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ABSTRACT: We report the rational construction of de
novo-designed biliverdin-binding proteins by first princi-
ples of protein design, informed by energy minimization
modeling in Rosetta. The self-assembling tetrahelical
bundles bind biliverdin IXa (BV) cofactor autocatalyti-
cally in vitro, like photosensory proteins that bind BV (and
related bilins or linear tetrapyrroles) despite lacking
sequence and structural homology to the natural counter-
parts. Upon identification of a suitable site for ligation of
the cofactor to the protein scaffold, stepwise placement of
residues stabilized BV within the hydrophobic core.
Rosetta modeling was used in the absence of a high-
resolution structure to inform the structure-function
relationships of the cofactor binding pocket. Holoprotein
formation stabilized BV, resulting in increased far-red BV
fluorescence. Via removal of segments extraneous to
cofactor stabilization or bundle stability, the initial 15 kDa
de novo-designed fluorescence-activating protein was
truncated without any change to its optical properties,
down to a miniature 10 kDa “mini”, in which the protein
scaffold extends only a half-heptad repeat beyond the
hypothetical position of the bilin D-ring. This work
demonstrates how highly compact holoprotein fluoro-
chromes can be rationally constructed using de novo
protein design technology and natural cofactors.

De novo-designed proteins are useful tools for exploring
principles of protein folding, assembly, and biochemical
functions that build on structure−function and sequence
diversity landscapes distinct from those of natural protein
scaffolds.1−3 Self-assembling tetrahelical bundles,4−10 created
by binary patterning of hydrophobic and hydrophilic residues
with high α-helical propensity,11 comprise the best-established
class of de novo-designed scaffolds. They provide stable frames
for binding cofactors, as protein maquettes5−7,12 for rationally
engineering artificial holoproteins in which the cofactor-
interacting contributions of individual residues are largely
isolated from one another (Figure 1a).
Previously reported maquette holoproteins incorporated

rigid, planar cofactors such as hemes, chlorins, porphyrins, and
flavins. Recently, we reported that they also bind flexible bilins
or linear tetrapyrroles and identified determinants for
autocatalytic ligation of phycocyanobilin (PCB), namely, a
free cysteine and the stabilization of the bilin propionates.6

Here, we report the rational construction of compact de
novo-designed proteins that bind biliverdin (BV), the optically
active cofactor in bacteriophytochromes (Bph) and Bph-
derived protein tools.13−16 Energy minimization modeling in
Rosetta8,9,17,18 informed the placement of residues for
stabilizing BV, which increased its far-red fluorescence. Despite
lacking sequence or structural homology to natural biological
fluorochromes, fluorescent bili-proteins were successfully
forward-engineered with molecular weights as small as 10
kDa or half that of a minimal fluorescent domain engineered
from a Bph.14

■ RESULTS AND DISCUSSION
Rational Design and Construction Strategy. Fluores-

cent proteins (FPs) have been engineered by directed
evolution of Bph,13−16 phytochromes (Phys),19,20 allophyco-
cyanins21,22 (APs), and fatty acid-binding muscle proteins.23

These engineered proteins are generally rigidified (i) to
stabilize the cofactor in a fluorescent conformation, (ii) to limit
access of the solvent and oxygen to the cofactor, and (iii) to
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Figure 1. Engineering de novo-designed proteins to stabilize biliverdin.
(a) Self-assembling single-chain tetrahelical bundles created by binary
patterning of hydrophobic and hydrophobic residues with a high α-
helix formation propensity, described by the helical wheel. (b)
Strategy for stabilizing biliverdin within the core. (c) Holoprotein
stepwise construction.
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prevent protein structural rearrangements intrinsic to their
signaling roles.
Structural insights from Bph- and Phy-derived FPs15,16,19 led

to a design strategy for stabilizing the bilin by hydrogen
bonding to the BV propionates and A-ring and adding
hydrophobic core bulk around the D-ring (Figure 1b). In
our rational construction strategy (Figure 1c), we first
experimentally identified a suitable cofactor attachment site
on a scaffold, which was derived from maquettes with molten
globular cores5,24 that accommodate a range of cofactor types
and sizes. BV-stabilizing residues were subsequently intro-
duced stepwise to define a pocket within the apoprotein core.
In the absence of a high-resolution structure for this scaffold,
the binding pocket structure-function analysis was informed by
energy minimization modeling using Rosetta, given its
reported ability to predict helical bundle topologies and
binding sites for rigid, planar cofactors.8−10

Cysteine Ligation Scanning. Bilin-containing holopro-
teins can be reconstituted in vitro by autocatalytic ligation of
bilin to cysteine.6,25,26 To identify suitable ligation positions
around which to construct a binding pocket, we scanned
cysteine sites for BV covalent attachment efficiency to purified
apoproteins in vitro (Figure 2). All core residues (heptad
repeat positions a and d) were leucines to limit potential
contributions to bilin stabilization by structured interactions
within the core.

BV attachment levels trended with cysteine solvent
exposure, where those in the solvent-exposed B-loop (S64C)
or near the termini (L23C) provided good relative balances of
appreciable cofactor attachment and baseline fluorescence
from partitioning into the hydrophobic core (Figure 2c). In
selecting construction starting points, we prioritized BV
attachment efficiency given the reported challenges in the
uptake of the cofactor by Bph-FPs.13,16 Subsequent engineer-
ing proceeded faster with the loop-bound S64C maquette, the
starting point of proteins hereafter. Rosetta modeling
suggested a favored BV placement in the core where an

existing arginine (R119) and lysine (K77) of the scaffold
stabilize the cofactor propionates.

Rational Cofactor Stabilization. Stepwise modifications
had the intended hierarchical effects of increasing the BV
attachment efficiency, enhancing the fluorescence quantum
yield (ϕF), and sharpening absorbance Q-bands (Figure 3 and
Figure S1), with the latter two events indicative of bilin
rigidification.26 The helix 4 terminus adjacent to the BV-
binding cysteine (C64) was rigidified and made more
hydrophobic by placing a valine (K124V) at the interfacial
b-position of the last heptad repeat (build step 2). Cofactor
stabilization and placement continued from the A-ring, the
most constrained pyrrole from covalent attachment, by
introduction of a serine (L5S) intended to hydrogen bond
the A-ring nitrogen (build step 3).
The cofactor B-, C-, and D-rings were further immobilized

by positioning histidines (L75H and F120H) to π-stack with
the pyrroles and to provide hydrophobic core bulk that
restricts protein movement and core water access (build step
4), which has stabilized tetrapyrroles effectively in previous
maquettes.5,6 Rosetta modeling of the final product suggests S5
may further constrain the A-ring by hydrogen bonding to both
the A-ring oxygen and H71 (Figure 3a).
The resultant 15 kDa monomer fluoresced modestly in the

far-red spectrum (λex = 648 nm; λem = 662 nm; ϕF = 1.58%).
The quantum yield is similar to that of sandercyanin, a natural
BV-binding fish pigment (ϕF = 1.6%),27 and is smaller than
those of Bph- and AP-derived directed evolution products (ϕF
∼ 7−18%).13−16,21 For the sake of simplicity, we hereafter call
this de novo-designed fluorescence-activating protein (“dFP”).
dFP was predominantly monomeric in analytical ultra-

centrifugation (AUC) assays (Figure S1). Circular dichroism
measurements confirmed the bundle helicity and showed that
cofactor binding enhanced the overall protein thermal stability
(Tm‑apo = 44.7 °C, and Tm‑holo = 50.8 °C) (Figure S2). Mass
spectrometry and zinc acetate staining of denaturing protein
gels confirmed covalent bilin attachment (Figure S3a−c).
Noncovalently adsorbed BV was sufficiently removed by
filtration on desalting columns (Figure S3d).
Biliverdin formed a thioether bond between its vinyl group

and C64, based on acidic denaturation studies in guanidinium
chloride (Figure S4a−d). The dFP(C64S) mutation destabi-
lized BV within the core, which is evident by the diminished
level of uptake, Q-band absorbance, and fluorescence quantum
yield (ϕF = 0.8%) (Figure S4b). BV was stripped from
dFP(C64S) upon denaturation and column filtration and, thus,
noncovalently bound to this mutant. Similarly, cysteine-
containing dFP bound less mesobiliverdin (meso-BV), which
differs from BV by its reduced vinyl side chains (to ethyl), and
was stripped from the holoprotein upon denaturation (Figure
S4c).
Biliverdin of denatured dFP did not appreciably photo-

convert upon stimulation (λ = 610 ± 5 or >650 nm) based on
the difference spectrum (Figure S5), suggesting that its D-ring
adopts a 15Z configuration28 as designed (Figures 1a and 3b)
and not the photoconverting 15E configuration.28 A future
high-resolution structure would greatly inform dFP structure-
function analysis.

Miniature 10 kDa Bili-Protein (“mini”). The 15 kDa dFP
contains extraneous heptad repeats for cofactor binding and
stabilization needs. We sought to engineer a miniature dFP
(hereafter called “dFP-mini” or “mini”) (Figure 4a,b) by
truncating the scaffold down to where homology modeling

Figure 2. Cysteine scanning for biliverdin (BV) attachment. (a)
Rosetta-generated Pymol model of the scaffold, with candidate
attachment sites. (b) Scaffold sequence. (c) Relative BV attachment,
fluorescence, and brightness summary (mean ± the standard error).
Fluorescence measured at fixed holoprotein concentrations (λex = 600
nm). Brightness calculated as absorbance × fluorescence. Abbrevia-
tions: AUC, area under the curve; Abs, absorbance; Em, emission; Q,
Q-band.
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predicts all BV pyrroles remain solvent-shielded. To preserve
bundle stability, truncation began after the hydrophobic caps at
the helical termini closest to the D-ring. Loops 1 and 3 were
also shortened.
A stable 10 kDa mini was formed with helices that extend a

half-heptad repeat beyond the furthest modeled D-ring contact
residue. Shorter proteins terminating at the final hypothetical
contact were unstable. dFP-mini had photophysical properties
nearly identical to those of full-length dFP (Figure 4c).
Likewise, the mini forms a thioether bond with the BV vinyl
group (Figure S4), and the cofactor D-ring adopts a 15Z
orientation (Figure S5).
The mini is approximately one-third the size of GFP (27

kDa) and Bph-derived FPs (30−35 kDa) and half that of a
minimal domain engineered from a Bph (18 kDa).14 The facile
truncation and relative compactness reflect the structural

simplicity of the de novo-designed scaffold. Other than three
interhelical loops and hydrophobic caps, the mini lacks
accessory structural elements beyond the cofactor-binding
pocket itself.
Compact protein fluorochromes are advantageous in

molecular sensors because they shorten Förster distances and
limit potential interference with the activity of fusion partners.
Because BV is endogenous to eukaryotes, this study is a
valuable step toward fully genetically encoded and compact de
novo-designed reporters, with the primary next steps being
increasing the quantum yield and bilin uptake for robust
performance.
The uptake here reflects an in vitro autocatalytic attachment

efficiency, without an evolutionarily conserved bilin lyase
domain (BLD)25,26 or accessory bilin lyase.29 Analogous
efficiencies of Bph-derived FPs (before separating apoprotein
from holoprotein) are largely unreported. BV likely attaches to
the de novo-designed scaffold by partitioning into the core and
stabilizing within the binding pocket before thioether
formation (as described for phytochromes25,30), given that
cysteine-to-serine mutations only partially decrease the level of
holoprotein formation and that attachment efficiency trended
with quantum yield. We anticipate that improved cofactor
stabilization will enhance thioether formation and consequent
fluorescence properties.
These enhancements may result from complementary

directed evolution approaches and/or new computational
design tools, including a recently reported “rotamer interaction
field” (RIF) algorithm that decouples ligand-docking opti-
mization from overall backbone optimization in Rosetta.18

This algorithm yielded a de novo-designed β-barrel18 that binds
exogenously supplied DFHBI (chromophore of GFP) and
fluoresces with a quantum yield (ϕF = 2%) similar to that
described above.
To summarize, we rationally constructed compact de novo-

designed proteins that covalently bound biliverdin and
stabilized it in a fluorescent conformer. In keeping with the

Figure 3. Rational engineering of a biliverdin-binding de novo-designed fluorescence-activating protein (dFP). (a) Homology-based contact
schematic (left) for BV stabilization (black, side chains; green, BV) and Pymol visualization (right) of the BV-binding site in the Rosetta-modeled
core. (b) Sequence alignment of the build series (yellow, mutated residues). The E66R mutation was introduced with the S64C mutation based on
“CXR” motifs of natural bili-proteins but did not contribute to stabilization. (c) Excitation (dashed lines; λem > 715 nm) and emission spectra
(solid lines; λex = 600 nm) of the stepwise construction. (d) Photophysical summary. Abbreviations: QY, relative quantum yield vs Cy5; ε,
extinction coefficient. An asterisk indicates a value below the quantification limit. In panels b−d, build step 4 = dFP.

Figure 4. Miniature 10 kDa de novo-designed bili-protein (mini). (a)
Pymol renders the BV-binding site in Rosetta-modeled full-length and
mini dFPs. (b) Sequence alignment. (c) Mini excitation (dashed line;
λem > 715 nm) and emission (solid line; λex = 600 nm) spectra. ϕF =
1.48%. ε = 16209 cm−1 M−1; 16.44% attachment efficiency.
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tenets of synthetic biology and protein design, we built them
from the bottom up from first principles rather than from the
top down using natural protein starting points.
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