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Abstract

Background: Most organisms have developed ways to recognize and interact with other species.
Symbiotic interactions range from pathogenic to mutualistic. Some molecular mechanisms of
interspecific interaction are well understood, but many remain to be discovered. Expressed
sequence tags (ESTs) from cultures of interacting symbionts can help identify transcripts that
regulate symbiosis, but present a unique challenge for functional analysis. Given a sequence
expressed in an interaction between two symbionts, the challenge is to determine from which
organism the transcript originated. For high-throughput sequencing from interaction cultures, a
reliable computational approach is needed. Previous investigations into GC nucleotide content and
comparative similarity searching provide provisional solutions, but a comparative lexical analysis,
which uses a likelihood-ratio test of hexamer counts, is more powerful.

Results: Validation with genes whose origin and function are known yielded 94% accuracy.
Microbial (non-plant) transcripts comprised 75% of a Phytophthora sojae-infected soybean (Glycine
max cv Harasoy) library, contrasted with 15% or less in root tissue libraries of Medicago truncatula
from axenic, Phytophthora medicaginis-infected, mycorrhizal, and rhizobacterial treatments.
Mycorrhizal libraries contained about 23% microbial transcripts; an axenic plant library contained a
similar proportion of putative microbial transcripts.

Conclusions: Comparative lexical analysis offers numerous advantages over alternative approaches.
Many of the transcripts isolated from mixed cultures were of unknown function, suggesting specificity
to symbiotic metabolism and therefore candidates likely to be interesting for further functional
investigation. Future investigations will determine whether the abundance of non-plant transcripts in a
pure plant library indicates procedural artifacts, horizontally transferred genes, or other phenomena.
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Background
Access to automated DNA sequencing technology has made

possible the rapid generation and analysis of gene tran-

scripts expressed in organisms via expressed sequence tags

(ESTs) [1-5]. This information has helped to identify those

genes expressed in particular stages of development and in

specialized tissues or organs [6-10]. Novel gene products

and target leads for therapeutic intervention can also be

gleaned rapidly from ESTs [1,2,11]. A more detailed under-

standing of the molecular interactions between symbionts,

whether pathogenic or mutualistic [12], is also possible with

this approach [13-17].
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For a sequence isolated from interacting symbionts, deter-

mining its cellular role (or roles) is complicated by not

knowing which species expressed the sequence [18]. We

refer to this challenge as ‘the problem’: given a sequence x

expressed in an interaction between species A and B, did x

originate from A or B? Various solutions are readily con-

ceived, each with merits and faults. Here, we show that a

comparative lexical analysis of word counts (specifically,

hexamer frequencies), previously used to detect library cont-

amination in sequencing projects [19], provides a powerful

computational basis to infer a transcript’s species of origin.

Experimentally, one can attempt to solve the problem by

hybridizing a clone (as probe) to genomic DNA (target) from

both species and determining to which target the probe

hybridizes. This approach can produce very reliable results.

However, if a sequence is highly conserved in the two taxa,

hybridization stringency conditions can influence the

outcome considerably. For high-throughput EST sequence

analysis, source verification by hybridization is impractical

in terms of time and reagents. As an alternative to in vitro

hybridization, several computational solutions are possible.

Were the genome sequence of both species completely deter-

mined, one could simply use sequence similarity searching

[20-22]. However, most plant hosts and their microbial sym-

bionts have little or no genomic sequence data available,

which makes this approach very unreliable. Strong similarity

to a sequence from one organism does not preclude the possi-

bility that a similar sequence is present in the other species.

Conclusions based upon such partial knowledge have been

informative, but are potentially misleading [18,23].

Codon usage varies across taxa [24-26]. Exploiting this fact

may seem a viable solution to the problem, as it has proven

suitable for predicting the presence of introns among exons

in genomic DNA. However, it really is not practical, because

of the need to know the reading frame for translation of a

messenger RNA into an amino acid. EST data are of notori-

ously unreliable quality, sometimes having a large propor-

tion of ambiguous bases, and sometimes having single

base-pair insertions or deletions, which disrupt a reading

frame. Word counting is less prone to these sources of error,

and uses information intrinsic to biases in codon usage by

counting codon pairs as hexamers in a sliding window,

whereas codons are read in non-overlapping, tiled windows.

An intuitive approach to the problem that examines

sequence composition is to compare the guanine and cyto-

sine (GC) base content of a sequence with other sequences

from the species being studied. When two species’ genomes

have different GC content, this method can be very useful. In

a recent investigation, for instance, sequences from the stra-

menopile plant pathogen Phytophthora sojae and its

soybean (Glycine max) host showed a 20% difference in

mean GC content [18]. The origin of a number of sequences

could readily be identified this way, but a large proportion

could not, because of considerable overlap in the distribu-

tions’ tails. Counting frequencies of GC is simple word

counting, where the word size k is 1/2: only two semi-words,

G/C and A/T are counted.

An alternative approach to determining the origin of a

sequence is suggested by previous work on analysis of word

counts, or k-tuple frequencies, which was intended as a

means of evaluating a library for contamination when

sequencing from a single model organism [19]. The word-

counting method provides distinct advantages over other

computational methods. Unlike sequence-similarity search-

ing, it does not require that the full protein-coding content of

both genomes be known for reasonable inferences to be

made. Further, word counting is sensitive to biases in codon

usage and GC content commonly observed when comparing

taxa, but does not require knowledge of the reading frame

for amino-acid translation. That is, the underlying differ-

ences between the two organisms that result in base compo-

sition or codon usage biases can also be detected by counting

words. Unlike GC analysis, lexical analysis establishes a clear

threshold above or below which we can infer the species of

origin, and a confidence level for an inference can readily be

assigned. Dunning’s likelihood-ratio test of word dissimilari-

ties [27] also has the appealing property of being non-

parametric, having no assumption of normality for the

underlying frequency distribution, which makes it statisti-

cally powerful [28]. Dunning [27] demonstrated that unreli-

able results can be obtained from parametric tests, such as

χ2, particularly in such cases as lexical analysis.

In the experiments detailed below, we first validate the

word-counting method on sequences whose origin and func-

tion are known, then compare it with ability to diagnose the

origin of sequences with distributions of GC content. We

examine sequences from pathogenic interactions between

species from the genus Phytophthora and the plant hosts

G. max and Medicago truncatula, then apply the word-

counting approach to sequences from two microbial mutual-

ists in association with M. truncatula, the arbuscular

mycorrhizal zygomycete Glomus versiforme, and the nitrogen-

fixing bacterium Sinorhizobium meliloti.

Results
Validation sequence accession numbers, gene names, and

comparison results appear in Table 1. Incorrect inferences

are underlined. The word-counting method was generally

quite reliable when tested against sequences of known

origin, being wrong in 3 cases out of 50; a phosphate trans-

porter from G. versiforme and two in planta-induced genes

from Phytophthora infestans were misidentified as plant

sequences. This indicates a failure rate of 6% - all false nega-

tives under the null hypothesis that a transcript originates

from the plant host. Performance of the method was not
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Table 1

Dissimilarity (D) comparison results from 50 validation sequences

Accession Gene name mRNA Length D(A) D(B1) D(B3) 
(?) (nucleotides) plants oomycetes bacteria

Glomus versiforme
AJ009628 chitin synthase Gvchs1 n 638 2,535.2 2,468.6 2,718.4
AJ009629 chitin synthase Gvchs2 n 481 2,203.2 2,050.0 2,286.0
AJ009630 chitin synthase Gvchs3 n 4,116 7,205.9 5,235.8 5,985.8
U38650 phosphate transporter y 1,833 3,937.9 5,702.3 6,514.3

Glycine max
J01297 actin SAc3 n 1,620 3,322.0 4,554.6 5,329.7
K00821 lectin Le1 n 2,152 4,124.6 6,558.3 7,928.3
M64267 iron superoxide dismutase y 1,056 2,773.6 3,761.2 4,269.2

Medicago truncatula
AF000354 phosphate transporter MtPT1 y 1,920 3,800.3 5,630.7 6,654.2
AF000355 phosphate transporter MtPT2 y 1,867 3,673.9 5,390.1 6,424.0
AF055921 Mt4 genomic sequence n 954 2,631.9 4,004.4 4,539.1
AF106929 cell wall protein AM1 y 885 3,433.6 4,200.0 4,774.3
AF106930 translation initiation protein AM3-1 y 3,154 4,557.6 5,982.7 7,212.8
AF106931 translation initiation protein AM3-2 y 1,384 3,371.1 4,130.0 4,644.4
AJ132891 ha1 gene, exons 1-22 n 3,620 4,383.2 8,683.6 10,730.7
AJ388847 MtNo213 superoxide dismutase y 530 2,110.2 2,219.8 2,367.0
AJ388865 MtNo233 triosephosphate isomerase y 563 2,171.6 2,405.6 2,618.6
U16727 peroxidase precursor rip1 n 2,603 4,246.1 8,210.0 9,901.9
U38651 sugar transporter y 1,728 3,619.6 5,128.4 5,976.5
X57732 leghemoglobin Mtlb1 n 1,073 3,021.3 5,029.1 5,845.9
X57733 leghemoglobin Mtlb2 n 592 2,045.9 3,156.0 3,568.2
X60386 lectin lec1 n 1,363 3,228.8 4,935.4 5,605.6
X60387 lectin lec2 n 1,192 3,142.8 4,472.6 4,985.9
X82216 lec3 n 1,155 2,928.4 4,283.3 4,930.8
X68032 ENOD12 n 772 2,780.4 3,679.7 4,096.5
X99466 ENOD16 n 1,142 3,124.6 4,535.5 5,156.2
X99467 ENOD20 n 1,405 4,003.6 5,294.7 5,966.7
Y10267 glutamine synthetase y 1,413 3,116.1 4,506.5 5,292.1
Y10373 chitinase y 1,305 3,369.5 4,090.4 4,703.4

Phytophthora infestans
AF004951 surface glycoprotein elicitor inf2A y 648 3,428.4 2,421.9 2,589.1
AF004952 surface glycoprotein elicitor inf2B y 701 3,611.7 2,514.5 2,698.6
L23938 ipiO2 n 1,556 4,125.2 4,339.5 4,855.5
L23939 ipiO1 n 1,826 4,360.5 4,580.9 5,259.0
L24206 ipiB1 n 1,726 6,086.7 4,584.3 5,159.3
M59715 actin actA n 1,736 5,137.1 3,637.2 4,420.0
M59716 actin actB n 1,405 4,425.3 3,569.5 4,141.6
M83535 calmodulin calA n 1,358 4,063.0 3,724.9 4,138.1
X64537 tigA n 2,448 6,221.0 4,193.8 5,181.9

P. capsici
U42304 chitin synthase chs n 449 2,238.8 1,882.7 1,997.5

P. parasitica
X97205 cellulose-binding-elicitor lectin y 918 3,819.1 2,876.0 3,208.4

Sinorhizobium meliloti
AF040724 nodD n 1,776 5,317.9 4,197.8 4,179.4
AF110770 superoxide dismutase sodA n 1,196 4,898.2 3,343.2 2,916.0
M61753 exoD n 858 4,071.8 2,847.2 2,372.9
M68858 nodulation proteins nodP and nodQ n 3,476 9,992.3 5,288.0 3,954.7
M96261 phosphate regulators phoU and phoB n 1,178 5,332.7 3,359.3 2,866.4
U90221 syrA n 1,102 4,176.2 3,375.8 3,220.8
X01649 nodA, nodB, and nodC n 3,373 7,684.1 4,819.5 4,646.1
X03065 regulatory nitrogen fixation fixD n 2,111 5,723.0 4,249.8 4,228.3
X17523 glutamine synthetase II n 990 4,303.5 2,959.9 2,720.4
Y08500 putA n 3,804 13,623.3 6,376.5 4,212.0

Agrobacterium tumefaciens
U91632 sugar transporter gguA and membrane-spanning n 4,185 11,132.6 5,959.4 4,551.4

permeases gguB and gguC

Incorrect inferences are underlined.



influenced by whether the isolated source of a sequence was

an mRNA or DNA molecule, as indicated by the column

labeled ‘mRNA?’.

Distributions of GC content are approximately normal in two

of three cases studied, those of axenic P. sojae cultures

(Figure 1). For sequences from infected plant cultures, a

bimodal distribution is apparent. Roughly 25% of a total of

927 infected G. max sequences contain less than 50% GC;

most of these are likely to be plant transcripts [18]. This is a

considerably greater number than for axenic P. sojae cul-

tures, in which fewer than 5% of mycelia and zoospore iso-

lates contain less than 50% GC.

Several properties of cumulative distribution functions

warrant comment, to help explain similar plots from word dis-

similarity comparisons (Figures 1b,2a). The median of a distri-

bution occurs where the function reaches a cumulative

probability of 0.5. Medians from all three P. sojae libraries are

similar, varying by less than 4% GC (Figure 1b). Other

moments of the distributions are readily apparent; the vari-

ance is inversely related to the slope at the median value of the

function. A useful property of cumulative distribution func-

tions is that any point on the y axis gives the integrated area

(cumulative probability) under the curve. We use this property

to establish experiment-wide false-positive and false-negative

rates (Figure 2a). In this case, α = 0.088 and β = 0.032.

Calibration curves from hexamer dissimilarity tests, shown in

Figure 2b as solid black lines for plant and dashed black lines

for stramenopile training sequences are approximately

normal. The medians differ considerably, with only about 10%

percent overlap in the two distributions’ tails about the neutral

t-value of zero. Superimposed are comparison curves from

P. sojae test sets (Figure 2b), which parallel the GC content

curves in Figure 1b but show slightly less variance. Axenic

sequences are clearly more like stramenopiles (B1) than plants

(A1) in hexamer composition, with all but a small percentage

having positive t values. Plant-like sequences are as abundant

in the mixed library as detected by GC content, about 23%. As

expected, the two methods agree, having positively correlated

values for GC and t (r2 = 0.852, P < 10–16, ν = 2,641).

Looking in more detail at the paired dissimilarity values

(Figure 3), we can see which individual sequences are more or

less like plant and pathogen. The magnitudes of dissimilarity

are also apparent, with longer sequences having larger dissim-

ilarity values. BLASTX similarity searches against the protein

sequences in nr, a non-redundant library of proteins [29-31]

revealed that none of the 12 plant-like mycelial transcripts sig-

nificantly resemble known proteins (E > 10–4). Among the top

ten most plant-like transcripts from the infected G. max

library, three had no significant matches, four matched puta-

tive Arabidopsis thaliana proteins, and three matched known

G. max proteins: cytochrome P450 (accession AF022460,

E < 10–34), methylglyoxalase (accession P46417, E < 10–34),

and a ripening related protein (accession AF127110,

E < 10–71). Thus, the majority of the most plant-like tran-

scripts in the infected soybean library strongly resemble

characterized plant sequences. Analysis results from all

P. sojae and mixed-culture transcripts are available online as

additional data files, grouped by the library from which tran-

scripts were sequenced.

Figure 4 shows that calibration curves from comparing plant

and microbial symbiont training sets have good separation

and minimal overlap (about 10%) in two of three cases, but

not for training set B2, comprised of zygomycetes and

chytridiomycetes, which overlaps considerably with plants

(Figure 4b). The associated error rates are α = 0.126 and

β = 0.207. When comparing between plants and bacteria,

the error rates are α = 0.052 and β = 0.084, much lower

than when comparing plants (A2, Medicago) with fungi (B2,

zygomycetes and chytridiomycetes). Error rates for compar-

ing stramenopiles and P. infestans ESTs with plants are as in

Figure 2 (α = 0.088, β = 0.032).

Also shown in Figure 4 are cumulative distributions from

comparisons with M. truncatula and microbial symbionts.

All resemble calibration curves from plant sequences, having

similar medians and slightly less variance than the plant cal-

ibration curves. Comparison curves show that the great

majority of test sequences are more plant-like than other-

wise, with 20% or less resembling microbial symbionts more

closely than plants. A greater proportion of microbial

sequences is present in the M. truncatula–G. versiforme

interaction library (20%, Figure 4b) than in the P. medicagi-

nis-infected M. truncatula library (5%, Figure 4a). However,

Long’s root-hair enriched library (MtRHE) [6] had a greater

proportion of putative microbial sequences present (7% and

25%) than any of the libraries isolated from symbiont-asso-

ciated cultures. The axenic and nodulating root libraries had

the smallest portion of putative microbial transcripts (< 2%,

Figure 4c), with the axenic library closely resembling nodu-

lating root libraries. The method of preparing a library can

affect the proportion of plant and non-plant sequences, as

discussed below.

Paired dissimilarity values in Figure 5 show in greater detail

which sequences are more or less like plant and symbiont.

Sequences from an interaction library and pure plant root

cultures appear together for comparison. Considerable vari-

ation in the degree of dissimilarity to both training sets is

clear, largely due to variation in the length of sequences

within test sets. Consistent with the cumulative distributions

of D(A) - D(B) in Figure 4, most sequences lie above the

identity function, and resemble the plant host more closely

than the microbial symbiont. Mycorrhizal test sequences are

more difficult to differentiate than sequences from the rhi-

zobacterial or pathogenic associations, as seen by the dimin-

ished variation about the identity function in mycorrhizal

comparisons (Figure 5b), contrasted with comparisons from

4 Genome Biology Vol 2 No 9 Hraber and Weller



pathogen-infected and nodulating root libraries (Figures 5a

and c, respectively). Analysis results from all M. truncatula

and mixed-culture transcripts are available as additional

data files online, grouped by the library from which tran-

scripts were sequenced, and sorted from the least plant-like

transcripts to the most plant-like.

Discussion
Clearly, the word-counting approach provides a reliable solu-

tion to the problem of source identification with known confi-

dence, and has several significant advantages. The reliability

of the method is best justified in terms of the favorable vali-

dation test results, and is further corroborated by agreement

with an analysis of GC content. In test cases where the

correct answer is known a priori, results were correct within

error rates expected from overlap in training sets. (Recall

that α = 0.088 for comparisons between plants and stra-

menopiles, and α = 0.052 for comparisons between plants

and bacteria.) Unlike GC content, the problem is clearly

resolved by word counting with a threshold value of t = 0,

and with statistical rigor, because false-positive and false-

negative rates for a set of comparisons are readily computed

from cumulative distributions of dissimilarity between two
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Figure 1
Distribution of GC content in pure and mixed-culture libraries. (a) Probability densities for histogram bin sizes of 0.02 (2%)
in base content. (b) Cumulative probability distribution functions (cdfs).

0.2 0.4 0.6 0.8
GC

0.0

0.5

1.0

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

P. sojae-infected G. max
P. sojae  mycelia
P. sojae zoospores
Glycine and Medicago
Stramenopiles

0.2 0.4 0.6 0.8
GC

0.0

0.1

0.2
P

ro
ba

bi
lit

y 
de

ns
ity

P. sojae-infected G. max
P. sojae mycelia
P. sojae zoospores

(a)

(b)



training sets. Optimal statistical power (minimal false-

negative rate) is ensured when using a likelihood-ratio test

statistic, as demonstrated by the Pearson-Neyman Theorem

[28]. Further, word counting need not be trained only for the

species being compared. Rather, it is sufficient that the train-

ing set be related to, but not necessarily congeners of, the

species from which sequences are being compared.

Sequences from several species of the genus Phytophthora

were correctly distinguished from plant and bacterial

sequences, and three genes from Agrobacterium tumefaciens

were correctly identified as representing a bacterial sequence.

However, several caveats warrant prudence. Transcribed

sequences that do not encode proteins, but rather catalytic

single-stranded RNAs such as transfer and ribosomal RNAs

[32], should be treated independently because they are more

6 Genome Biology Vol 2 No 9 Hraber and Weller

Figure 2
Distribution of hexamer dissimilarity test results from pure and mixed-culture libraries. (a) Calculation of statistical
parameters from cdfs A and B. Overlap in the upper tail of cdfA with cdfB and the lower tail of cdfB with cdfA are likely regions
for error. We find the false-positive rate α where 1 – cdfA intersects 0 [cdfA(0) = 1 – α], and the false-negative rate β where
cdfB crosses 0. Also shown are the medians (µ) for each distribution, where cdf(µ) = 0.5. (b) Calibration curves for plant (A1,
Glycine and Medicago spp., solid black line) and stramenopile plus P. infestans EST (B1, dashed black line) training sequences.
Superimposed distributions of test results show dissimilarity differences for infected G. max (green) and axenic P. sojae
mycelial and zoospore sequences (blue and cyan, respectively).
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highly conserved across taxa than messenger RNAs. Also, fil-

tering or trimming of low-complexity repeat regions, such as

poly(A) or poly(T) tracts, is helpful because comparison

results can be influenced by the abundance of a single

hexamer. Early in our investigations, using one set of train-

ing sequences obtained from directionally cloned P. infes-

tans cDNAs produced results that were difficult to interpret.

It eventually became clear that, as the P. infestans sequences

were all single-pass reads from the 5′ end of a clone gener-

ated with the T3 primer, few sequences complementary to

the 3′ end of the mRNA sequence were present in the train-

ing set. This meant that the hexamer AAAAAA was common,

but the hexamer TTTTTT scarce. Large amounts of the

poly(T) hexamer would be expected when sequencing

reverse complements of mRNAs obtained from 3′ sequences

generated with the T7 primer. Both poly(A) and poly(T)

regions were present among plant training sequences. As a

result, any sequence that contained a poly(T) tract tended to

resemble the plant sequences. Further, because the error

rates for an inference depend on the degree to which calibra-

tion curves overlap, the best results are obtained where

overlap is minimal. Despite these caveats, word counting

presents a viable solution to the problem.

The P. sojae-infected G. max library provides a clear

example of contrast in both hexamer composition and GC

content, resulting in readily diagnosed origins. Not every

case is this simple. For clear separation between the two

species to appear, the two must differ in composition and a

detectable proportion of transcripts from each species must

be present in the library. To be detectable, the proportion of

transcripts present from a particular species must be greater

than the error rate obtained from calibration curves.

Though these criteria are true for the infected G. max library

(t < 0 for < 25% of 927 transcripts), they do not appear to be

true for the M. truncatula libraries we analyzed (t < 0 for

80-99% of 890-3,017 transcripts). In the P. medicaginis

interaction library, we might expect the same bimodal distri-

bution as seen with P. sojae. However, the two libraries were

prepared in different ways. The P. sojae-infected library was

prepared two days after infection, using a susceptible plant

host strain, so as to maximize the number of pathogen tran-

scripts present in the host tissue [18]. Further, G. max

hypocotyl tissues were infected directly with a zoospore sus-

pension. In contrast, the P. medicaginis-infected library was

prepared ten days after infection and individual plants

varied in their degree of susceptibility (C. Vance, unpub-

lished data). Plants were also inoculated in a different

manner: ground mycelia were dissolved in sterile water and

incubated, and the resulting inoculum was pipetted onto the

soil surface, rather than the plant. These differences in how

tissues were cultured prior to library preparation could have

produced the disparate abundance of plant transcripts,

though both libraries were prepared from plant tissues

infected with Phytophthora.
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Figure 3
Paired dissimilarity test results from pure and mixed-culture
libraries. Each point corresponds to an expressed tag from
either (a) infected G. max or (b) axenic P. sojae mycelial or
(c) zoospore sequences, compared with plant (A1) and
stramenopile plus P. infestans EST training sequences (B1).
The identity function indicates equal dissimilarity to both
training sets, t = D(A) – D(B) = 0. Points above the identity
function are more plant-like than points below.
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Figure 4
Dissimilarity distributions from Medicago truncatula libraries. Calibration curves compare plant training sets (A1 and A2, solid
black lines) with one of three microbial symbiont training sets (broken black lines): (a) Stramenopile and P. infestans EST
sequences (B1); (b) pooled zygomycete and chytridiomycete coding sequences (B2); and (c) sequences from the genera
Rhizobium, Sinorhizobium and Bradyrhizobium (B3). Cumulative distributions of test results from M. truncatula axenic and
microbial symbiont mixed cultures appear in each panel (colored lines).
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For mycorrhizal root libraries, we might explain the relative

lack of symbiont sequences as resulting simply from a rela-

tive lack of transcripts in the host tissue. Most of the biomass

in mycorrhizal roots is plant biomass [33]. We might there-

fore expect that most of the transcripts therein originate

from the plant host. Confounding this result, the error rates

in this comparison are the greatest among all the compar-

isons we performed, most likely because the evolutionary

distance between fungi (zygomycetes and chytridiomycetes)

and plants is the least among comparisons [34]. Also,

zygomycete protein-coding sequences are rare in GenBank,

which resulted in a small training set for these fungi, and

may have amplified any biases. The high false-negative rate

probably led to a failure to detect some symbiont transcripts.

In nodulating root libraries, we do not expect to observe an

abundance of bacterial transcripts, because bacteria gener-

ally do not form polyadenylated mRNAs [35]. As the proto-

cols used to extract and purify mRNAs from tissue lysate for

the libraries cited in this study all relied on the presence of

polyadenylation sites, we generally do not expect to find bac-

terial transcripts.

The abundance of putative microbial symbiont transcripts

among sequences from a pure plant root library is difficult to

interpret. The predicted portion of microbial transcripts was

greater in the axenic root-hair enriched library than in

mixed cultures. Error rates were greatest for comparisons

between training sets from plant and pooled zygomycete and

chytridiomycete sequences. Other than providing an 87%

confidence level, the 13% false-positive rate does not com-

pletely explain why about 15% of root-hair enriched tran-

scripts resemble fungal hexamer composition more closely

than plants, and warrants further study. 

Care had been taken to avoid contaminating plant tissue cul-

tures by culturing seedlings in covered plates. Because of

concern that ethylene accumulation in covered plates could

improperly stimulate nodulation-related gene expression,

seedlings were treated with Ag2SO4, an inhibitor of the

plants’ response to ethylene [6]. Inhibition of the ethylene

response could have resulted in synthesis of transcripts that

are uncharacteristic of plant roots. Analysis of another

axenic root-hair enriched library, particularly one provided a

carbon source to identify potential contaminants, and not

treated with an inhibitor of ethylene response, would be an

informative test.

These observations warrant further experimental scrutiny.

The transcripts identified as most and least like plant or

symbiont might also be studied in more detail as candidate

participants in symbiosis. Symbiotic interactions, whether

pathogenic or mutualistic, present novel challenges to both

plant hosts and the biologists who study them. Computa-

tional approaches, in concert with experimental verification,

can help resolve these challenges.
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Figure 5
Paired comparison results from pure and mixed-culture M.
truncatula libraries. Each point indicates the dissimilarity of a
test sequence compared with a plant training set (A1 or A2)
and one of three microbial symbiont training sets:
(a) Stramenopile and P. infestans EST sequences (B1);
(b) pooled zygomycete and chytridiomycete coding
sequences (B2); and (c) sequences from the genera
Rhizobium, Sinorhizobium and Bradyrhizobium (B3). Sequences
from M. truncatula axenic (green) and microbial symbiont
mixed culture libraries are represented in each panel. The
identity function (y = x) is also shown.
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Methods and materials
Training sequences
Calibration
To characterize hexamer frequencies in plant hosts and their

microbial symbionts, we collected sets of training sequences

from public databases and edited them for quality. Training

sets were chosen to be representative of, but obtained inde-

pendently from, taxa participating in symbiotic associations

for which a diagnosis of origin would be made. Because the

species being compared are represented unevenly in public

sequence databases, taxa were chosen so that roughly the

same number of genes were analyzed in each training set,

rather than simply to maximize the numbers of species or

sequences present.

Training sets represent protein-coding sequences from three

taxonomic groupings: plants (A1, Medicago and Glycine

spp.), either fungi (B2, zygomycetes and chytridiomycetes)

or stramenopiles (B1), including ESTs from P. infestans [16],

and bacteria (B3, Rhizobium, Sinorhizobium and Bradyrhi-

zobium). We performed pairwise comparisons with two dif-

ferent, taxon-specific training sets (A and B) to infer the

origin of a transcript.

Training sets were obtained by querying the GenBank data-

base using the Entrez retrieval tool [29-31]. A preliminary

query by taxon name obtained all available nucleotide

sequences from that taxon, then the Limits option excluded

ESTs, STSs (sequence-tagged sites), GSSs (genome survey

sequences), working draft sequences, and patented

sequences from the query set. Organellar (mitochondrial

and chloroplast) DNA was also excluded via the Limits

option. A query term to require that a sequence contain a

protein-coding region (CDS) was also added, which excluded

ribosomal and transfer RNA sequences. The results con-

sisted of all sequences that contain a nuclear protein-coding

sequence available for that taxon at the time of the query.

This was done on two separate occasions: in April and

October 2000. (Changing slightly the composition of train-

ing sets between those dates did not notably affect the exper-

imental outcome.)

Following a previously established protocol [19], we used a

resampling procedure to evaluate the degree of overlap

between distributions of hexamer composition obtained from

comparing two training sets. In this protocol, we resampled

each training set 40 times by random partitioning into train-

ing (for hexamer counts) and test calculation pools. To

control for any bias introduced by length variation, a program

randomly clipped 300 nucleotide fragments for word count-

ing. As a result, one random 300 nucleotide fragment from

each training sequence was present in the training set during

a single resampling replicate; independent replicates con-

tained different, randomly chosen training sequences and

300 nucleotide fragments. Values of the test statistic from 40

resampled replicates were pooled for calibration purposes.

As with the original protocol [19], we pooled the resulting test

statistic distributions, normalized them as cumulative distri-

butions, and then evaluated them for overlap. We call the

resulting comparisons ‘calibration curves’, as they are not

used directly to make inferences, but rather indirectly, to

evaluate the degree of separation in hexamer counts from dif-

ferent taxa. Overlap of calibration curves should be minimal

to yield the most statistically powerful results possible.

Due to considerable overlap of calibration curves between

taxonomically general, inclusive training sets (that is, all

eudicots, all fungi and miscellaneous eukaryotes, and all

eubacteria, data not shown), we opted to work with specific

training sets that included only the most species-specific

sequences available, while maintaining approximately equal

sample sizes across taxa.

The most challenging case was that of the arbuscular mycor-

rhizal fungi, for which very few protein-coding sequences are

available. To increase the amount of data in this training set

(B2) without biasing sample sizes, we pooled sequences from

all species in the zygomycetes with all available chytrid-

iomycete coding sequences, and compared this training set

with a set from a single plant genus, Medicago (A2). We chose

this option, rather than including an arbitrary subset of

sequences from the ascomycetes and basidiomycetes,

because zygomycetes and chytridiomycetes have diverged

from their common ancestor less recently than the

ascomycetes and basidiomycetes, based on 18S ribosomal

RNA sequence data [34]. That is, the ascomycetes and basid-

iomycetes are more highly derived from the common fungal

ancestor than zygomycetes and chytridiomycetes, which

resemble more closely the ancestral state in modern lineages.

Data quality
Starting with a full set of sequences, we filtered for high-

quality sequences by trimming regions having extensive

ambiguous bases (N-rich) and poly(A) or poly(T) regions.

The test statistic can be sensitive to the abundance of a

single word [19]. Thus, we trimmed poly(A) and poly(T) sites

to minimize the cases in which a test sequence resembles

one training set more closely than the other, simply by virtue

of having an abundance of the hexamer AAAAAA or

TTTTTT. Similarly, test results obtained from short or

N-rich sequences can be difficult to interpret [19]. We

allowed no more than one N per hexamer and trimmed

poly(A) or poly(T) tracts longer than 13 nucleotides. To

accommodate for possible sequence chimeras, those

sequences found to contain an internal poly(A) or poly(T)

segment longer than 13 nucleotides were partitioned into

two fragments, and the longer of the two fragments was used

in analysis, provided its length was at least 300 nucleotides.

After trimming, we screened all remaining sequences of 300 nt

or longer for similarity to Escherichia coli using BLASTN

[20,21]. All BLAST searches used default parameters and
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low-complexity filtering with the programs DUST or SEG.

The decision to exclude non-coding RNA sequences from

training sets was informed by the appearance of bimodal

distributions of hexamer frequencies and a large degree of

overlap between calibration curves (data not shown), likely a

result of divergent evolutionary rates between protein-

coding and non-coding sequences [36,37]. Chloroplast and

mitochondrial sequences were eliminated to avoid complica-

tions due to variation in codon usage between nuclear and

organellar genomes.

Table 2 summarizes counts of sequences and nucleotides in

training sets before and after trimming and screening. All

training sets obtained using the procedure described above

are available as additional files.

Validation
To test the validity of word counting as a solution to the

problem, we identified a set of 50 gene sequences from plants

(M. truncatula and G. max), oomycetes (Phytophthora),

zygomycetes (Glomus versiforme), and bacteria (Sinorhizo-

bium meliloti and Agrobacterium tumefaciens), for which

the function and origin have been characterized experimen-

tally. We chose genes known to play a role in plant-microbe

interactions, as well as genes that are found across taxa. We

withheld these sequences, and partial transcripts of the same

genes, from training sets prior to comparative lexical analy-

sis, and calculated hexamer dissimilarities for each of the

three training sets as described below.

Test sequences 
To diagnose the species of origin for sequences expressed in

symbiotic cultures, we collected sequences generated by dis-

tinct EST sequencing projects from the GenBank database

[29-31]. Sequences from pathogenic interactions originated

from cultures of a species from the genus Phytophthora with

its plant host, such as P. sojae and soybean (G. max) isolated

from inoculated hypocotyls two days after infection [18] and

P. medicaginis and M. truncatula isolated from infected

roots 10 days after infection (C. Vance, unpublished data).

Sequences expressed during mutualistic interactions were

obtained from cultures with M. truncatula and mycorrhizal

(Glomus versiforme; M.J. Harrison, unpublished data) or

rhizobacterial (S. meliloti; K. VandenBosch, unpublished

data) endosymbionts several days after inoculation.

Sequences expressed in pure, axenic cultures from P. sojae

mycelia and zoospores [18] and from sterile, uninoculated

M. truncatula roots [6] provided a basis for comparison in

which no foreign transcripts were expected.

To maximize the reliability of diagnostic comparisons, we

screened test sequences for high quality as for training

sequences, and for low similarity to E. coli, chloroplast and

mitochondrial genes, and non-coding RNA transcripts (ribo-

somal and transfer RNAs). Independent BLASTN compar-

isons identified sequences having very high similarity

(E < 10–100) to vector sequences or moderately high similar-

ity (E < 10–20) to non-nuclear or non-coding sequences

obtained from GenBank. Sequences so identified were with-

held from analysis. A summary of test sequences appears in

Table 3. All test sequences obtained using the procedure

described above are available as additional files.

Base content
We wrote a PERL program (countGC.pl) that calculates the

GC base content of a sequence as the portion of guanine and

cytosine residues among all unambiguous (non-N)

nucleotides in a sequence. The hist method in R, version 1.1.1
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Table 2

Training sets

Taxon Raw Trimmed Screened

n nt n nt n nt

Glycine 892 1,265,829 834 1,219,114 826 1,184,951
Medicago (A2) 401 561,104 382 519,739 380 513,868
Total, plants (A1) 1,206 1,698,819

Stramenopiles 199 299,113 184 287,600 181 279,900
P. infestans 2,131 1,219,463 2,102 1,209,113 2,082 1,199,372
Total, stramenopiles (B1) 2,263 1,479,272

Zygomycetes 232 343,817 212 329,222 211 327,229
Chytridiomycetes 82 123,698 78 119,754 78 119,754
Total, Fungi (B2) 289 446,983

Rhizobium 478 1,430,132 444 1,404,883 444 1,404,883
Sinorhizobium 320 900,294 312 898,687 312 898,687
Bradyrhizobium 153 471,309 146 465,307 146 465,307
Total, rhizobacteria (B3) 902 2,768,877

Number of sequences (n) and nucleotides (nt), as raw, trimmed (removed N-rich regions, poly(A) and poly(T) sites), and screened sequences (removed
ribosomal, chloroplast, and mitochondrial DNA and remaining sequences shorter than 300 nucleotides).



[38] aggregated continuous percentages into discrete his-

togram bins, using bin sizes of 2% difference in GC, with

inclusive lower bin boundaries and exclusive upper bounds;

the lm method tested for linear correlation of the dissimilar-

ity test statistic t with GC.

Comparative lexical analysis
White et al. [19] used a likelihood-ratio test to determine

whether word frequencies from a particular sequence more

closely resemble the frequency distribution of control data sets

from the taxon being sequenced or a distantly related out-

group. They computed a test statistic t(A,B,x) for each

sequence x as the difference of log-likelihood ratio dissimilar-

ity measures, D(A,x) = -2logλ(A,x), for two data sets, a control

set A and an outgroup B, such that t(A,B,x) = D(A,x) -D(B,x).

A negative value for t indicates that the sequence more

closely resembles words from A; conversely, a positive value

indicates a likely contaminant related to B. (Dissimilarity is

conceptually related to distance. However, dissimilarity does

not measure distance because it does not possess the mathe-

matical properties of a distance metric [39].) Unlike the cal-

culation of calibration curves, in which 300-nucleotide

subsequences are randomly resampled, hexamer dissimilar-

ity is measured over the whole length of a test sequence

when inferring a transcript’s origin. Originally, the investiga-

tors used the null hypothesis that no difference exists for dis-

similarity measures between the two data sets, or that

t(A,B,x) = 0 [19]. White et al. [19] tested two alternative

hypotheses: that t < 0, being more like A, or t > 0, like B.

Lexical analysis using pentamers or heptamers yields similar

error rates and very highly correlated values for the test result

(not shown). Because White et al. [19] reported the best

results were obtained using hexamers, and because a word

size of six nucleotides corresponds to the size of a dicodon, we

chose to analyze hexamer frequencies. To use longer words

requires more training data, because the number of possible

words increases exponentially with increasing word size. Use

of shorter words may be adequate for some applications and

will be investigated in future work.

Though we used White’s word-counting methods, we did

make slight modifications. We simplified one program (called

hybridize) to compute individual dissimilarity values, rather

than paired differences; a patch that details how to modify

the C program is available (see hyb2dis.txt in additional data

files online). More importantly, we amended the null hypoth-

esis and interpreted calibration curves to test for statistically

significant dissimilarity differences. Though the likelihood-

ratio test statistic indicates the magnitude of similarity to A or

B, we do not know what values for t are significant with

known confidence. When testing hypotheses, one can make

two types of error: type I, or false positives, and type II, false

negatives [28]. The false-positive rate is denoted α and false-

negative rate β. We determine α and β from overlap in the

calibration curves. Inferring error rates from calibration

curves is justified because we know the correct answer and

determine the error rate via resampling, as with bootstrap

methods to infer error rates or confidence intervals [40].

We are interested in knowing from which of two organisms a

sequence originated, and are reasonably confident that it

came from either one or the other. Thus, we assume it came

from one and test whether we have evidence to refute this

assumption. The null hypothesis here is that sequence x is

from A. Alternatively, it might be from B. Evaluating the cal-

ibration curve overlap at t = 0 quantifies the associated error

rates. The cumulative distribution function (cdf) of taxon B

specifies β where cdfB intersects 0; the cdf from A specifies α
as 1–cdfA(0). We can thus resolve the problem with known

confidence P: P (t > 0) = α. All other computations were per-

formed as described previously [19]. Software used for
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Table 3

Test sets

Species Tissue Library (ID) Raw Trimmed Screened

n nt n nt n nt

P. sojae Mycelia MY 969 527,295 902 510,010 895 506,086
P. sojae Zoospores ZO 1,013 583,520 960 569,576 957 567,976
+ G. max 2 dpi HA 994 577,626 938 563,226 927 556,305

M. truncatula Root hairs MtRHE 899 539,719 893 536,787 890 534,037
+ G. versiforme 10-38 dpi MHAM 3,259 1,785,721 3,030 1,735,390 3,017 1,725,491
+ P. medicaginis 10 dpi DSIR 2,462 1,324,815 2,289 1,287,568 2,284 1,282,518

M. truncatula Roots KV0 2,718 1,387,832 2,550 1,351,137 2,492 1,318,131
+ S. meliloti 1 dpi KV1 1,125 562,452 1,012 537,644 1,003 531,813
+ S. meliloti 2 dpi KV2 1,960 976,344 1,732 926,953 1,726 922,433
+ S. meliloti 3 dpi KV3 2,375 1,316,430 2,217 1,279,691 2,173 1,251,795

Number of EST sequences (n) and nucleotides (nt) as raw, trimmed (limited lengths of N-rich regions, poly(A) and poly(T) sites), and screened (removed
ribosomal, chloroplast, and mitochondrial DNA, and remaining sequences shorter than 300 nt) sequences. Transcripts were isolated from the cDNA
library indicated by the ID column. dpi, days post-inoculation, indicating mixed plant-microbe cultures.



lexical analysis was obtained via anonymous ftp from the

TIGR software FTP site [41].
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Additional data files
The following files are available for download with the online

version of this article:

countGC.pl: PERL script used to compute GC content of

sequences analyzed. 

hyb2dis.txt: patch file that converts White’s hybridize

program to compute individual dissimilarity values.

Training sets (GlycineMedicago.txt, Rhizobia.txt, Strameno-

piles.txt, ZygoChytrid.txt): FASTA-formatted text files that

contain the sequences used for calibration and comparison.

Test sets (PsojaeHA.txt, PsojaeMY.txt, PsojaeZO.txt,

MtRHE.txt, DSIR.txt, MHAM.txt, KV0.txt, KV2.txt,

KV3.txt): FASTA-formatted text files containing transcripts

analyzed, edited for quality.

Test results (PsojaeHA.dat, PsojaeMY.dat, PsojaeZO.dat,

MtRHE-A1B1.dat, MtRHE-A2B2.dat, DSIR.dat, MHAM.dat,

KV0.dat, KV2.dat, KV3.dat): text files that contain transcript

analysis results, sorted from least to most plant-like.
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