J ∗q+σ 2J ∗m+σ 2(q+m)r∗. But our robust
reduced-rank regression guarantees a consistently lower rate atσ 2J ∗ log n+σ 2J ∗m+σ 2(q+m)r∗,
since σ 2J ∗q σ 2J ∗ log n. The performance gain can be dramatic in big-data applications, where
the design matrix is huge and typically multiple outliers are bound to occur.

4. COMPUTATION AND TUNING

In this section we show that compared with the M-characterization in Theorem 2, the additive
formulation (6) simplifies computation and parameter tuning. Let us consider a penalized form
of the robust reduced-rank regression problem

min
B,C

F(B, C) = 1

2
‖Y − X B− C‖2F +

n∑
i=1

P(‖ci‖2; λ) subject to r(B) � r. (22)

The penalties of interest may be nonconvex in light of the theoretical results in § 3, as stringent
incoherence assumptions associated with convex penalties can be much relaxed or even removed.
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Assuming that P is constructed by (5), a simple procedure for solving (22) is as described in
Algorithm 1, where the two matrices C and B are alternately updated with the other held fixed
until convergence. Here the multivariate thresholding, 
�, is defined based on�; cf. Definitions 1
and 2.

Algorithm 1. A robust reduced-rank regression algorithm.

Input X , Y , C(0), B(0), �, t = 0
Repeat

(a) t ← t + 1
(b) C(t+1)← 
�(Y − X B(t); λ)
(c) B(t+1)← R(X , Y − C(t+1), r), as defined in (3)

Until convergence

Step (b) performs simple multivariate thresholding operations and Step (c) performs reduced-
rank regression on the adjusted response matrix Y −C(t+1). We need not explicitly compute B to
update C in the iterative process. In fact, we need only X B(t), which depends on X through PX ,
or I when p n. The eigenvalue decomposition called in (3) has low computational complexity
because the rank values of practical interest are often small. Algorithm 1 is simple to implement
and cost-effective. For example, even for p = 1200 and n = m = 100, it takes only about
40 seconds to compute a whole solution path for a two-dimensional grid of 100 λ values and 10
rank values.

THEOREM 7. Let� be an arbitrary thresholding rule, and let F be as defined in (22), where P is
associated with� through (5). Then, given any λ � 0 and r � 0, the proposed algorithm has the
property that F(B(t), C(t)) � F(B(t+1), C(t+1)) for all t, and so F(B(t), C(t)) converges as t →∞.
Furthermore, under the assumptions that 
�(· ; λ) is continuous in the closure of {Y −X B(t)} and
{B(t)} is uniformly bounded, any accumulation point of (B(t), C(t)) is a coordinatewise minimum
point, and is a stationary point when q(· ; λ) ≡ 0; hence F(B(t), C(t)) converges monotonically
to F(B∗, C∗) for some coordinatewise minimum point (B∗, C∗).

The algorithm can be slightly modified to deal with (8), (12), and (13). For example, we
can replace 
� by �, applied componentwise, to handle elementwise outliers. The 0-penalized
form with P(C; λ) = (λ2/2)‖C‖2,0, as well as the constrained form (12), will be used in data
analysis and simulation. In implementation, they correspond to applying hard-thresholding and
quantile-thresholding operators (She et al., 2013).

In common with most high-breakdown algorithms in robust statistics, we recommend using the
multi-sampling iterative strategy (Rousseeuw & van Driessen, 1999). In many practical applica-
tions, however, we have found that the initial values can be chosen rather freely. Indeed, Theorem 8
shows that if the problem is regular, our algorithm guarantees low statistical error even without
the multi-start strategy.

In the following theorem, given �, define L� = 1− ess inf {d�−1(u; λ)/du : u � 0}, where
ess inf is the essential infimum. By definition, L� � 1. We use P2,�(C; λ) as shorthand for∑n

i=1 P�(‖ci‖2; λ) and set r = (1+ α)r∗ with α � 0 and r∗ � 1.

THEOREM 8. Let (B̂, Ĉ) be any solution satisfying B̂ = R(X , Y − Ĉ, r) and Ĉ = 
�(Y −X B̂; λ)
with B̂ of rank r and 
� continuous at Y − X B̂. Let � be associated with a bounded nonconvex
penalty as described in Corollary 1 and let λ = Aσ(m+ log n)1/2 with A being a large enough
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constant. Assume that (1 + α)−1/2‖X B − X B∗‖2F + L�‖C − C∗‖2F + ϑP2,H (C − C∗; λ) �
(2− δ)M (B−B∗, C−C∗)+2P2,�(C; λ)+ζP2,0(C∗; λ) holds for all (B, C) satisfying r(B) � r,
where ζ � 0, δ > 0 and ϑ > 0 are constants. Then E{M (B̂ − B∗, Ĉ − C∗)} � σ 2(1 + α)(q +
m)r∗ + σ 2J ∗m+ σ 2J ∗ log n.

To choose an optimal rank for B and an optimal row support for C jointly, crossvalidation
would seem to be an option. However, it lacks theoretical support in the robust low-rank setting,
and for large-scale problems crossvalidation can be quite expensive. Motivated by Theorem 5,
we propose the predictive information criterion

log ‖Y − X B− C‖2F +
1

mn

[
A1{Jm+ (m+ q− r)r} + A2J log(en/J )

]
, (23)

where ‖Y − X B − C‖2F is the residual sum of squared errors, r = r(B), J = ‖C‖2,0, and e
denotes the Euler constant. The term Jm + (m + q − r)r counts the degrees of freedom of the
obtained model, and J log(en/J ) characterizes the risk inflation. The benefits of the criterion
include that no noise scale parameter needs to be estimated, and minimizing (23) achieves the
minimax optimal error rate when the true model is parsimonious, as shown below.

THEOREM 9. Let P(B, C) = Jm + (m + q − r)r + J log(en/J ), where r = r(B) and J =
‖C‖2,0. Suppose that the true model is parsimonious in the sense that P(B∗, C∗) < mn/A0 for
some constant A0 > 0. Let δ(B, C) = AP(B, C)/(mn) where A is a positive constant satisfying
A < A0, and so δ(B∗, C∗) < 1. Then for sufficiently large values of A0 and A, any (B̂, Ĉ) that
minimizes log ‖Y −X B−C‖2F+ δ(B, C) subject to δ(B, C) < 1 satisfies M (B̂−B∗, Ĉ −C∗) �
σ 2{J ∗m+ (m+q− r∗)r∗+J ∗ log(en/J ∗)} with probability at least 1−c′1n−c1−c′2 exp(−c2mn)
for some constants c1, c′1, c2, c′2 > 0.

Based on computer experiments, we set A1 = 7 and A2 = 2.

5. ARABIDOPSIS THALIANA DATA

We performed extensive simulation studies to compare our method with some classical robust
multivariate regression approaches and several reduced-rank methods (Reinsel &Velu, 1998; Tat-
suoka & Tyler, 2000; Aelst & Willems, 2005; Roelant et al., 2009; Bunea et al., 2011; Mukherjee
& Zhu, 2011) in both low and high dimensions. The results are reported in the Supplementary
Material; our robust reduced-rank regression shows performance comparable or superior to the
other methods in terms of both prediction and outlier detection.

Isoprenoids are diverse and abundant compounds in plants, where they serve many important
biochemical functions and play roles in respiration, photosynthesis and the regulation of growth
and development. To examine the regulatory control mechanisms in gene networks for isoprenoids
in Arabidopsis thaliana, a genetic association study was conducted, with n = 118 GeneChip
microarray experiments performed to monitor gene expression levels under various experimental
conditions (Wille et al., 2004). It was experimentally verified that strong connections exist between
some downstream pathways and two isoprenoid biosynthesis pathways.We therefore considered a
multivariate regression set-up, with the expression levels of p = 39 genes from the two isoprenoid
biosynthesis pathways serving as predictors, and the expression levels of m = 62 genes from four
downstream pathways, namely plastoquinone, carotenoid, phytosterol and chlorophyll, serving
as the responses.

Because of the small sample size relative to the number of unknowns, we applied robust
reduced-rank regression with the predictive information criterion for parameter tuning. The final
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Fig. 1. Arabidopsis thaliana data: outlier detection paths obtained by the robust reduced-rank regression. Sample 3
and sample 52 are captured as outliers, whose paths are shown as a dotted line and a dashed line, respectively. The

path plot also suggests sample 27 as a potential outlier.

model is of rank five, which means that the effective number of unknowns is reduced by about 80%
compared with the least-squares model. Interestingly, our method also identified two outliers,
samples 3 and 52. Figure 1 shows the detection paths by plotting the 2-norm of each row
in the C estimates for a sequence of λ values. The two unusual samples are distinctive. The
outlyingness could be caused by different experimental conditions. In particular, sample 3 was
the only sample with Arabidopsis tissue culture in a baseline experiment. The two outliers have
a surprisingly large impact on both coefficient estimation and model prediction. This can be
seen from ‖B̂ − B̃‖F/‖B̃‖F ≈ 50% and ‖X B̂ − X B̃‖F/‖X B̃‖F ≈ 26%, where B̂ and B̃ denote,
respectively, the robust reduced-rank regression and the plain reduced-rank regression estimates.
In addition, Fig. 1 reveals that sample 27 could be a potential outlier meriting further investigation.

The low-rank model obtained reveals robust score variables, or factors, constructed from
isoprenoid biosynthesis pathways, in response to the 62 genes in the four downstream pathways.
Let X̃ denote the design matrix after removing the two detected outliers, and let Û D̂V̂ T be the
singular value decomposition of X̃ B̂. Then Û delivers five orthogonal factors, and V̂ D̂ gives the
associated factor coefficients. Figure 2 plots the coefficients of the first three leading factors for
all 62 response variables. Given the sth factor (s = 1, 2, 3), the genes are grouped into the four
pathways separated by vertical lines, and two horizontal lines are placed at heights±σ X̃ B̂

s m−1/2.
Therefore, the genes located beyond those two horizontal lines have relatively large-magnitude
coefficients on the corresponding factor.

We also tested the significance of the factors in response to each of the 62 genes; see Table 1.
Plastoquinone was excluded since it has only two genes and its behaviour couples with that of
carotenoid most of the time. Even with the familywise error rate controlled at 0·01, the factors
obtained are predictive overall according to the significance percentages, although they play very
different roles in different pathways. In fact, according to Fig. 2 and Table 1, the genes that are
correlated with the first factor are mainly from carotenoid and chlorophyll, and almost all the
coefficients there are negative. It seems that the first factor interprets some joint characteristics
of carotenoid and chlorophyll; the second factor differentiates phytosterol genes from carotenoid
genes; and the third factor appears to contribute mainly to the phytosterol pathway. Therefore, by
projecting the data onto a proper low-dimensional subspace in a supervised and robust manner,
distinct behaviours of the downstream pathways and their potential subgroup structures can be
revealed. Further biological insights could be gained by closely examining the experimental and
background conditions.
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Fig. 2. Arabidopsis thaliana data: factor coefficients of the 62 response genes from plastoquinone, carotenoid, phy-
tosterol, and chlorophyll pathways. From left to right the panels correspond to the top three factors estimated by the
robust reduced-rank regression. For the sth factor (s = 1, 2, 3), two horizontal lines are plotted at heights±σ X̃ B̂

s m−1/2,
and three vertical lines separate the genes into four different pathways.

Table 1. Arabidopsis thaliana data: percentage of genes on
each response pathway that show significance of a given factor,

with the familywise error rate controlled at level 0·01
Pathway Number of genes Factor 1 Factor 2 Factor 3

Carotenoid 11 55% 73% 9%
Phytosterol 25 20% 48% 32%
Chlorophyl 24 75% 21% 0%
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