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Osteoporosis is a metabolic disease characterized by decreased bone mineral density
and the destruction of bone microstructure, which can lead to increased bone fragility
and risk of fracture. In recent years, with the deepening of the research on the
pathological mechanism of osteoporosis, the research on epigenetics has made
significant progress. Epigenetics refers to changes in gene expression levels that are
not caused by changes in gene sequences, mainly including DNA methylation, histone
modification, and non-coding RNAs (lncRNA, microRNA, and circRNA). Epigenetics
play mainly a post-transcriptional regulatory role and have important functions in the
biological signal regulatory network. Studies have shown that epigenetic mechanisms
are closely related to osteogenic differentiation, osteogenesis, bone remodeling and
other bone metabolism-related processes. Abnormal epigenetic regulation can lead
to a series of bone metabolism-related diseases, such as osteoporosis. Considering
the important role of epigenetic mechanisms in the regulation of bone metabolism,
we mainly review the research progress on epigenetic mechanisms (DNA methylation,
histone modification, and non-coding RNAs) in the osteogenic differentiation and the
pathogenesis of osteoporosis to provide a new direction for the treatment of bone
metabolism-related diseases.
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HIGHLIGHTS

- We summarize the research progress of epigenetic mechanisms in bone metabolism
and osteoporosis.

- We summarize the role of DNA methylation in the osteogenic differentiation and osteoporosis.
- We summarize the role of histone modification in the osteogenic differentiation and

osteoporosis, including histone methylation and histone acetylation.
- We summarize the role of non-coding RNA in the osteogenic differentiation and osteoporosis,

including lncRNAs, miRNAs, and circRNAs.
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INTRODUCTION

The integrity of human bones is maintained by the repeated,
spatiotemporal coupling of bone resorption and bone formation,
which is called bone remodeling (Kenkre and Bassett, 2018;
Intemann et al., 2020). When the balance between bone
formation and bone resorption is disturbed and the ratio of
bone resorption to bone formation is increased, the resulting
progressive bone loss can lead to a degenerative bone metabolic
disease, that is termed osteoporosis (OP), which is characterized
by decreased bone mineral density (BMD), degeneration of
bone microstructure, and increased bone fragility and fracture
risks (Morris et al., 2012; Siris et al., 2014; Kenkre and Bassett,
2018). Genomics are an important factor in determining the
risk of BMD and OP, and numerous polymorphisms of genes
related to bone metabolism are associated with bone mass,
OP susceptibility and fracture risk. However, these variations
in known gene sequences add up to only explain part of the
pathogenesis of osteoporosis (Hsu and Kiel, 2012; Bjornerem
et al., 2015). With global social economy developments and
improved living standards, the prevalence of OP continually
increases. According to relevant statistics, there are more than
10,000 patients with OP in China, and a certain percentage
of the population suffers from OP of different degrees. The
pathogenesis of OP is related to a variety of factors, including age,
sex, endocrine hormone levels, living habits, dietary factors, and
heredity (Foger-Samwald et al., 2020; Gkastaris et al., 2020).

Bone formation and bone resorption are the two basic
processes that maintain normal bone reconstruction, and
osteoblasts and osteoclasts play an important role in this process,
where osteoblasts promote bone formation and osteoclasts
promote bone absorption (Figure 1; Chen et al., 2018; Foger-
Samwald et al., 2020). The precise regulation and balance of
osteoblasts and osteoclasts in terms of function and quantity
help maintain the normal bone reconstruction process, and
abnormal differentiation of osteoblasts and osteoclasts leads to
the imbalance of bone remodeling (Gkastaris et al., 2020; Zou
et al., 2020). The resulting decrease in bone formation and/or
increase in bone resorption can lead to a decrease in bone mass,
which may lead to OP. With the growth of the aging population,
rapid socioeconomical development and lifestyle changes, the
incidence of OP is also increasing. Brittle fractures caused by
OP have become an important public health problem because
of the associated high morbidity, mortality and disability rates
and consumption of a large amount of social public health
resources (Letarouilly et al., 2019; Williams and Sapra, 2020;
Yang et al., 2020).

Epigenetics generally refers to heritable phenotypic changes
that do not involve alterations in the DNA sequences.
Although the genotype does not change, the phenotype
undergoes hereditary changes, including DNA methylation,
histone modification, and non-coding RNA (ncRNAs) alterations
(Yang and Duan, 2016; Letarouilly et al., 2019; Li et al., 2020).
Epigenetics play important regulatory roles in many biological
processes, such as tissue-specific gene expression, chromosome
inactivation, genomic imprinting and cell differentiation (Yang
and Duan, 2016). An increasing number of studies have shown

that epigenetic abnormalities are important causes of malignant
tumors, metabolic diseases, somatic diseases and autoimmune
diseases (Letarouilly et al., 2019; Pang et al., 2020; Yang et al.,
2020; Zovkic, 2020). In recent years, studies have shown that
epigenetics are involved in the regulation of bone formation
and can significantly affect the differentiation of osteoblasts
and osteoclasts (Letarouilly et al., 2019; Li et al., 2020). The
application of epigenetics to the study of mechanisms related
to bone biology and bone metabolism and to the exploration
of mechanisms regulating the differentiation and proliferation
of osteoblasts and osteoclasts is of great significance for
understanding the etiology and pathogenesis of metabolic bone
diseases, such as OP, as well as for developing appropriate
prevention and treatment strategies of these diseases. In this
article, we will review the research progress of epigenetic
mechanisms in bone metabolism and OP.

DNA METHYLATION AND OP

DNA methyltransferases (DNMTs) play an important role in
the processes of embryogenesis, development and methylation.
It plays a considerable role in genome stability, gene expression
and individual development in both prokaryotes and eukaryotes
(Yang and Duan, 2016; Letarouilly et al., 2019). Modifications
of DNA methylation are mainly controlled by DNMT family
proteins, and S-adenosylmethionine is used as the methyl
donor for cytosine residues on CpG islands (Xu et al., 2020).
Normally, CpG islands on genes are present in an unmethylated
state, and methylation of the cytosines on these islands can
inhibit the expression of the gene (Niu et al., 2020). A certain
hypomethylation status is conducive to the expression of related
genes, while a hypermethylation status can lead to gene silencing
(Figure 2; Xu et al., 2020). Increasing studies have shown
that DNA methylation can regulate the differentiation and
apoptosis of osteoblasts and osteoclasts to play an important
role in the pathomechanism of OP (Table 1 and Figure 3;
Letarouilly et al., 2019).

Osteogenic Differentiation Markers
Regulated by DNA Methylation
Modification
DNMTs
Four known DNMT subtypes (DNMT1, DNMT3a, DNMT3b,
and DNMT3L) exist in mammalian cells, the first three of which
are active DNMTs (Ahmed et al., 2020; Wang et al., 2020). The
major DNA methylation inhibitors can be divided into two broad
classes: nucleoside analogies, such as 5-aza-2’-deoxycytidine (5-
Aza-dC) and 5-Aza-C, and non-nucleoside analogs, including
procaine, homocysteine (Hcys). Among them, 5-Aza-dC and 5-
Aza-C are the most widely used DNA methylation inhibitors.
Studies have shown that DNMTs plays an important role in
bone biology, and methylation inhibitors can interfere with the
osteogenesis process.

Zhou et al. (2009) interfered with the osteogenic
differentiation of mesenchymal stem cells (MSCs) with 5-AzaC,
and found that 5-AzaC demethylated the genome, increased the
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FIGURE 1 | The schematic diagram of bone remodeling process (Chen et al., 2018; Foger-Samwald et al., 2020; Gkastaris et al., 2020; Zou et al., 2020). Bone
remodeling process is initiated by osteoclasts that solubilize bone mineral and degrade the matrix (resorption phase). Osteoclasts originate from hematopoietic stem
cells which differentiate first into pre-osteoclast cells which fuse to form multinucleated cells (activated osteoclasts). Monocytes/macrophages remove debris
(reversal phase), followed by a bone formation phase performed by osteoblasts, producing osteoid matrix which will mineralize. Growth factors are released from the
bone matrix during resorption, which increase the pre-osteoblast population in order to replace damaged bone surfaces.

expression of osteogenic-related genes and effectively promoted
the osteogenic differentiation. It has also been reported that
5-Aza-dC can demethylate distal-less homeobox 5 (DLX5) and
osterix (OSX) gene promoters and upregulate the expression
of osteogenic markers, such as alkaline phosphatase (ALP) and
osteocalcin (OCN) (Farshdousti Hagh et al., 2015). Procaine has
no cytotoxic effect, and has been used in studies on vascular
smooth muscle cell (VSMC) calcification. Procaine was also
shown to reduce the methylation level of the smooth muscle
protein 2α (SM2α) promoters, increase SM2α expression, inhibit
DNMT activity, and block vascular calcification (Montes de Oca
et al., 2010). Another methylation inhibitor, Hcys, promotes
osteoblast differentiation (Turecek et al., 2008; Thaler et al.,
2010). After Hcys intervention, the expression of lysyl oxidase
(LOX) gene promoter CpG island was significantly increased,
which inhibited LOX expression, interfered with the formation
of bone matrix, and ultimately affected the differentiation of
osteoblasts (Thaler et al., 2011). Nishikawa et al. (2015) found
that DNMT3a could promote osteoclast differentiation and bone
absorption by inhibiting interferon regulatory factor 8 (IRF8),
which is negatively regulates osteoclast differentiation. DNMT3a
inhibits IRF8 mainly by increasing the methylation of the remote
regulatory element IRF8, and increasing the concentration of
S-adenosine methionine can promote its methylation. Specific
deletion of DNMT3a in osteoclasts or treatment with the
DNMT3 inhibitor TF-3 protected mice against ovariectomy-
induced bone loss. Liu H. et al. further found that the osteolytic
changes in myeloma patients were related to the upregulation

of IRF8 methylation by the thymidine phosphorylase (TP)
secreted by myeloma cells, and the expression of IRF8 was
decreased, which further enhanced bone resorption, suggesting
that epigenetics could be a potential target for the treatment
of bone disease (Liu H. et al., 2016).

RUNX2 and OSX
Runt-related transcription factor 2 (RUNX2) and OSX are
specific transcription factors necessary for bone formation and
osteoblast differentiation, in which OSX is the downstream
target of RUNX2 (Komori, 2019; Chen D. et al., 2020).
During the osteoblast differentiation of MSCs, the level of
RUNX2 methylation was decreased, suggesting that RUNX2
methylation plays an important regulatory role in osteoblast
differentiation (Wakitani et al., 2017). However, Farshdousti
Hagh et al. (2015) found that in the process of osteogenic
differentiation, the methylation states of the promoter regions
of RUNX2 and DLX5 did not change, while the methylation
level in the promoter region of OSX changed dynamically,
suggesting that the epigenetic regulation of OSX may play a
major role in the osteogenic differentiation of MSCs. Similarly,
in the osteogenic induction of adipose tissue-derived MSCs,
the expression levels of the osteogenic-specific genes Runx2
and OSX were upregulated. DNA methylation sequencing
further confirmed that the promoter regions of Runx2 and
OSX exhibited significantly decreased DNA methylation levels,
and the DNA methylation levels were significantly correlated
with gene expression (Zhang R. P. et al., 2011). Inhibition of
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FIGURE 2 | Molecular mechanism of DNA methylation (Yang and Duan, 2016; Letarouilly et al., 2019; Ahmed et al., 2020; Wang et al., 2020; Xu et al., 2020). DNA
methylation modification is mainly controlled by DNMT proteins. S-adenosylmethionine is used as the methyl donor to methylate the cytosine on CpG islands.
Normally, the CpG island of a gene is in an unmethylated state. Methylation of the cytosines in the CpG island can inhibit the expression of this gene.

DNA demethylase reversed the expression levels of these genes,
suggesting that Runx2 and OSX are primarily regulated by DNA
methylation mechanisms in the osteogenic differentiation of
adipose tissue-derived MSCs (Zhang R. P. et al., 2011).

BMP2
Bone morphogenetic protein 2 (BMP2) is a key bone growth
factor that can stimulate MSCs to differentiate into osteoblasts
(Chen et al., 2012; Kamiya, 2012). Studies shown that
hypermethylation of the BMP2 promoter in osteoblasts could
inhibit the expression of bone formation-related genes (Fu
et al., 2013; Raje and Ashma, 2019). Researchers demonstrated
that the level of methylation 267 bp upstream of the BMP2
transcription start site in patients with OP was significantly
correlated with the degree of OP, which led to downregulated
transcriptional activity and gene expression of the BMP2
promoter (Raje and Ashma, 2019).

ALP and OCN
Alkaline phosphatase and osteocalcin are secreted mainly by
osteoblasts, and both are used as the most common bone
formation markers to assess osteogenic activity (Licini et al.,
2019). It was found that the ALP promoter regions in human

osteoblasts and osteoblasts had opposite DNA methylation
profiles, as that in osteoblasts was hypomethylated, while that
in osteoblasts was hypermethylated, indicating that the DNA
methylation pathway could inhibit the expression of ALP
during the process of osteogenic differentiation (Delgado-Calle
et al., 2011; Yang and Duan, 2016). OCN is an important
marker of osteogenic differentiation (Licini et al., 2019). During
the differentiation of primary osteoblast, the methylation of
OCN promoter is gradually decreased, suggesting that the
hypomethylation of OCN can promote osteogenic differentiation
(Villagra et al., 2002).

Alu Elements
Alu elements are short interspersed elements (SINEs) which are
unique to primates. They play a special role in human genome
reorganization, variable splicing and post-mRNA transcription
regulation (Kim et al., 2016; Jiang et al., 2019). During the
period of rapid growth in children, the level of Alu element
methylation is significantly increased (Rerkasem et al., 2015).
Jintaridth et al. (2013) showed that the hypomethylation of
Alu elements is correlated with the occurrence of osteoporosis
in postmenopausal women, which suggested the relationship
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TABLE 1 | Osteogenic differentiation markers regulated by DNA methylation modification.

Genes Methylation level
during osteogenic
differentiation

Gene function in osteogenesis

RUNX2 Low TF, promote the expression of target genes and osteogenic differentiation (Zhang R. P. et al., 2011; Wakitani et al., 2017)

OSX Low TF, promote the expression of target genes and osteogenic differentiation (Zhang R. P. et al., 2011; Farshdousti Hagh et al., 2015)

BMP2 Low Bone growth factor, promote osteogenic differentiation (Fu et al., 2013; Raje and Ashma, 2019)

SOST High Glycoprotein, inhibit osteogenic differentiation (Reppe et al., 2015a; Cao et al., 2019)

ALP Low Hydrolyze phosphate ester to provide necessary phosphoric acid for the deposition of hydroxyapatite, and at the same time
hydrolyze pyrophosphate to remove its inhibitory effect on bone salt formation (Delgado-Calle et al., 2011; Yang and Duan, 2016;
Licini et al., 2019)

OCN Low Maintain normal bone mineralization (Villagra et al., 2002; Licini et al., 2019)

Frizzled1 Low Activate the wnt pathway and promote osteogenic differentiation (Wu et al., 2019)

RANKL High Stimulate osteoclast differentiation and promote bone resorption (Ghayor and Weber, 2016; Behera et al., 2018)

OPG Low Inhibit osteoclast differentiation (Ghayor and Weber, 2016; Wang et al., 2018)

LOX Low Promote osteogenic differentiation (Thaler et al., 2011)

ESR1 Low Promote osteogenic differentiation (Penolazzi et al., 2004)

DLX5 Low Promote osteogenic differentiation (Lee J. Y. et al., 2006; Li et al., 2009)

Alu
elements

High Negatively correlated with bone formation (Jintaridth et al., 2013)

TF, transcription factor; RUNX2, Runt-related transcription factor 2; OSX, osterix; BMP2, bone morphogenetic protein 2; SOST, sclerostin; ALP, alkaline phosphatase;
OCN, osteocalcin; OPG, Osteprotegerin; RANKL, nuclear factor-κB ligand; LOX, lysyl oxidase; ESR1α, estrogen receptor alpha; DLX5, distal-less homeobox 5.

between the hypomethylation of the whole genome and aging-
related diseases. These studies reflected that the methylation level
of the Alu elements is negatively correlated with bone formation
and the hypomethylation level of Alu elements may be related to
the occurrence of OP.

The Wnt/β-Catenin Signaling Pathway
The key downstream effector protein in the Wnt/β-catenin
signaling pathway is the transcriptional activator β-catenin. In
the absence of Wnt stimulation, the cytosolic β-catenin level
keeps low through phosphorylation by the APC (adenomatous
polyposis coli)–Axin–GSK-3β (glycogen synthase kinase 3β)
destruction complex and ubiquitin-dependent degradation
in the proteasome. Upon Wnt stimulation, the destruction
complex is destabilized, which leads to accumulation and
nuclear translocation of the cytosolic β-catenin to activate
the transcription of Wnt/β-catenin-responsive target genes
(Hartmann, 2006; Cao et al., 2018). The genes in the Wnt
signaling pathway are also regulated by DNA methylation.
During the differentiation of BMSCs into osteoblasts, the level
of methylation in receptor tyrosine kinase-like orphan receptor
2 (ROR2) promoter region of the Wnt signaling pathway was
shown to be reduced (Tarfiei et al., 2011). In patients with
diffuse idiotic bone hypertrophy, the osteogenic characteristics
of MSCs isolated from the spinal cord ligament were promoted
by unmethylated Wnt5a (Chiba et al., 2015). These studies
showed that DNA methylation regulates the expression and
activity of molecules in the Wnt/β-catenin signaling pathway,
thus participating in the pathological mechanisms of OP.

The OPG/RANKL/RANK Signaling Pathway
Bone remodeling is closely regulated by the RANKL-RANK-
OPG system, and the current studies on the relationship
between DNA methylation and osteoporosis mostly focus on this.

Osteprotegerin (OPG) and nuclear factor-κB (NF-κB/RANK)
ligand (RANKL) are important determinants of bone quality
and strength. RANKL binds to RANK, a receptor present in
osteoclast lines, which activates osteoclast formation, activation,
and survival. The binding of RANKL to OPG can prevent
excessive bone resorption and avoid the interaction between
RANKL and RANK. OPG/RANKL/RANK is a signaling channel
that can regulate the differentiation of osteoclasts and is one
of the most important signaling pathway for bone metabolism
pathways (Chen et al., 2018). DNA methylation of RANKL
and its soluble receptor OPG plays an important role in the
regulation of osteoclast differentiation. Quantitative methylation
of all types of bone cells and pyrolytic acid sequencing analysis
showed that methylation of the transcription initiation regions
of RANKL and OPG inhibited the transcription of RANKL
and OPG genes (Kitazawa and Kitazawa, 2007; Delgado-Calle
et al., 2012; Kalkan and Becer, 2019). Therefore, the methylation
regulation of OPG/RANK/RANKL plays an important role in
osteogenic differentiation (Ghayor and Weber, 2016).

Whole Genome DNA Methylation in
Osteoporosis
The emergence of next-generation sequencing technology
provides an unprecedented opportunity to analyze DNA
methylation patterns at the whole genome level (Niu et al., 2020).
Delgado-Calle et al. (2013) used Illumina 27k methylation chip
to determine genome-wide methylation profiles of bone from
patients with osteoporotic hip fractures. The results revealed 241
CpG sites, located in 228 genes, with significant differences in
methylation. These regions were enriched in genes associated
with cell differentiation and skeletal embryogenesis (Delgado-
Calle et al., 2013). de la Rica et al. (2013) compared the DNA
methylation profiles of monocytes (MOs) and derived osteoclasts

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 January 2021 | Volume 8 | Article 619301

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-619301 January 19, 2021 Time: 15:57 # 6

Xu et al. Epigenetics Regulation in Osteoporosis

FIGURE 3 | Regulatory effect of methylation levels of bone metabolism-related genes on bone formation (Kitazawa and Kitazawa, 2007; Delgado-Calle et al., 2012;
Fu et al., 2013; Cao et al., 2019; Kalkan and Becer, 2019; Licini et al., 2019; Raje and Ashma, 2019; Chen D. et al., 2020; Kim et al., 2020). RUNX2 and OSX are
specific transcription factors, which synergistically regulate the expression of bone-specific genes, including those encoding ALP, type I collagen and OCN. BMP2 is
a key bone growth factor that can stimulate MSCs to differentiate into osteoblasts by inducing the expression of genes such as those encoding RUNX2, OSX, and
OCN. The hypermethylation of the BMP2 promoter region in osteoblasts leads to downregulation of bone formation markers. SOST, a glycoprotein mainly secreted
by osteoblasts, can inhibit osteoblast differentiation by inhibiting Wnt signal transduction and negatively regulates bone formation. The hypermethylation of SOST can
inhibit SOST gene translation and promote the osteoclast differentiation. DNA methylation can regulate the transcription and expression of Wnt/β-catenin signalling
pathway molecules, so as to regulate the differentiation and function of osteoblasts. OPG/RANK/RANKL is the main regulator of the balance between osteoblasts
and osteoclasts. The methylation of these gene promoter regions can regulate the expression of corresponding genes, thus affecting the differentiation and function
of osteoblast/osteoclast, and finally affecting the dynamic balance between bone formation and bone absorption in the process of bone remodeling (Niu et al., 2020).

(OCs) following M-CSF and RANKL stimulation. They found
that osteoclastogenesis was associated with the drastic reshaping
of the DNA methylation landscape. Hypermethylation and
hypomethylation occur in many relevant functional categories
and key genes, including those whose functions are crucial
to OC biology, which strongly proves the key role of DNA
methylation regulation mechanism in osteoclast differentiation
(de la Rica et al., 2013). In 2016, Alvaro del Real et al.,
used the Infinium 450K bead array and RNA sequencing
to determine DNA methylation research and transcriptome
analysis of human mesenchymal stem cells (hMSCs) isolated
from the femoral heads of patients with osteoporotic fractures

or osteoarthritis. The results showed that the epigenome-wide
signature of hMSCs from fracture patients shows differentially
methylated regions in comparison with hMSCs derived from
OA patients. These regions are associated with several genes
involved in MSC proliferation and differentiation, such as
RUNX2/OSX (Del Real et al., 2017). Reppe et al. combined
transcript profiling with DNA methylation analyses in bone.
RNA and DNA were isolated from 84 bone biopsies of
postmenopausal donors varying markedly in bone mineral
density (BMD). Among the top 100 genes most significantly
associated with BMD, four transcripts representing inhibitors
of bone metabolism—MEPE, SOST, WIF1, and DKK1—showed
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correlation to a high number of methylated CpGs (Reppe et al.,
2015b, 2017).

In 2017, Fernandez-Rebollo et al., analyzed genome wide
DNA methylation profiles of peripheral blood from patients with
manifest primary osteoporosis and non-osteoporotic controls.
Statistical analysis did not reveal any individual CpG sites
with significant aberrant DNA methylation in osteoporosis.
Therefore, the author indicated that osteoporosis is not reflected
by characteristic DNA methylation patterns of peripheral blood,
which could not be used as a biomarker for osteoporosis
(Fernandez-Rebollo et al., 2018). Morris et al. (2017) performed a
large-scale epigenome-wide association study of BMD using the
Infinium HumanMethylation450 array to measure site-specific
DNA methylation in up to 5515 European-descent individuals.
They identified one CpG site, cg23196985, significantly associated
with femoral neck BMD. But, this association has not been
repeated in another population, suggesting future epigenomic
studies of musculoskeletal traits measure DNA methylation in
a different tissue with extended genome coverage (Morris et al.,
2017). On the contrary, Cheishvili et al. (2018) used Illumina
Infinium human methylation 450K analysis to delineate the
DNA methylation signatures in whole blood samples of 22
normal women and 22 postmenopausal osteoporotic women (51
to 89 years old) from the Canadian Multicenter Osteoporosis
Study (CaMos) cohort. Analysis of the female participants with
early and advanced osteoporosis resulted in the generation of a
list of 1233 differentially methylated CpG sites when compared
with age-matched normal women. Heat map and hierarchical
clustering analysis showed that the most significant differentially
methylated 77 CpG sites are associated with OP and can be
detected even in early stages of OP in white blood cells. As
DNA methylation patterns are highly tissue specific, whether
peripheral blood DNA methylation pattern can be used as OP
biomarkers is still controversial.

The current direction of research on DNA methylation
and OP is to elucidate the pattern of genomic methylation
in osteoblasts, target genes, and the relationship between
methylation and bone density changes. These studies will identify
new biological markers for bone mineral density changes and
OP risk factors in humans and yield groundbreaking results
in the field of OP. In addition to these prospective studies on
methylation in the field of bone metabolism, the mechanism of
methylation in human osteoblasts at the genome-wide level is still
poorly understood, and further studies are needed to provide a
new targeted therapy for OP.

HISTONE MODIFICATION AND OP

Histones, for which five types exist (H1, H2A, H2B, H3, and H4)
are small-molecule proteins that are rich in positively charged
basic amino acids (arginine and lysine) and can interact with
negatively charged phosphate groups in DNA. Histone chemical
modification occurs at the N-terminal tail of the protein,
especially for H3 and H4, promoting changes in chromatin
structure. The histone tail is composed of 20 amino acids
and extends from the nucleosome at the turning point of

DNA. The nucleosome is a complex of several histone subunits
and DNA that protects DNA and epigenetic information. The
post-translational modification of histones is a key step in
epigenetic regulation, as it affects lineage submission and gene
expression. Refolding covalent histone modifications occur most
often at the amino and carboxyl ends of chemically unstable
amino acid residues (e.g., lysine, arginine, serine, threonine,
tyrosine, and histidine) as well as during histone inversion
or in the globular domains of nucleosomal nuclei (Duman
et al., 2020; Ren et al., 2020). Each modified histone residue
carries specific information, and in general, H3K3 exists in a
stable transcriptional state. Transmission of information can
recruit binding factors that influence histone modification and
remodeling through a variety of mechanisms, including changing
the interaction among histones themselves or between histones
and DNA (Longbotham et al., 2020). Below, research on
histone acetylation and methylation in the context of osteogenic
differentiation and OP is reviewed.

Histone Acetylation and OP
Studies have shown that histone modifications of euchromatin
are characterized by high levels of acetylation and trimethylated
H3K4, H3K36, and H4K20 (Longbotham et al., 2020).
Heterochromatin shows low acetylation and high methylation
of H3K9, H3K27, and H4K20. Most histone modifications
are regulated by modifying enzymes that can promote and
reverse these specific modifications. These include histone
acetyltransferases (HATs) and histone deacetylases (HDACs)
(Xu et al., 2020). According to their structural and functional
characteristics, HDACs can be divided into four categories: class
I includes HDAC1, 2, 3, and 8; class II includes HDAC4-7, 9, and
10; class III includes sirt1-7; and class IV includes HDAC11. In
addition, many transcription factors can affect the activities of
HATs and HDACs, thus affecting the balance between acetylation
and deacetylation and ultimately affecting the expression of
target genes (Ren et al., 2020).

Different HDAC antagonists have been used to investigate
the relationships of high acetylation of total histones with
both osteoblast differentiation and gene expression. These
HDAC antagonists include trichostatin (TSA), suberoylanilide
hydroxamic acid (SAHA), entenol (MS-275), sodium butyrate
and valproic acid. In vitro experiments showed that blocking class
I and class II HDACs at the same time or blocking class I HDACs
alone could promote osteoblast maturation, bone mineralization
and the expression of genes related to osteoblast differentiation
and maturation, such as type I collagen, osteopontin (OPN),
OCN, ALP, OSX, and RUNX2 (Schroeder and Westendorf, 2005;
Schroeder et al., 2007; Schröder et al., 2020). Interestingly, TSA-
mediated acetylation of histones H4 and H3 in the RANKL
promoter region resulted in increased expression of RANKL
(Fan et al., 2004). Animal models of bone loss showed bone
mass recovery under the action of MS-275, while healthy animal
models showed bone loss under the action of SAHA or valproic
acid (Senn et al., 2010; Kim H. N. et al., 2011; McGee-Lawrence
et al., 2011). Furthermore, the effect of valproic acid on bone
tissue was further explored in patients with mental disorders
who used valproic acid, revealing that BMDs were bone mineral
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density decreased and fracture risks were increased in these
patients (Bradley et al., 2015; Shreya et al., 2019).

Osteocalcin is a bone tissue-specific protein that can bind
to calcium, and its level of expression in plasma can be used
as a marker of bone formation. Furthermore, its expression
can determine the differentiation and activity of osteoblasts.
When OCN transcription is active, histones H3 and H4 of the
OCN promoter are acetylated, while histones H3 and H4 are
acetylated at low levels when OCN transcription is inactive (Shen
et al., 2002; Seuter et al., 2013; Pickholtz et al., 2014). HDAC3
can inhibit the activation of the OCN promoter by interacting
with RUNX2, resulting in a decrease in OCN transcription
activity (Sierra et al., 2003; Choo et al., 2009). Lamour et al.,
demonstrated that HDAC3 can reduce the acetylation level of the
bone sialoprotein promoter H3, thus decreasing its expression
and confirming the inhibitory effect of HDAC3 (Choo et al.,
2009). TGF-β, as a negative regulator of bone formation, can
interact with RUNX2 by recruiting HDAC4 and HDAC5, leading
to histone H4 acetylation in the OCN promoter region (Kang
et al., 2005). HDAC4 and HDAC5 can also directly reduce the
acetylation level of RUNX2, thus decreasing its protein stability
and transcriptional activity. In addition to HDAC3, HDAC4,
and HDAC5, HDAC1 is also considered to be a regulator of
osteoblast differentiation. Lee H. W. et al. found that the H3 and
H4 hyperacetylation of the OSX and OCN promoters was due
to a decrease in HDAC1 recruitment and an increase in p300
binding (Lee H. W. et al., 2006). Based on the above conclusions,
HDAC activity plays an important regulatory role in osteogenic
differentiation (Table 2).

Sirtuin 1 (SIRT1)—an Important Regulator of Bone
Metabolism
Sirtuin 1 is highly homologous to the silence and yeast
information adjustment factor 2 (Sir2) protein, which belongs
to class III HDAC1 (Yang and Tang, 2019). SIRT1 gene is
located on chromosome 10, and contains 8 introns and 9
exons, which encode the 500-amino acid Sirtuin 1 protein.
The structure of SIRT1 is relatively conservative (Yang and
Tang, 2019). The C-terminal domain consists of 25 amino acid
residues, which constitute the core region of Sirtuin 1, namely,
the deacetylation functional area. Sirtuin 1 is widely distributed
and is mainly localized in the nucleus but also travels to the

cytoplasm. SIRT1 targets many post-transcriptional regulators,
including p53, forkhead box O (FoxOs), NF-κB, and peroxidase
proliferator activator receptor (PPAR), which are associated
with numerous human diseases (Feng et al., 2014; Kim et al.,
2015; Liu J. et al., 2016). Studies have shown that SIRT1 can
promote the differentiation of osteoblasts, inhibit the formation
of osteoclasts, regulate bone reconstruction, and affect bone
metabolism (Figure 4) (Liu J. et al., 2016).

In the physiological state, bone formation and bone resorption
alternate to achieve balance, and osteoblasts and osteoclasts play
roles in this process; during the aging process, the incidence
of OP increases because bone absorption occurs more readily
than bone formation. The expression of Sirtuin 1 is closely
related to osteogenic factors. After bilateral ovariectomized
rats were treated with resveratrol, the serum ALP and OCN
levels were increased, and the BMD was increased. Resveratrol
could promote osteogenic differentiation through the SIRT1/NF-
κB pathway (Feng et al., 2014). SIRT1 can bind FOXO3a to
form a complex and increase FOXO3a-dependent transcriptional
regulation function. FOXO3a contains the binding domain of the
RUNX2 promoter and can promote the expression of RUNX2
(Gurt et al., 2015). SIRT1 can also affect the functional state
of osteoclasts and regulate bone turnover. Gurt et al. (2015)
confirmed that SIRT1 inhibits osteoclast formation induced by
NF-κB activator ligand (Tseng et al., 2011). SIRT1 can also
inhibit osteoclast formation through deacetylation of FoxOs and
reduce reactive oxygen species (ROS) levels, thereby improving
oxidative stress-induced bone formation damage (Li Y. et al.,
2014; Kim et al., 2015).

Furthermore, bone marrow stem cells can also differentiate
into adipocytes. Sirtuin 1 can indirectly promote osteogenic
differentiation by inhibiting adipogenic differentiation
in the osteogenic induction of preosteoblasts and bone
marrow stem cells (Zhou et al., 2016). In addition, SIRT1
is closely related to parathyroid hormone (PTH) and
estrogen and indirectly regulates bone metabolism by
interacting with hormones. Fei et al. (2015) found that
SIRT1 inhibited the activation of metalloprotein 13 by PTH
in SIRT1 gene knockout mice and osteoblasts, thus inhibiting
osteogenic differentiation.

Interestingly, SIRT-1 can protect against age-related bone loss,
whereas reducing its expression causes decreased bone formation

TABLE 2 | Histone deacetylases, target histones and their roles in the osteoblast differentiation.

HDACs Target histones Function

HDAC1 H2A, H2B, H3, H4 Regulate transcription and osteoblast differentiation (Rahman et al., 2003; Lee H. W. et al., 2006)

HDAC2 H2A, H2B, H3, H4 Regulate osteoblast differentiation (Rahman et al., 2003)

HDAC3 H2A, H2B, H3K27, H3, H4 Inhibit osteoblasts gene expression (Hesse et al., 2010)

HDAC4 H2A, H2B, H3K9, H3, H4 Regulate transcription, hypertrophy and ossification of chondrocytes (Kang et al., 2005; Jeon et al., 2006)

HDAC5 H2A, H2B, H3K9, H3, H4 Inhibit osteoblasts gene expression (Jeon et al., 2006; Kim J. H. et al., 2011)

HDAC6 H2A, H2B, H3K9, H3, H4 Regulate Runx2 activity and gene expression (Kim J. H. et al., 2011)

HDAC7 H2A, H2B, H3K9, H3, H4 Inhibits osteoblasts gene expression (Pham et al., 2011)

HDAC8 H2A, H2B, H3K9, H3, H4 Maxillofacial bone development (Fu et al., 2014)

SIRT1 H3, H4 Regulate proliferation of BMMSCs and osteoblastdifferentiation (Shakibaei et al., 2011; Edwards et al., 2013)

SIRT6 H3, H4, H3K9, H3K56 Regulate chondrocyte proliferation (Piao et al., 2013; Nagai et al., 2015)
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TABLE 3 | Histone demethylases, target histones, and their roles in the osteoblast differentiation.

HDMS Target histones Target genes Function

LSD1/KDM1A H3K4me3 Wnt7B, BMP2 Inhibit osteoblast differentiation (Sun J. et al., 2018)

KDM2B H3K4me3, H3K36me1/2 AP-2α Involved in the proliferation and differentiation of early and late ameloblast cells as
well as the differentiation of dentin (Fan et al., 2009)

KDM4A H3K9me3 Sfrp4, C/EBPα Promote adipogenic differentiation and inhibit osteoblastic differentiation of stem
cells (Qi et al., 2020)

KDM4B H3K9me3, H3K27me3 DLX Promote osteoblast differentiation (Ye et al., 2012)

KDM5A H3K4me3 BMP2, RUNX2 Inhibit osteoblast differentiation (Flowers et al., 2010)

JMJD3/KDM6B H3K9me3, H3K27me3/2 HOX Promote osteoblast differentiation (Ye et al., 2012; Hoang et al., 2016)

KDM7A H3K9me2, H3K27me2 C/EBPα, Wnt pathway Promote adipogenic differentiation and inhibit osteoblastic differentiation (Yang X.
et al., 2019)

NO66 H3K4, H3K36 OSX Inhibit osteoblast differentiation (Chen et al., 2015)

RBP2/JARID1A H3K4me3/2 RUNX2 Inhibit osteoblast differentiation (Ge et al., 2011)

JMJD7 / c-fos, Dc-stamp, CtsK,
Acp5 and Nfatc1

Inhibit osteoclast differentiation (Liu Y. et al., 2018)

LSD1, Lysine-specific demethylase 1; JMJD, jumonji domain-containing protein; WDR5, WD repeat-containing protein 5; KDM4B, lysine (k)-specific demethylases 4B;
NFATc1, nuclear factor of activated T cell cytoplasmic 1.

FIGURE 4 | Illustration of SIRT1 signaling pathway in bone remodeling (Cohen-Kfir et al., 2011; Shakibaei et al., 2011; Edwards et al., 2013; Feng et al., 2014; Iyer
et al., 2014; Kim et al., 2015; Liu J. et al., 2016). SIRT1 participates in intracellular energy metabolism through AMPK signaling pathway, and regulates bone
metabolism in an AMPK-dependent manner. SIRT1 can promote the differentiation of MSCs into osteoblasts by directly deacetylating SOX2. SIRT1 can deacetylate
β-catenin and promote β-catenin to accumulate in the nucleus, thus further activating Wnt pathway to promote Osteogenesis differentiation. SIRT1 can activate the
transcription factor RUNX2 and promote the differentiation of MSCs into osteoblasts. Activation of SIRT1 can significantly increase the expression level of BMP-2
and BMP-7 to promote bone repair. SIRT1 inhibits NF-κB degradation, downregulates NF-κB signaling and inhibits bone resorption. Activation of SIRT1 can
significantly inhibit the activity of MAPK signaling pathway by inhibiting the expression of prostaglandin, promote the expression of OPG and inhibit osteoclast
generation and bone resorption (Yang and Tang, 2019).

in mice, further indicating that SIRT-1 is an important epigenetic
regulator in aging bone cells (Herranz and Serrano, 2010; Cohen-
Kfir et al., 2011). Carmeliet et al., showed that enhanced HIF-1α

signaling increases Sirtuin 1-dependent deacetylation of the
SOST promoter, resulting in decreased sclerostin expression

and enhanced WNT/β-catenin signaling (Stegen et al., 2018).
Increasing the activity of SIRT-1 protein in MSCs through
the phytoestrogen resveratrol can lead to increased osteoblast
differentiation and decreased adipocyte differentiation (Backesjo
et al., 2009; Tseng et al., 2011; Sreng et al., 2019). In a mouse
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model of premature, resveratrol treatment improves trabecular
bone structure and mineral density by enhancing the binding of
SIRT-1 and laminin A (Liu et al., 2012). Overall, these studies
show that SIRT-1 can reduce certain aging mechanisms in bone
cells that contribute to bone aging.

Histone Methylation
Histone methylation usually occurs at the lysine (K) and arginine
(R) residues of histone N end, and unlike acetylation, methylation
sites are characterized by transcription activation and inhibition;
for example, methylation of histones H3 K4, K36, and K79 is
related to transcription activation, and the methylation of H3K9,
H3K27, and H4K20 is related to transcription inhibition (Xu
et al., 2020). Histone methylation is regulated jointly by both
methylases and demethylases; methylases include suppressor
of variegation 3–9 (Drosophila) homolog 1 (SUV39H1), G9a
and Enhancer of zeste homolog 2 (EZH2), while demethylases
include Lysine-specific demethylase 1 (LSD1) and jumonji
domain-containing protein (JMJD) (Separovich et al., 2020).
Methyltransferases and demethylases regulate the expression of
related genes in osteoblasts and osteoclasts (Table 3).

Enhancer of zeste homolog 2 is a methylransferase that
trimethylates H3K27 and plays an inhibitory role in epigenetics
(Dudakovic et al., 2018). Wei et al. (2011) reported that EZH2
inhibited the differentiation of MSCs into osteoblasts. Dudakovic
et al. (2013) showed that EZH2 was downregulated in the process
of osteoblastic differentiation. WD repeat-containing protein 5
(WDR5) is another methyltransferase, and that methylates H3K4
to accelerate osteoblast differentiation. ChIP experiment proved
that WDR5 can be combined in the promoter regions of WNT1,
RUNX2 and c-myc to regulate osteoblast differentiation through
classical Wnt signaling pathways (Zhu et al., 2008).

Sun J. et al. found that LSD1, also known as KDM1A, is
a key epigenetic regulator of osteoblast differentiation (Sun
J. et al., 2018). In vitro mechanistic studies have shown that
LSD1 deficiency increases the expression of BMP2 and WNT7B
in osteoblasts and enhances bone formation, suggesting that
LSD1 is a new regulator of osteoblast activity (Ye et al.,
2012). JMJD3, a kind of H3K27 demethylase, is increasingly
expressed in the process of osteoblast differentiation and
regulates the bone-related genes Runx2, OSX, and OCN
to promote osteoblast differentiation (Yang et al., 2013;
Zhang F. et al., 2015). In osteoclasts, JMJD3 promotes the
activation of the RANKL signaling pathway by prohibiting the
methylation of H3K27 in the nuclear factor of activated T-cells
(NFATC1) promoter region, thus promoting the differentiation
of osteoclasts (Yasui et al., 2011).

NON-CODING RNA

Non-coding RNA is a type of RNA that is transcribed from
the genome but does not encode a protein (Yang et al., 2020).
According to the length of RNA, it non-coding RNA is divided
into three types: (1) a length less than 50 nt, including microRNAs
(miRNAs), small interfering RNAs (siRNAs), and new non-
coding small RNAs (priRNAs); (2) a length ranging from 50

to 500 nt, including ribosomal RNA (rRNA) and transfer RNA
(tRNA); and (3) a length greater than 500 nt, including long
non-coding RNAs (lncRNAs) and circular RNAs (circRNAs),
which differ from traditional linear RNA (Li et al., 2020; Yang
et al., 2020). In the past, scholars often ignored the role of non-
coding RNA and regarded it as “junk RNA.” However, with
the progress of scientific thinking and laboratory technology,
an increasing number of studies have reported an association
between the abnormal expression of non-coding RNA and the
development of bone metabolic diseases (Letarouilly et al., 2019;
Yang et al., 2020). If we determine key role of non-coding RNA in
the process of bone metabolism, we will be able to design drugs
for targeted therapy that are expected to fundamentally block
and treat diseases associated with bone metabolism. In this paper,
the molecular biological mechanism by which non-coding RNA
regulates bone metabolism is reviewed to provide a reference for
biological research and the clinical treatment of osteoporosis.

lncRNA
Non-coding RNAs with a length of more than 500 nt are
defined as lncRNAs. Initially, lncRNAs were not considered a
transcriptional product of RNA (Liu et al., 2019). However, recent
studies have identified roles for lncRNAs in many important
biological processes, including genomic imprinting, chromosome
modification, chromosome silencing, transcriptional interference
and transcriptional activation (Delas and Hannon, 2017; Li
et al., 2020). The abnormal expression of lncRNAs will induce
uncontrolled transcription and abnormal expression of related
proteins, eventually leading to the development of human disease
(Kazemzadeh et al., 2015; Delas and Hannon, 2017).

The primary, secondary, and tertiary structures of ncRNA
interact with RNA, DNA and proteins to exert the biological
activity. However, lncRNAs are different from miRNAs because
they lack a universal mechanism of action and regulate gene
expression and protein synthesis through various pathways
(Delas and Hannon, 2017). In a study of postmenopausal women
with osteoporosis, 51 lncRNAs were abnormally expressed,
with some participating in the pathological process of OP by
regulating mRNA expression or osteoclast differentiation (Fei
et al., 2018). Based on these results, RNAs regulate the process of
bone regeneration by modulating RNAs and transcription factors
(Table 4 and Figure 5; Kunej et al., 2014; Zhu et al., 2015).

H19
The H19 gene is relatively conserved throughout evolution and
plays an important role in regulating biological functions. As
a precursor of miR-675, H19 produces two mature microRNAs
(miR-675-5p and miR-675-3p) after cleavage by Drosha and
Dicer. During the osteogenic differentiation of human MSCs,
the expression of H19 and miR-675 is upregulated (Zhang et al.,
2018). The upregulation of miR-675 not only downregulates
TGF-β1 but also inhibits the phosphorylation of Smad3, thus
downregulating HDAC4/5, leading to a decrease in HDAC levels
and promoting osteogenesis (Keniry et al., 2012). As shown in
the study by Liang et al. (2016) H19, an endogenous competitive
ceRNA of miR-141 and miR-22, directly binds to these two
miRNAs and blocks their inhibitory effect on the Wnt/β-Catenin
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TABLE 4 | lncRNAs and their roles in the osteoblast differentiation.

LncRNAs Target genes Function

H19 miR-675, miR-141, miR-22 Promote osteoblastic differentiation (Keniry et al., 2012; Liang et al., 2016)

CTCF/H19/HDAC pathway Promote adipogenic differentiation (Chan et al., 2014; Huang et al., 2016)

LncRNA p21 Wnt/β-actin pathway Promote osteoblastic differentiation (Xia et al., 2017)

Bmcob SBP2 Promote osteoblastic differentiation (Sun X. et al., 2018)

HIF1α-AS1 HOXD10, SIRT1 Inhibit (Xu et al., 2015; Zhu J. et al., 2019)

LncRNA TUG1 Wnt/β-actin pathway Promote osteoblastic differentiation (Chen et al., 2017)

XR-111050 RUNX2 Promote osteoblastic differentiation (Zhang et al., 2017)

DNACR P38 MAPK pathway Inhibit osteoblast differentiation (Tong et al., 2015)

AK-096529, uc003ups, AK05611 Smurf1, RUNX2 Promote osteoblastic differentiation (Zhu J. et al., 2019)

HOTAIR BMP/TGF-β pathway Inhibit osteoblast differentiation (Wei et al., 2017)

lncRNA MALAT1 RANK/RANKL/OPG pathway Promote osteoblastic differentiation (Che et al., 2015)

MODR MiR-454/RUNX2 Promote osteoblastic differentiation (Weng et al., 2017)

AK141205 CXCL13 Promote osteoblastic differentiation (Xu et al., 2015)

MEG3 MiR-133a-3p Inhibit osteoblast differentiation (Wang et al., 2017)

ANCR EZH2, RUNX2 Inhibit osteoblast differentiation (Zhu and Xu, 2013)

BDNF-AS RUNX2 Inhibit osteoblast differentiation (Feng X. et al., 2018)

Plnc1 PPAR-g2 Promote adipogenic differentiation (Zhu E. et al., 2019)

ADINR C/EBPα Promote adipogenic differentiation (Xiao et al., 2015)

HoxA-AS3 EZH2 Promote adipogenic differentiation and inhibit osteoblastic differentiation (Zhu et al., 2016)

ORLNC1 ORLNC1-miR-296-PTEN pathway Promote adipogenic differentiation and inhibit osteoblastic differentiation (Yang et al., 2019a)

Bmncr BMP2, TAZ, RUNX2, PPARG Promote osteoblastic differentiation and inhibit adipogenic differentiation (Li C. J. et al., 2018)

lncRNA NEAT1 miR-29b-3p Promote osteoblastic differentiation

lncRNA TCONS_00041960 RUNX2 Promote osteoblastic differentiation and inhibit adipogenic differentiation (Shang et al., 2018)

LncRNA BDNF-AS miR-204-5p, miR-125a-3p Inhibit osteoblast differentiation (Feng X. et al., 2018)

Linc-ROR miR-138, miR-145 Promote osteoblastic differentiation (Feng L. et al., 2018)

BMSCs, bone mesenchymal stem cells; TGF, transforming growth factor; HIF, hypoxia-inducible factor; HOXD10, homeobox D10; RUNX2, runt-related transcription
factor 2; DANCR, differentiation antagonizing non-protein coding RNA; MAPK, mitogen-activated protein kinase; Smurf, Smad ubiquitination regulator; PPAR, peroxidase
proliferator activator receptor; RANKL, nuclear factor-κB ligand; CXCL, CXC motif chemokine; SBP2, selenocysteine insertion sequence-binding protein 2; CTCF, CCCTC-
binding factor; HDAC, histone deacetylase; EZH2, Enhancer of zeste homolog 2; TAZ, transcriptional co-activator with PDZ-binding motif; PPARG, peroxisome proliferator-
activated receptors G; C/EBPα, CCAAT/enhancer binding protein alpha; ROR, receptor tyrosine kinase-like orphan receptor.

pathway, thus promoting osteogenic differentiation. Huang et al.
(2016) reported that overexpression of H19 and miR-675 inhibits
adipose differentiation. Importantly, miR-675 binds to the 3′-
untranslated region (UTR) of HDAC4-6, downregulating their
expression and thus inhibiting adipose differentiation, which
requires HDAC4-6.

According to Chan et al. (2014) abnormal expression of the
lncRNA H19 upregulates the expression of genes in the hedgehog
signaling pathway and yes-associated protein 1 (YAP1), leading
to abnormal osteoblast proliferation. Liao et al. identified a
regulatory effect of the lncRNA H19 on the expression of delta-
like ligand 1 (DLL1), delta-like ligand 3 (DLL3), delta-like ligand
4 (DLL4), Jagged 1 (JAG1) and Jagged 2 (JAG2) in the Notch
signaling pathway by regulating the expression of downstream
miRNAs (miR-107, miR-27b, miR-106b, miR-125a, and miR-
17), thus promoting the expression of bone morphogenetic
protein 9 (BMP-9) and inducing the osteogenic differentiation
of MSCs (Liao et al., 2020). These studies confirmed that
lncRNA H19 promotes osteogenic differentiation through the
lncRNA/miRNA/mRNA network (Figure 6; Zhang et al., 2018).

lncRNA DANCR
Tong et al. (2015) reported the significant upregulation of the
expression of lncRNA DANCR in blood mononuclear cells

from patients with reduced BMD based on a qRTPCR analysis,
and DANCR increased the expression of the IL6 and TNF-
α mRNAs and proteins. Furthermore, DANCR induces the
expression of IL6 and TNF-α in mononuclear cells to promote
the bone resorptive activity of osteoclasts. The siRNA-mediated
inhibition of DANCR reduces IL6 and TNF-α levels in blood
mononuclear cells from postmenopausal women with a reduced
bone density (Tong et al., 2015). Thus, DANCR is related to
IL6 and TNF-α levels in blood mononuclear cells from patients
with a reduced bone density. From the perspective of immunity,
OP is considered a chronic immune-mediated inflammatory
disease, in which the production of cytokines and activation of the
inflammatory response trigger the immune system, resulting in
increased osteoclast activity and disordered bone transformation
to increase bone absorption and produce OP.

ANCR
Anti-differentiation non-coding RNA (ANCR) is a new type of
long chain non-coding RNA. Its expression is downregulated
during stem cell differentiation, which is necessary to maintain
osteoblasts in an undifferentiated state. ANCR is closely
related to osteoblast differentiation (Zhu and Xu, 2013).
Recently, siRNA-mediated silencing of ANCR was shown to
increase the levels of osteoblast differentiation markers, such
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FIGURE 5 | Schematic drawing of functional lncRNAs implicated in osteoporosis (Keniry et al., 2012; Zhu and Xu, 2013; Chan et al., 2014; Che et al., 2015; Tong
et al., 2015; Xiao et al., 2015; Xu et al., 2015; Huang et al., 2016; Liang et al., 2016; Zhu et al., 2016; Chen et al., 2017; Wang et al., 2017; Wei et al., 2017; Weng
et al., 2017; Xia et al., 2017; Zhang et al., 2017; Feng X. et al., 2018; Feng L. et al., 2018; Li H. et al., 2018; Sun X. et al., 2018; Liu et al., 2019; Yang et al., 2019a;
Zhu E. et al., 2019; Zhu J. et al., 2019).

as alkaline phosphatase and osteocalcin, while overexpression
of ANCR reduced the expression of these markers. Regarding
the mechanism, previous studies have confirmed that ANCR
regulates RUNX2 expression by recruiting EZH2. EZH2
mainly catalyses H3-lysine-27 trimethylation at the RUNX2
gene promoter to inhibit RUNX2 expression and subsequent
osteoblast differentiation. Further studies also confirmed the
direct relationship between ANCR and EZH2.

MALAT1
Xiao et al. (2017) confirmed that metastasis-associated
lung adenocarcinoma transcript 1 (MALAT1) promotes
the osteogenic differentiation of aortic valve stromal cells
in individuals with calcified aortic valve disease (CAVD).
Furthermore, MALAT1 functions as a sponge for miR-204,
leading to the upregulation of Smad4 expression, which
promotes the expression of alkaline phosphatase and the
downstream molecule osteocalcin to induce bone formation and
mineralization. As shown in the study by Dong et al. (2015)
using bone tumor cells, knockout of MALAT1 inhibited the
expression of proliferating cell nuclear antigen (PCNA), matrix
metalloproteinase-9 (MMP-9), P85α, and Akt, thus reducing
the proliferation of osteoblasts. Che et al. (2015) studied the
regulation of RANK/RANKL/OPG signaling in the human
osteoblast cell line hFOB 1.19 and found that the lncRNA

MALAT1 regulated the RANK/RANKL/OPG pathway in the
pathological state of an imbalanced bone metabolism, thus
activating and remodeling osteoclast activity in the bone model.
Zheng et al., also successfully established an osteoporosis model
in SD rats and detected the expression of MALAT1 in rats with
osteoporosis and normal rats using real-time polymerase chain
reaction. The lncRNA MALAT1 was expressed at low levels in
rats with osteoporosis (Zheng et al., 2019). Moreover, lncRNA
MALAT1 inhibits the osteoblastic differentiation of BMSCs by
increasing the activation of the MAPK signaling pathway, thus
promoting the process of osteoporosis (Zheng et al., 2019).

lncRNA p21
Bone marrow mesenchymal stem cells (BMMSCs) are
pluripotent stem cells with the ability to differentiate into
osteoblasts. The downregulation of lncRNA p21 stimulates
BMMSCs to secrete the vascular endothelial growth factor, basic
fibroblast growth factor, and insulin-like growth factor and
induces the expression of β-Catenin protein, thus promoting the
osteoblast differentiation of BMMSCs (Xia et al., 2017).

lncRNA TUG1
Chen et al. (2017) showed that lncRNA TUG1 can promote
the expression of β-Catenin, MMP3 and Caspase-3, inhibit the
expression of BCL-2 and proteoglycan, inhibit the apoptosis and
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FIGURE 6 | LncRNA H19 regulates the gene pathway of osteogenic differentiation through the lncRNA-miRNA-mRNA network (Keniry et al., 2012; Chan et al.,
2014; Huang et al., 2016; Liang et al., 2016; Liao et al., 2020). H19 can up-regulate the expression of miR-675, further inhibit the phosphorylation of TGF-1 and
Smad3, and downregulate the expression of Histone deacetylase 4/5 (HDAC4/5), and promote the expression of genes related to osteogenic differentiation; H19
can inhibit the expression of miRNAs (miR-141 and miR-22), promote Wnt/β-catenin signal transduction pathway, and promote osteogenic differentiation; H19 can
regulate the expression of ligands such as Dll1, Dll3, Dll4, Jag1, and Jag2 in Notch signaling pathway by regulating the expression of miRNA (miR-107, miR-27b,
miR-106b, miR-125a, and miR-17) to further promote the induction of the osteogenic differentiation by BMP9 (Zhang et al., 2018).

aging of osteoblasts and promote cell proliferation through the
Wnt/β-Catenin signaling pathway (Chen et al., 2017).

lncRNA HOTAIR
Bone morphogenetic proteins are a member of the TGF-
β superfamily and have many subtypes. The BMP TGF-β
signaling pathway can regulate the expression of the RUNX2
gene in BMMSCs through the classical Smad pathway and non-
classical p38 pathway, thus regulating the differentiation and
function of osteoblasts and playing an important role in the
bone metabolism balance in osteoporosis. Wei et al. (2017)
showed that lncRNA HOTAIR regulates miR-17-5p and Smad7
through the BMP/TGF-β signaling pathway, as well as osteogenic
differentiation and proliferation.

lncRNA HIF1α-AS1
As shown in the study by Xu et al. (2015) lncRNA HIF1α-AS1
activates the BMP/TGF-β pathway and interferes with SIRT1
expression. Furthermore, lncRNA HIF1α-AS1 downregulates
HOXD10 and interferes with histone acetylation, leading to the
inhibition of osteoblast differentiation (Xu et al., 2015). Based
on these results, HIF1α-AS1 is the key factor in osteoblast

differentiation and is expected to become a gene therapy target
for osteoporosis.

lncRNA xr-111050
Zhang et al. (2017) studied the expression profile and function
of lncRNAs during the differentiation of BMMSCs into
osteoblasts or osteoclasts and found that lncRNA xr-111050
regulates this differentiation process by regulating the MAPK
signaling pathway.

Other Long Non-coding RNAs
The pathogenesis of various metabolic bone diseases represented
by OP, rheumatoid arthritis-related bone loss, Paget’s bone
disease, diabetic osteoporosis and other diseases may be related to
osteoclast hyperactivity (Galson and Roodman, 2014; Jiao et al.,
2015). Notably, lncRNAs enhance bone resorption by promoting
osteoclast formation. The expression of lncRNA AK077216 was
significantly upregulated during osteoclastogenesis. Additionally,
the upregulation of lncRNA AK077216 expression can increase
osteoclast formation, promote osteoclast function and increase
bone resorption by regulating the expression of NFATc1.
Moreover, lncRNAs can increase osteoclast activity. In addition
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to regulating osteoclast activity, lncRNAs can also promote
osteoclast formation. Peripheral blood mononuclear cells are
precursors of osteoclasts, and they directly participate in the
formation of osteoclasts and secrete Osteoclast-6 and TNF-α
(Cohen-Solal et al., 1993; Fujikawa et al., 1996). In conclusion,
lncRNAs can promote the production and proliferation of
osteoclasts, increase the activity of osteoclasts and promote the
development of OP by regulating the expression of proteins in
the Notch signaling pathway, transcription factors and immune
factors (Liu et al., 2019).

Researchers gradually recognized that lncRNAs play key
roles in various biological processes, including cell growth,
transcriptional regulation and differentiation. Maladjusted
lncRNAs are closely related to human diseases, including
bone and muscle diseases and cancer. Notably, lncRNAs play
important roles in the pathogenesis and treatment of OP
(Figure 5). The mechanism by which lncRNAs regulate bone
metabolism through different signaling pathways is still being
investigated. With the development of research technology and
methods, the key regulatory mechanisms underlying the effect
of lncRNAs on the bone metabolism signaling pathways will
be further clarified, and these results would have important
potential clinical applications in the treatment of OP.

MircoRNAs
MicroRNAs (miRNAs) are a type of endogenous non-
coding small, single-stranded RNA of approximately 22
nucleotides in length. It is complementary to the site of
the 3′ untranslated region of the target gene mRNA and
binds through sequence-specific base pairing (Gernapudi
et al., 2016; Ghayor and Weber, 2016; Letarouilly et al.,
2019). Notably, miRNAs regulate the bone metabolism
by regulating the target genes related with osteogenic
differentiation (Table 5 and Figure 7; Dou et al., 2016;
Letarouilly et al., 2019).

miR-145
Sun et al. (2016) found that a decrease in the miR-145
level induces the expression of RUNX2, OSX, and
β-Catenin, thus promoting osteogenic differentiation.
Overexpression of miR-145 inhibits osteogenic differentiation
by negatively regulating OSX expression. A clinical study
reported lower expression of miR-145 in patients with
osteodysplasia than in healthy controls (Wang et al., 2012).
Dynamic detection of miR-145 levels during osteogenic
differentiation showed that miR-145 was negatively
correlated with the expression of forkhead box protein O1
(FOXO1), and the dual luciferase assay showed that miR-
145 directly and negatively regulated FOXO1 expression
(Wang et al., 2012).

miR-3960 and miR-2861
Li et al. (2009) showed that the expression of miR-2861 was
increased in ST2 cells and overexpression of miR-2861 could
enhance the differentiation ability of BMP-2. Studies also found
that miR-3960 at the same locus of miR-2861 could inhibit
the expression of HOXA2, an inhibitor of RUNX2, so as to

promote the osteogenic differentiation. Moreover, results show
that RUNX2 can bind to the promoters of miR-3960/miR-2861
to promote the expression of miR-3960/miR-2861. Therefore,
RUNX2 and miR-3960/miR-2861 constitute a positive feedback
cycle to continuously enhances the osteogenic differentiation
ability of ST2 cells (Hu et al., 2011).

miR-21
The Spry family is composed of Spry1, Spry2, Spry3, and Spry4,
which are highly conserved between humans and rats. In the
osteogenic differentiation of BMSCs, the expression of Spry1
was downregulated and the expression of RUNX2 and OSX was
upregulated. Yang et al. (2017) studied the functional axis of
miR-21/Spry1 in human BMSCs and found that overexpression
of miR-21 promoted osteogenic differentiation by inhibiting the
expression of Spry1. The overexpression of miR-21 significantly
increased alkaline phosphatase activity significantly. Moreover,
miR-21 can inhibit osteogenic differentiation by downregulating
Spry1 and upregulating RUNX2 and OSX to further modulate
the inhibitory effect of Spry1 on osteogenic differentiation
(Yang et al., 2017).

Involvement of miRNA During Bone Aging
It has been found that a variety of miRNAs are involved in
the aging process of bone tissue (Liu M. et al., 2018; Cakouros
and Gronthos, 2020). The regulation of miRNA on age-related
bone tissue provides new theoretical basis for the clinical
treatment of bone density reduction and age-related osteoporosis
caused by bone aging.

Ruben et al., found that the expression of miR-219a-5p in
bone tissues of aged mice decreased, and it involved in the aging
process by regulating the expression of the target gene retinoic
acid receptor-related orphan receptor beta (Rorβ) (Aquino-
Martinez et al., 2019). Liu et al. found that serum miR-96 was
significantly up-regulated in elderly patients with osteoporosis.
Further studies found that after overexpression of miR-96, the
thickness and number of trabecular bone in young mice were
significantly reduced (Liu H. et al., 2018). Xu R. et al. found
that the level of miR-31a-5p in the exosomes of BMSCs in aged
rats was significantly increased. Inhibiting the expression of miR-
31a-5p can effectively reduce bone loss and reduce osteoclast
activity in aged rats (Xu R. et al., 2018). Similar studies comparing
young and old human BMSC, uncovered miR 199b-5p was
deregulated during BMSC aging, which is predicted to target
SIRT1 (Peffers et al., 2016).

With the aging of bone tissue, adipose tissue in the bone
marrow accumulates and the number of mesenchymal stem
cells in the intercellular phase increases. Fan et al. (2018) found
that the overexpression of miR-1292 accelerates the senescence
of human adipose derived stem cells (hADSCs) and inhibits
bone formation through Wnt/β-catenin signaling pathway. Li H.
et al. found that miR-10b inhibits the adipose differentiation of
hADSCs through the TGF-β pathway (Li H. et al., 2018). The
aging-related gene Smurf1 in BMSCs of aged mice is significantly
increased. miR-17 inhibits the expression of Smurf1 through
the p53/miR-17/Smurf1 signaling pathway, and promotes the
osteogenic differentiation of aging BMSCs (Liu et al., 2015).
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TABLE 5 | miRNAs and their roles in the osteoblast differentiation.

miRNAs Target genes Function

miR-146a NF-κB pathway Promote osteoblastic differentiation (Zheng et al., 2017)

miR-214 OSX, WNT pathway Inhibit osteoblastic differentiation (Grunhagen and Ott, 2013)

miR-4448, miR-4708,
miR-4773

SMAD1 and SMAD4 Inhibit osteoblastic differentiation (Kato et al., 2014)

miR-30 SMAD1 and RUNX2 Inhibit osteoblastic differentiation (Wu et al., 2012)

miR-34a TGIF Inhibit osteoclast growth (Krzeszinski et al., 2020)

miR-542-3p BMP7 Inhibit osteogenic differentiation and promote apoptosis of osteoblasts (Kureel et al., 2014)

miR-346 GSK3β, c-Myc Promote osteoblastic differentiation (Wang et al., 2013)

miR-26a HMGA1 Promote osteoblastic differentiation and inhibit adipogenic differentiation (Li et al., 2012; Yan et al., 2020)

miR-548d-5p PPARγ Promote osteoblastic differentiation and inhibit adipogenic differentiation (Sun et al., 2014)

miR-99a KDM6B, HOXC6-1,
HOXA10, HOXB2 and
HOXC10

Promote osteoblastic differentiation (Xie and Cao, 2019; Zhang L. et al., 2019)

miR-21 Spry Promote osteoblastic differentiation (Yang et al., 2017)

miR-145 OSX Inhibit osteoblastic differentiation (Sun et al., 2016)

miR-2861 HDAC5 Promote osteoblastic differentiation (Li et al., 2009; Hu et al., 2011)

miR-3960 HOXA2 Promote osteoblastic differentiation (Hu et al., 2011)

miR-433 RUNX2 Inhibit osteoblastic differentiation (Kim et al., 2013)

miR-335 RUNX2 Inhibit osteoblastic differentiation (Zheng et al., 2017)

miR-106b-5p and
miR-17-5p

Smad5 Inhibit osteoblastic differentiation (Fang et al., 2016)

miR-335-5p DKK1 Promote osteoblastic differentiation (Zhang J. et al., 2011)

miR-29a DKK1, Krm2, and
sFRP2

Promote osteoblastic differentiation (Kapinas et al., 2010)

miR-218 SOST, DKK2, and
sFRP2

Promote osteoblastic differentiation (Hassan et al., 2012)

miR-143, miR-31 OSX Inhibit osteoblastic differentiation (Zhang et al., 2012; Li E. et al., 2014; Liu et al., 2020)

miR-101, miR-132 PI3K/AKT/mTOR
pathway

Promote osteoblastic differentiation (Qi and Zhang, 2014)

miR-17 TCF/Wnt pathway Inhibit osteoblastic differentiation (Liu et al., 2013)

miR-216 PI3K/AKT pathway Promote osteoblastic differentiation (Xiao et al., 2016)

miR-194 STAT1 Promote osteoblastic differentiation (Li et al., 2015)

miR-96 EGFR signaling Promote osteoblastic differentiation (Yang et al., 2014)

miR-23 MARK pathway Inhibit osteoblastic differentiation (Jiang et al., 2020)

miR-375 RUNX2 Inhibit osteoblastic differentiation (Du et al., 2015)

miR-153 BMPRII Inhibit osteoblastic differentiation (Cao et al., 2015)

miR-124 DLX Inhibit osteoblastic differentiation (Zhang C. et al., 2015)

MiR-125b OSX Inhibit osteoblastic differentiation (Chen et al., 2014)

mTOR, mammalian target of rapamycin; SMAD1, SMAD Family Member 1; TGIF, transforming growth factor-β induced factor; BMP7, Bone morphogenetic protein 7;
GSK3β, Glycogen synthase kinase-3β; c-Myc, MYC proto-oncogene; HMGA1, high mobility group A; PPARγ, peroxisome proliferator activated receptor γ; Spry, Sprouty;
OSX, osterix; HDAC 5, histone deacetylase 5; HOXA2, Homeobox A 2; RUNX2, Runt-related transcription factor 2; DKK1, Dickkopf 1; DKK1, Dickkopf 2; Krm2, Kremen2;
sFRP2, secreted frizzled-related protein 2; SOST, sclerostin; STAT1, signal transducer and activator of transcription 1; BMPRII, bone morphogenetic protein receptor II;
DLX, distal-less homeobox gene.

Other miRNAs
MiR-143 can downregulate the expression of OSX and inhibit
the osteogenic differentiation of MC3T3-E1 cells (Li E. et al.,
2014). Some studies have found that miR-125b could affect
the proliferation and osteogenic differentiation of BMMSCs
by regulating the expression of OSX (Chen et al., 2014).
In addition, miR-138, miR-31, miR-142, miR-148, and miR-
637 could inhibit the expression of OSX (Zhang et al.,
2012; Liu et al., 2020). Chen et al. (2016) found that
serum miR-30b-5p level was significantly down-regulated in
postmenopausal women, and the results were consistent in
the corresponding rat model. BMSCs from ovariectomized

mice and sham operated mice were compared, and miR-26a
expression was significantly decreased in the ovariectomized
group. This experiment confirmed the ability of miR-26a to
induce the osteogenic differentiation of BMSCs in mice and
confirmed that miR-26a was a negative regulator of osteoporosis
(Yan et al., 2020).

Further study of miRNAs associated with osteogenic
differentiation will help us better understand the pathogenesis
of bone metabolism and OP. However, at present, the study of
miRNA in the pathological mechanism of osteoporosis is still very
limited. The functions of numerous unknown miRNAs require
further exploration by researchers. For known miRNAs, the
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FIGURE 7 | Schematic drawing of miRNAs implicated in osteoblast differentiation (Li et al., 2009, 2012, 2015; Hu et al., 2011; Wu et al., 2012; Zhang et al., 2012;
Grunhagen and Ott, 2013; Liu et al., 2013, 2020; Wang et al., 2013; Kato et al., 2014; Kureel et al., 2014; Li E. et al., 2014; Qi and Zhang, 2014; Sun et al., 2014,
2016; Yang et al., 2014, 2017; Xiao et al., 2016; Zheng et al., 2017; Xie and Cao, 2019; Zhang L. et al., 2019; Krzeszinski et al., 2020; Yan et al., 2020).

regulatory mechanism, selection of downstream target mRNAs
and association with related diseases also requires further study.

circRNA
Compared with other ncRNAs, circRNAs replace the traditional
structure pattern of the 5′-end cap and 3′-end polyadenylate
tail with the special structure of a continuous covalent closed
loop, and they have higher conservation and stability (Chen
and Yang, 2015; Yang and Duan, 2016). According to numerous
studies, circRNAs participate in the occurrence and development
of many diseases by regulating gene transcription, translation,
splicing and other key steps (Rong et al., 2017; Xu S. et al.,
2018). Accumulating research on circRNAs has revealed their
important roles in diseases related to bone metabolism (Table 6;
Zhu et al., 2020).

Dou et al. (2016) identified the differential expression of 518
lncRNAs, 207 mRNAs, 24 circRNAs, and 37 miRNAs at each
stage of osteoclast differentiation. Qian et al. (2017) confirmed
that BMP-2 induces osteogenic differentiation through
circ191422/circ5846. Li X. et al. found that estrogen receptor
(ER) β deficiency can inhibit the osteogenic differentiation
of BMMSCs (Li X. et al., 2017). Silencing ERβ can cause

the differential expression of some circRNAs in BMSCs and
downregulate the expression of osteogenic related proteins at
mRNA and protein levels. The RNA-SEQ analysis revealed
the differential expression of 146 circRNAs, including 68
downregulated and 78 upregulated circRNAs. Subsequently,
circRNAs were shown to play an important role in the osteogenic
differentiation of BMMSCs. Zhang M. et al. found that during the
osteogenic differentiation of BMMSCs, a total of 3938 circRNAs
were upregulated and 150 circRNAs were downregulated
compared with undifferentiated cells. Furthermore, the parental
genes of differentially expressed circRNAs were associated
with osteogenesis, suggesting that these circRNAs may play a
role in the osteogenic differentiation of BMMSCs (Zhang M.
et al., 2019). The silencing of circRNA IGSF11 promoted the
differentiation of osteoblasts and increased the expression level of
miR-199b-5p, indicating that the interaction of this circRNA and
miRNA exerted a positive effect on the osteogenic differentiation
of human BMMSCs. In addition, hsa_circ_0127781 interacts
with miR-210-5p and miR-335-5p; miR-210 positively regulates
osteogenic differentiation by inhibiting Activin A receptor 1B
(AcvR1b) and miR-335 promotes osteogenic differentiation
by activating the Wnt signaling pathway by downregulating
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TABLE 6 | Circular RNAs (circRNAs) and their roles in the osteoblast differentiation.

circRNAs Targets Functions

circVANGL1 miR-2l7 Promote osteoblastic differentiation (Yang et al., 2019b)

circ_003795 miR-504-3p Promote BMSCs proliferation (Ren et al., 2019)

circ_0005105 miR-26a Promote osteoblastic differentiation and inhibit adipogenic differentiation (Wu et al., 2017)

circ_0045714 miR-193b Promote chondrocyte proliferation (Li B. F. et al., 2017)

circRNA533l miR-204 Inhibit osteoblastic differentiation

circRNA CDRlas miR-7 Inhibit osteoblastic differentiation

circRNA NFATCl miR-4483 Promote osteoblastic differentiation

circRNA IGSFll miR-199b-5p Inhibit osteoblastic differentiation (Zhang M. et al., 2019)

circRNA RUNX2 miR-203 Promote osteoblastic differentiation (Yin et al., 2018)

circ_0127781 miR-210, miR-335 Inhibit osteoblastic differentiation (Mizuno et al., 2009; Zhang J. et al., 2011)

circ_0074834 miRNA-942-5p Promote osteoblastic differentiation (Ouyang et al., 2019)

circ_33287 miR-214-3p Promote osteoblastic differentiation (Peng et al., 2019)

CDR1as miR-7-5p/Wnt 5B Promote adipogenic differentiation and inhibit osteoblastic differentiation (Chen G. et al., 2020)

CircUSP45 miR-127-5p Inhibit BMSCs proliferation (Kuang et al., 2019)

DKK-1 (Mizuno et al., 2009; Zhang J. et al., 2011). Therefore,
hsa_circ_0127781 may inhibit the osteogenic differentiation of
BMSCs by functioning as an miRNA “sponge.”

Yin et al. (2018) investigated the prevention and treatment
of osteoporosis and found that circRUNX2 interacts with
miR-203, increases the expression of RUNX2, and inhibits
osteogenic differentiation during the osteogenic differentiation of
human BMMSCs. Yang et al. found that circVANGL1 regulates
RUNX2 expression by absorbing miR-2l7 and accelerates
osteogenic differentiation (Yang et al., 2019b). Ren et al.
(2019) stimulated BMMSCs with calcitonin gene-related peptide
(CGRP) and identified 58 differentially expressed circRNAs, of
which 44 were downregulated and 14 were upregulated; among
these differentially expressed circRNAs, mmu-circRNA 003795
expression was significantly increased and mmu-miR-504-3p
expression was increased. Based on these results, circRNAs
play an important role in the CGRP-induced proliferation of
BMMSCs and highlight the regulatory mechanism of circRNAs,
which provides a new direction for studying the osteogenic
differentiation and proliferation of BMMSCs.

In conclusion, the biological functions of circRNAs in bone
metabolism-related diseases have not yet been elucidated.
Therefore, more comprehensive and in-depth studies of
circRNAs are required to provide effective new methods, new
approaches and new ideas for the diagnosis, treatment and
prognosis of bone metabolism-related diseases.

SUMMARY

Bone not only supports the body and protects the internal organs
but also has a variety of metabolic functions, particularly in
maintaining the mineral balance of the body. Bone tissue is
always in a state of dynamic balance between bone resorption
and bone formation called bone remodeling. When bone
resorption exceeds bone formation, bone loss will occur, leading
to osteoporosis in severe cases. Epigenetic mechanisms refer
to all heritable regulatory pathways that affect gene expression
without altering the DNA sequence, including DNA methylation,

histone modification, chromatin remodeling and ncRNAs, which
play important roles in many diseases, including osteoporosis.
An in-depth study of these epigenetic mechanisms will provide
a better understanding of the pathogenesis of abnormal bone
metabolism and osteoporosis. However, the understanding of
the epigenetics of bone remodeling abnormalities is currently
very limited. A large number of unknown functions must
be discovered and further explored by scholars. Additionally,
known epigenetic regulatory factors, epigenetic regulatory
mechanisms and the relationship between their downstream
target genes and related diseases require further study, and the
mechanisms of DNA modification and methylation remain to be
elucidated. Nevertheless, the identification of specific biomarkers
related to osteoporosis will substantially improve the clinical
diagnosis and treatment of the disease. The wide application of
epigenetic microarrays, high-throughput sequencing and other
new technologies will help establish a complete epigenetic
spectrum of normal bone and bone diseases based on the whole
genome. Genetic markers of disease prevention will help identify
clinical phenotypes. Additional research in this area will further
reveal the biological bases of the basic mechanisms of bone
remodeling and the delicate balance between anabolism and
catabolism in bone tissue, providing new targets for the diagnosis
and treatment of common bone remodeling disorders.
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