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Abstract: Hypericum perforatum and related species (Hypericaceae) are a reservoir of pharmacologically
important secondary metabolites, including the well-known naphthodianthrone hypericin. However,
the exact biosynthetic steps in the hypericin biosynthetic pathway, vis-à-vis the essential precursors and
their localization in plants, remain unestablished. Recently, we proposed a novel biosynthetic pathway
of hypericin, not through emodin and emodin anthrone, but skyrin. However, the localization of skyrin
and its precursors in Hypericum plants, as well as the correlation between their spatial distribution with
the hypericin pathway intermediates and the produced naphthodianthrones, are not known. Herein,
we report the spatial distribution of skyrin and its precursors in leaves of five in vitro cultivated
Hypericum plant species concomitant to hypericin, its analogs, as well as its previously proposed
precursors emodin and emodin anthrone, using MALDI-HRMS imaging. Firstly, we employed
HPLC-HRMS to confirm the presence of skyrin in all analyzed species, namely H. humifusum,
H. bupleuroides, H. annulatum, H. tetrapterum, and H. rumeliacum. Thereafter, MALDI-HRMS imaging of
the skyrin-containing leaves revealed a species-specific distribution and localization pattern of skyrin.
Skyrin is localized in the dark glands in H. humifusum and H. tetrapterum leaves together with hypericin
but remains scattered throughout the leaves in H. annulatum, H. bupleuroides, and H. rumeliacum.
The distribution and localization of related compounds were also mapped and are discussed
concomitant to the incidence of skyrin. Taken together, our study establishes and correlates for the
first time, the high spatial distribution of skyrin and its precursors, as well as of hypericin, its analogs,
and previously proposed precursors emodin and emodin anthrone in the leaves of Hypericum plants.

Keywords: Hypericum; skyrin; hypericin; naphthodianthrones; MALDI-HRMS imaging

1. Introduction

Secondary metabolites actively participate in a plethora of physiological activities in plants,
which includes imparting stress tolerance and accessory functions, unlike primary metabolites [1].
Additionally, these plant-derived specialized metabolites exhibit a wide array of pharmacological
activities, which has opened gates to explore plant communities for novel compounds [2]. Hypericaceae is
a central, ethnomedicinal plant family, within which Hypericum perforatum has been extensively studied
for its bioactive metabolites [3]. H. perforatum, commonly known as St. John’s wort, accumulate
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naphthodianthrone metabolites such as hypericin (6), protohypericin (5), pseudohypericin (4),
and phloroglucinol hyperforin possessing anti-inflammatory, antioxidant, anticancer, and antimicrobial
properties, in the aerial parts of the plant, especially flowers and leaves [4,5] (compounds are numbered
according to hypericin (6) biosynthetic pathway, see Figure 1). Besides, hypericin (6) has been reported as
a photosensitizer and is used effectively against nonmelanoma skin cancers [4]. Transcriptomic analysis
of four different Hypericum species revealed that biosynthesis of hypericin (6) is concentrated to
marginal regions of the leaves, and primarily localized in the dark glands [6]. Using a combination of
HPLC-HRMS and matrix-assisted laser desorption/ionization high-resolution mass spectrometry
(MALDI-HRMS) imaging, we confirmed that hypericin (6), along with its analogs/protoforms
protohypericin (5) and pseudohypericin (4), accumulate in the dark glands [7]. In contrast, its proposed
precursor emodin (1), is typically distributed both inside and outside the dark glands. In agreement
with this, both Hölscher et al. (2009) and Rizzo et al. (2019) reported the accumulation of hypericin
(6) in the dark glands, which plants develop during the placental stage [8,9]. The reason behind the
evolutionarily-evolved accumulation of hypericin (6) in dark glands is due to its photosensitizing
activities [10].

The biosynthetic pathway of hypericin initiates with the condensation of 7 molecules of malonyl-CoA
and one molecule of acetyl-CoA, giving rise to emodin (1) and emodin anthrone (2) catalyzed by
polyketide synthase (PKS) [11]. Subsequently, emodin (1) and emodin anthrone (2) condense to form
protohypericin (5), which is immediately converted to hypericin (6), and this reaction is catalyzed by
light [12]. Initially, Bais et al. (2003) proposed the Hyp-1 gene product as the key enzyme involved in the
biosynthesis of hypericin through dimerization of emodin (1) and emodin anthrone (2), and phenolic
oxidation to protohypericin (5) and hypericin (6) [11]. However, later Košuth et al. (2007) demonstrated
that Hyp-1 expression is higher in roots compared to aboveground parts [13]. This is contrary to the
site of hypericin (6) accumulation in Hypericum plants, which is characteristically seen in aboveground
parts [12,14]. Further, Košuth et al. (2010) proposed that the Hyp-1 gene product may not be involved
in hypericin (6) production by demonstrating that Hyp-1 is constitutively expressed in all plant tissues
irrespective of the presence of hypericin (6) and emodin (1) [12]. This assumption was further supported
by X-ray crystallographic studies of Michalska et al. (2010) and Sliwiak et al. (2016) [15,16]. Thus far,
the exact biosynthetic steps in the hypericin biosynthetic pathway, in particular, the key precursors and
their localization in plants, remain unclear.

Recently, we proposed a novel biosynthetic pathway of hypericin, not through emodin (1) and
emodin anthrone (2), but skyrin (7) (Figure 1) [17]. Hypericin-containing Hypericum species, including
H. perforatum, produce skyrin (7) and its precursors such as 1,2,4,5-tetrahydroxy-7-(hydroxymethyl)-9,10-
anthraquinone (10), 1,2,4,5-tetrahydroxy-7-methyl-9,10-anthraquinone-2-O-β-glucopyranoside (11),
skyrin-6-O-β-glucopyranoside (9), and oxyskyrin-6-O-β-glucopyranoside (8). 1,2,4,5-tetrahydroxy-
7-methyl-9,10-anthraquinone-2-O-β-glucopyranoside (11) and 1,2,4,5-tetrahydroxy-7-(hydroxymethyl)-
9,10-anthraquinone (10) combine to form the compound oxyskyrin-6-O-β-glucopyranoside (8) through
hydrogenation. Later, oxyskyrin-6-O-β-glucopyranoside (8) is converted to skyrin-6-O-β-glucopyranoside
(9) with another round of hydrogenation. Finally, the compound skyrin-6-O-β-glucopyranoside (9)
is converted into skyrin (7), possibly by the β-glucosidase reaction (Figure 1) [17]. Though the genes
responsible for skyrin (7) biosynthesis remain uncharacterized in Hypericum species, we recently established
the skyrin-mediated production of hypericin (6) through our proposed biosynthetic pathway [17]. Besides,
Hölzl et al. (2003) established skyrin (7) as a precursor of protohypericin (5) [18]. Remarkably, skyrin (7) is
typically biosynthesized by fungi belonging to different species and ecological niches and reported to have
antimicrobial properties [19,20]. Thus far, the role of plant-associated microorganisms such as endophytes
in the production of skyrin (7) is a plausible, open question, particularly since native endophytes harbored
in H. perforatum can produce hypericin (6) [21–23]. Therefore, it is essential to identify the in planta site of
localization and the role of skyrin (7), as well as the related intermediates leading to the production of
hypericin (6). This can aid in developing metabolic engineering approaches to increase the production of
hypericin (6). In particular, the following open questions remain unanswered:
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(1) In which plant tissues is skyrin (7) localized and accumulated?
(2) In which tissues are the precursors of skyrin (7) localized and accumulated?
(3) How does the spatial distribution of skyrin (7) correlate with other precursors, intermediates,

and the produced naphthodianthrones?
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Figure 1. The proposed biosynthetic pathways of hypericin. The biosynthesis of hypericin and its
protoforms using emodin (1) and emodin anthrone (2) as precursors is represented on the left side
with green colored arrows. The localization of compounds is represented in blue color according to
our previous work [7]. The biosynthesis of skyrin (7) and proposed hypericin (6) production through
skyrin (7) as a precursor is represented on the right with violet arrows [17]. Our present work reports
for the first time, the occurrence and spatial distribution of skyrin (7) and its precursors in Hypericum
leaves concomitant to hypericin (6), its protoforms (3–5), as well as its previously proposed precursors
emodin (1) and emodin anthrone (2).

In order to answer the aforementioned questions, we employed a combination of HPLC-HRMS and
matrix-assisted laser desorption/ionization high-resolution mass spectrometry imaging (MALDI-HRMS
imaging). In the present study, we first confirmed the occurrence of skyrin (7) and its precursors
in leaves of five in vitro cultivated Hypericum plant species concomitant to emodin (1), emodin
anthrone (2), protohypericin (5), pseudohypericin (4), protopseudohypericin (3), and hypericin (6) by
HPLC-HRMS. After that, using MALDI-HRMS imaging, we visualized the distribution and dynamics
of skyrin (7) and its precursors in the leaves in high spatial resolution, compared to hypericin (6) and
its analogs, as well as its proposed precursors (emodin (1) and emodin anthrone (2)). In particular,
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both the dorsal and ventral sides of the leaves were mapped with emphasis on the dark glands, where
hypericin (6) is localized [7], as well as the tissues surrounding the glands. Our study unravels for
the first time, the occurrence, distribution, and dynamics of skyrin (7) and its precursors, versus the
accumulation of hypericin (6), its analogs, and its possible precursors in the leaves of Hypericum plants.

2. Results and Discussion

2.1. Detection of the Selected Phytochemicals by HPLC-HRMS

Hypericum species produce various anthraquinones such as hypericin (6), emodin (1), emodin
anthrone (2), and their protoforms (3–5). Among all, hypericin (6) is well-studied for its occurrence and
spatial distribution; previous reports have established that hypericin (6) and its protoforms accumulate
in the dark glands owing to their photosensitizing properties [10]. On the other hand, the proposed
precursors, namely emodin (1) and emodin anthrone (2) accumulate both in the dark glands as well
as being distributed outside the glands [7,8]. Moreover, we recently reported that skyrin (7) and its
precursors serve as intermediates to hypericin production through another pathway, not involving emodin
(1) or emodin anthrone (2) [17]. Against this background, five different Hypericum species, namely
H. humifusum, H. tetrapterum, H. annulatum, H. bupleuroides, and H. rumeliacum were grown in vitro in
Murashige and Skoog (MS) medium with Gamborg B5 vitamin supplements, and the leaves of the plants
were extracted and subjected to selective metabolic profiling using HPLC-HRMS following our established
protocol [7]. We focused on hypericin (6) as well as specific metabolites related to its biosynthesis, such as
emodin (1), emodin anthrone (2), pseudohypericin (4), protopseudohypericin (3) and protohypericin (5).
More importantly, we analyzed skyrin (7) and its precursors vis-à-vis oxyskyrin-6-O-β-glucopyranoside
(8), skyrin-6-O-β-glucopyranoside (9), 1,2,4,5-tetrahydroxy-7-(hydroxymethyl)-9,10-anthraquinone (10)
and 1,2,4,5-tetrahydroxy-7-methyl-9,10-anthraquinone-2-O-β-glucopyranoside (11).

Emodin (1) was detected in four samples except in H. bupleuroides (<LOD). Our results were in
accordance with previous reports where emodin was not found in the Hypericum species mentioned
above [24,25]. Conversely, emodin anthrone (2) was typically either not detected or in low abundance in
the samples where emodin (1) was detected in higher abundance. Emodin (1) and emodin anthrone (2)
condenses to form an unstable compound called emodin dianthrone, which is converted to hypericin
(6) in two subsequent steps (Figure 1). However, it has been previously reported that emodin (1) levels
in leaves do not correlate with hypericin (6) accumulation [12], and the spatial distribution of emodin
(1) is not restricted to dark glands, unlike to that of hypericin (6) [7]. Hence, our observed dissimilarities
in the levels of these two compounds could be attributed to the fact that flux is directed towards
the production of hypericin (6) and its analogs, pseudohypericin (4) and protopseudohypericin (3)
(Table S1).

The protoforms of hypericin (6) like pseudohypericin (4), protopseudohypericin (3),
and protohypericin (5) were detected in four analyzed Hypericum species, except in H. bupleuroides.
The differential accumulation of pseudohypericin (4) and protopseudohypericin (3) in different
Hypericum species could be due to differences in the availability of the precursor pool, similar to
the pattern we observed earlier [17]. Correspondingly, protohypericin (5), an immediate precursor
of hypericin (6), was also accumulated differentially among the analyzed species. Except for a few
species, our results were in agreement with Kucharíková et al. (2016) concerning the occurrence
of protohypericin [26]. Emodin dianthrone is converted into protohypericin (5) through phenolic
oxidation [7]. Interestingly, skyrin (7) was also proposed as a possible precursor of protohypericin
(5) [18]. Thus far, it could be postulated that emodin (1) and skyrin (7) could contribute their flux
separately towards the synthesis of protohypericin (5), and the variation observed among different
species could be because of the difference in endogenous levels of precursors.

Skyrin (7) was detected in all five Hypericum species, namely H. humifusum, H. bupleuroides,
H. annulatum, H. tetrapterum, and H. rumeliacum [17]. Intriguingly, we detected skyrin (7) in
H. bupleuroides for the first time. Surprisingly, immediate precursors of skyrin (7), namely skyrin-6-O-β-
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glucopyranoside (9) and oxyskyrin-6-O-β-glucopyranoside (8), were not detected in any of the samples
by HPLC-HRMS (i.e., <LOD), possibly because they serve as reactive intermediates in the pathway
or are unstable. On the other hand, 1,2,4,5-tetrahydroxy-7-(hydroxymethyl)-9,10-anthraquinone (10)
and 1,2,4,5-tetrahydroxy-7-methyl-9,10-anthraquinone-2-O-β-glucopyranoside (11) were found to be
differentially accumulated across the species (Table S1).

Hypericin (6) was detected in all the analyzed samples except in H. bupleuroides in which skyrin (7)
was produced. Further, emodin (1) was not detected in H. bupleuroides, although emodin anthrone (2)
was detected. On the one hand, the presence of skyrin (7) coupled to the absence of hypericin (6) or its
protoforms in H. bupleuroides lends possible hints that the biosynthesis of hypericin (6) through emodin
(1) and related intermediates might be species-specific (Table S1). On the other hand, it is possible
that skyrin production occurs in the vegetative stage, followed by its utilization for the biosynthesis of
hypericin (final product of the pathway) during floral development and generation of dark glands.

2.2. MALDI-HRMS Imaging Reveals That Skyrin Is Localized in the Dark Glands in H. humifusum and
H. tetrapterum

Selective metabolic profiling using HPLC-HRMS revealed the presence of skyrin (7) in the five
species of Hypericum under investigation. Therefore, we used MALDI-HRMS imaging to map both the
dorsal and ventral leaf surfaces, in high spatial resolution and with minimum sample preparation,
the localization of skyrin (7) vis-à-vis its precursors, hypericin (6), emodin (1), emodin anthrone (2),
pseudohypericin (4), protopseudohypericin (3), and protohypericin (5). While hypericin (6) and
its analogs are synthesized and accumulated in the dark glands [7,8,26], hyperforin is present in
translucent glands [27,28]. We analyzed both the dorsal and ventral sides of the leaves, and our
critical focus was on the dark glands where hypericin (6) accumulates. Primarily, our emphasis was to
determine the spatial distribution of skyrin (7) and its precursors. Localization of these compounds
could help to understand whether skyrin (7) and its metabolic precursors are explicitly localized to
the dark glands along with hypericin (6) or distributed throughout the leaves. Furthermore, HRMS2

was also performed during MALDI-HRMS imaging on the selected portion of leaves, both from the
dorsal and ventral sides, to reconfirm the identity of compounds in the imaging mode following our
previously established method [7,17]. We segregated and interpreted the results centering primarily
on the distribution of skyrin (7).

MALDI-HRMS imaging revealed that in H. humifusum and H. tetrapterum leaves, skyrin (7)
was typically localized in the dark glands. The similarity in the pattern of skyrin (7) distribution
in the two Hypericum species was noted. In H. humifusum leaves, skyrin (7) was found to
localize in high abundance in the dark glands mapped from both the dorsal and ventral leaf
surfaces, similar to that of hypericin (6) (Figure 2A). Emodin (1) was distributed throughout
the leaves as observed both from the dorsal and ventral surfaces, although with slightly higher
abundance at the leaf margins (Figure 2A). The present results corroborate our earlier observation [7],
where emodin (1) was found to be distributed throughout the leaves. These results indicate
that emodin might be channeled to various regions of leaves for performing other plausible
physiological functions such as feeding deterrent and anti-pathogenic activities [29,30]. Besides,
the distribution pattern of emodin anthrone (2) was quite similar to that of emodin (1) (Figure 3).
Pseudohypericin (4), protopseudohypericin (3), and protohypericin (5) accumulated in the dark glands
along with hypericin (6) and skyrin (7) (Figure 3). Interestingly, the two anthraquinone derivative
precursors of skyrin (7), vis-à-vis 1,2,4,5-tetrahydroxy-7-(hydroxymethyl)-9,10-anthraquinone (10)
and 1,2,4,5-tetrahydroxy-7-methyl-9,10-anthraquinone-2-O-β-glucopyranoside (11) (Figure 1), were
distributed at the leaf margins and in the dark glands, respectively. Moreover, a high abundance of
the anthraquinone derivative 1,2,4,5-tetrahydroxy-7-(hydroxymethyl)-9,10-anthraquinone (10) was
observed throughout the leaf margins (Figure 3). In particular, the colocalization of 1,2,4,5-tetrahydroxy-
7-methyl-9,10-anthraquinone-2-O-β-glucopyranoside (11) with hypericin (6) in the dark glands opens
up the question whether the glucopyranoside moiety might play a role in the translocation of
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hypericin pathway intermediates between the dark glands and surrounding tissues. Our results
corroborate our previous observation where we could group skyrin (7) and analogs with hypericin (6)
by principal component analysis (PCA), which further lent evidence to skyrin (7) being a precursor of
hypericin (6) [17].Molecules 2020, 25, x 6 of 14 
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(m/z 699.141; [M − H]−; ±2 ppm; experimental), 1,2,4,5-tetrahydroxy-7-(hydroxymethyl)-9,10-
anthraquinone (10) (m/z 301.034; [M − H]−; ±2 ppm; experimental), 1,2,4,5-tetrahydroxy-7-methyl-9,10-
anthraquinone-2-O-β-glucopyranoside (11) (m/z 447.097; [M − H]−; ±2 ppm; experimental). The 
assigned scale bar represents 1 mm. Black insert depicts the scanned area in each case. 

The results obtained with H. tetrapterum were somewhat similar to H. humifusum. In H. 
tetrapterum, the dark glands were present on the ventral surface of the leaves, thereby allowing higher 
accessibility and better mapping of all the compounds with MALDI-HRMS imaging compared to the 
dorsal surface (Figures 2B and 4). As expected, a high accumulation of hypericin (6) was observed in 
the dark glands measured from the ventral surface (Figure 2B). Similarly, intensities of skyrin (7) 
were abundant in the dark glands. Emodin (1) was distributed throughout the leaves. The analogs of 
hypericin (6) vis-à-vis pseudohypericin (4), protopseudohypericin (3), and protohypericin (5) were 
found to accumulate in the dark glands, matching the localization of hypericin (6) (Figure 4). 
Remarkably, skyrin-6-O-β-glucopyranoside (9) was also localized in the same tissue regions where 
skyrin (7) accumulated. Anthraquinone compounds 1,2,4,5-tetrahydroxy-7-(hydroxymethyl)-9,10-

Figure 2. Selected ion images depicting the localization of skyrin (7) (m/z 537.086; [M −H]−; ±2 ppm;
experimental), hypericin (6) (m/z 503.074; [M −H]−; ±2 ppm; experimental) and emodin (1) (m/z 269.045;
[M − H]−; ±2 ppm; experimental). (A) Occurrence and localization of skyrin (7), hypericin (6),
and emodin (1) mapped from the ventral and dorsal surfaces of H. humifusum leaves. (B) Occurrence
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(9) (m/z 699.141; [M − H]−; ±2 ppm; experimental), 1,2,4,5-tetrahydroxy-7-(hydroxymethyl)-9,10-
anthraquinone (10) (m/z 301.034; [M − H]−; ±2 ppm; experimental), 1,2,4,5-tetrahydroxy-7-methyl-
9,10-anthraquinone-2-O-β-glucopyranoside (11) (m/z 447.097; [M − H]−; ±2 ppm; experimental).
The assigned scale bar represents 1 mm. Black insert depicts the scanned area in each case.

The results obtained with H. tetrapterum were somewhat similar to H. humifusum. In H. tetrapterum,
the dark glands were present on the ventral surface of the leaves, thereby allowing higher
accessibility and better mapping of all the compounds with MALDI-HRMS imaging compared
to the dorsal surface (Figures 2B and 4). As expected, a high accumulation of hypericin (6) was
observed in the dark glands measured from the ventral surface (Figure 2B). Similarly, intensities
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of skyrin (7) were abundant in the dark glands. Emodin (1) was distributed throughout the
leaves. The analogs of hypericin (6) vis-à-vis pseudohypericin (4), protopseudohypericin (3),
and protohypericin (5) were found to accumulate in the dark glands, matching the localization of
hypericin (6) (Figure 4). Remarkably, skyrin-6-O-β-glucopyranoside (9) was also localized in the same
tissue regions where skyrin (7) accumulated. Anthraquinone compounds 1,2,4,5-tetrahydroxy-7-
(hydroxymethyl)-9,10-anthraquinone (10), 1,2,4,5-tetrahydroxy-7-methyl-9,10-anthraquinone-2-O-
β-glucopyranoside (11) were detected in low abundances. Interestingly, the relative abundance
of 1,2,4,5-tetrahydroxy-7-(hydroxymethyl)-9,10-anthraquinone throughout leaf margins was found to
be similar to the distribution in H. humifusum (Figure 4). Taken together, we could successfully visualize
and map the spatial distribution of skyrin (7) and its precursors compared to other intermediates in
the hypericin (6) biosynthetic pathway, in H. humifusum and H. tetrapterum plants.
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Figure 4. Localization and distribution of compounds in H. tetrapterum leaves. Emodin anthrone (2)
(m/z 255.062; [M − H]−; ±2 ppm; experimental), protopseudohypericin (3) (m/z 521.082; [M − H]−;
±2 ppm; experimental), pseudohypericin (4) (m/z 519.066; [M − H]−; ±2 ppm; experimental),
protohypericin (5) (m/z 505.091; [M − H]−; ±2 ppm; experimental), skyrin-6-O-β-glucopyranoside
(9) (m/z 699.141; [M − H]−; ±2 ppm; experimental), 1,2,4,5-tetrahydroxy-7-(hydroxymethyl)-
9,10-anthraquinone (10) (m/z 301.034; [M − H]−; ±2 ppm; experimental), 1,2,4,5-tetrahydroxy-7-
methyl-9,10-anthraquinone-2-O-β-glucopyranoside (11) (m/z 447.097; [M −H]−; ±2 ppm; experimental).
Assigned scale bar represents 1 mm. Black insert depicts the scanned area in each case.

2.3. MALDI-HRMS Imaging Reveals a Scattered Distribution of Skyrin in H. annulatum, H. bupleuroides,
and H. rumeliacum

Dark glands of H. annulatum are localized on the ventral side of the leaf along with numerous leaf
hairs rather than the dorsal side (Figure 5A). As anticipated, hypericin (6) was found to accumulate in
the dark glands with higher abundances in dark glands at the leaf margins (Figure 5A). Strikingly,
the distribution and localization of skyrin (7) were entirely dissimilar to what was observed in
H. humifusum and H. tetrapterum plants. A typically scattered pattern of distribution of skyrin (7) was
observed near or around the dark glands; however, skyrin (7) did not localize in the dark glands
(Figure 5A). Interestingly, skyrin-6-O-β-glucopyranoside (9) accumulated in the dark glands similar to
its distribution observed in H. tetrapterum (Figure 6; ventral leaf surface only, not dorsal). Emodin (1)
displayed a similar pattern distribution as that of skyrin (7) (Figure 5A). It is well-known that in plants,
secondary metabolites synthesized at a particular site are distributed across different parts of the tissues
during adverse conditions such as biotic and abiotic stresses [29,30]. Hence, it might be possible that in
these Hypericum species, skyrin (7) was produced in the dark glands and later translocated into the
surrounding leaf tissues. Emodin anthrone (2) also exhibited a scattered distribution pattern around
the dark glands, similar to emodin (1) (Figures 5A and 6). Furthermore, the analogs of hypericin (6),
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namely pseudohypericin (4), protopseudohypericin (3), and protohypericin (5), were all found to
localize in the dark glands, corroborating the previous results [7,8,24] (Figure 6).Molecules 2020, 25, x 8 of 14 
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Figure 5. Selected ion images depicting the localization of skyrin (7) (m/z 537.086; [M −H]−; ±2 ppm;
experimental), hypericin (6) (m/z 503.074; [M − H]−; ±2 ppm; experimental), and emodin (1) (m/z
269.045; [M − H]−; ±2 ppm; experimental). (A) Occurrence and localization of skyrin (7), hypericin (6),
and emodin (1) mapped from the ventral and dorsal sides of H. annulatum leaves. (B) Occurrence and
localization of skyrin (7), hypericin (6), and emodin (1) mapped from the dorsal and ventral surfaces of
H. bupleuroides leaves. The assigned scale bar represents 1 mm. Black insert depicts the scanned area in
each case.
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Figure 6. Localization and distribution of compounds in H. annulatum leaves. Emodin anthrone (2)
(m/z 255.062; [M − H]−; ±2 ppm; experimental), protopseudohypericin (3) (m/z 521.082; [M − H]−;
±2 ppm; experimental), pseudohypericin (4) (m/z 519.066; [M − H]−; ±2 ppm; experimental),
protohypericin (5) (m/z 505.091; [M − H]−; ±2 ppm; experimental), skyrin-6-O-β-glucopyranoside
(9) (m/z 699.141; [M − H]−; ±2 ppm; experimental), 1,2,4,5-tetrahydroxy-7-(hydroxymethyl)-9,10-
anthraquinone (10) (m/z 301.034; [M − H]−; ±2 ppm; experimental), 1,2,4,5-tetrahydroxy-7-methyl-
9,10-anthraquinone-2-O-β-glucopyranoside (11) (m/z 447.097; [M −H]−; ±2 ppm; experimental). Assigned
scale bar represents 1 mm. Black insert depicts the scanned area in each case.

Surprisingly, HPLC-HRMS analysis of H. bupleuroides revealed the absence of all target compounds
except emodin anthrone (2) and skyrin (7). Kucharíková et al. (2016) reported the absence of emodin
(1), hypericin (6), and its analogs in H. bupleuroides [26]. Besides, our present observations were in
partial agreement with our earlier results [17] in which emodin (1) was detected, whereas emodin
anthrone (2) could not be detected. In our MALDI-HRMS imaging analyses, we were not able to detect
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intensities of compounds on the ventral side of the leaf (<LOD), except in the leaf veins where emodin
(1) was observed (Figure 5B). Whereas, when imaging from the dorsal side, skyrin (7), emodin (1),
and hypericin (6) were observed in low intensities (Figures 5B and 7).
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Figure 7. Localization and distribution of compounds in H. bupleuroides leaves. Emodin anthrone (2)
(m/z 255.062; [M − H]−; ±2 ppm; experimental), protopseudohypericin (3) (m/z 521.082; [M − H]−;
±2 ppm; experimental), pseudohypericin (4) (m/z 519.066; [M − H]−; ±2 ppm; experimental),
protohypericin (5) (m/z 505.091; [M − H]−; ±2 ppm; experimental), skyrin-6-O-β-glucopyranoside
(9) (m/z 699.141; [M − H]−; ±2 ppm; experimental), 1,2,4,5-tetrahydroxy-7-(hydroxymethyl)-9,10-
anthraquinone (10) (m/z 301.034; [M − H]−; ±2 ppm; experimental), 1,2,4,5-tetrahydroxy-7-methyl-
9,10-anthraquinone-2-O-β-glucopyranoside (11) (m/z 447.097; [M − H]−; ±2 ppm; experimental).
The assigned scale bar represents 1 mm. Black insert depicts the scanned area in each case.

The spatial distribution of compounds in H. rumeliacum was found to be typically corresponding to
that of H. annulatum. Hypericin (6) and its analogs were found to localize in the dark glands (Figures 8
and 9). Skyrin (7) and its precursor skyrin-6-O-β-glucopyranoside (9) were found to accumulate near
the dark glands, whereas the abundance of skyrin-6-O-β-glucopyranoside (9) was high in dark glands
(Figures 8 and 9). Further, emodin (1) and emodin anthrone (2) were observed around the dark glands
(Figures 8 and 9).

Molecules 2020, 25, x 9 of 14 

 

protohypericin (5) (m/z 505.091; [M − H]−; ±2 ppm; experimental), skyrin-6-O-β-glucopyranoside (9) 
(m/z 699.141; [M − H]−; ±2 ppm; experimental), 1,2,4,5-tetrahydroxy-7-(hydroxymethyl)-9,10-
anthraquinone (10) (m/z 301.034; [M − H]−; ±2 ppm; experimental), 1,2,4,5-tetrahydroxy-7-methyl-9,10-
anthraquinone-2-O-β-glucopyranoside (11) (m/z 447.097; [M − H]−; ±2 ppm; experimental). Assigned 
scale bar represents 1 mm. Black insert depicts the scanned area in each case. 

 
Figure 7. Localization and distribution of compounds in H. bupleuroides leaves. Emodin anthrone (2) 
(m/z 255.062; [M − H]−; ±2 ppm; experimental), protopseudohypericin (3) (m/z 521.082; [M − H]−; ±2 
ppm; experimental), pseudohypericin (4) (m/z 519.066; [M − H]−; ±2 ppm; experimental), 
protohypericin (5) (m/z 505.091; [M − H]−; ±2 ppm; experimental), skyrin-6-O-β-glucopyranoside (9) 
(m/z 699.141; [M − H]−; ±2 ppm; experimental), 1,2,4,5-tetrahydroxy-7-(hydroxymethyl)-9,10-
anthraquinone (10) (m/z 301.034; [M − H]−; ±2 ppm; experimental), 1,2,4,5-tetrahydroxy-7-methyl-9,10-
anthraquinone-2-O-β-glucopyranoside (11) (m/z 447.097; [M − H]−; ±2 ppm; experimental). The 
assigned scale bar represents 1 mm. Black insert depicts the scanned area in each case. 

 
Figure 8. Selected ion images depicting the localization of skyrin (7) (m/z 537.086; [M − H]−; ±2 ppm; 
experimental), hypericin (6) (m/z 503.074; [M − H]−; ±2 ppm; experimental), and emodin (1) (m/z 
269.045; [M − H]−; ±2 ppm; experimental). Occurrence and localization of skyrin (7), hypericin (6), and 
emodin (1) mapped from the ventral and dorsal surfaces of H. rumeliacum leaves. The assigned scale 
bar represents 1 mm. Black insert depicts the scanned area in each case. 

Figure 8. Selected ion images depicting the localization of skyrin (7) (m/z 537.086; [M −H]−; ±2 ppm;
experimental), hypericin (6) (m/z 503.074; [M − H]−; ±2 ppm; experimental), and emodin (1) (m/z
269.045; [M − H]−; ±2 ppm; experimental). Occurrence and localization of skyrin (7), hypericin (6),
and emodin (1) mapped from the ventral and dorsal surfaces of H. rumeliacum leaves. The assigned
scale bar represents 1 mm. Black insert depicts the scanned area in each case.
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protohypericin (5) (m/z 505.091; [M − H]−; ±2 ppm; experimental), skyrin-6-O-β-glucopyranoside
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3. Materials and Methods

3.1. Plant Material and Growth Conditions

For the experiments, 5 different in vitro grown Hypericum species in the vegetative stage of
development were used. The stock cultures of H. humifusum L., H. bupleuroides Stef., H. annulatum
Moris L., H. tetrapterum Fr., and H. rumeliacum Boiss. were derived from seeds obtained through
the Index Seminum exchange program and characterized by DNA barcoding [12, Bruňáková et al.
unpublished]. The shoot cultures were cultivated in solid MS media (Duchefa Biochemie, Haarlem,
Netherlands) containing a 4.4 g L−1 salt mixture according to Murashige and Skoog [31] with Gamborg’s
B5 vitamins [32], 30 g L−1 sucrose (CentralChem, Banská Bystrica, Slovakia), 7 g L−1 agar (REMI M. B.,
Proseč nad Nisou, Czech Republic), and 2 mg L−1 glycine with pH adjusted to 5.65 before autoclaving.
The cultures were grown at 23 ± 2 ◦C temperature under 16/8 h photoperiod at 90 µmol m−2 s−1

artificial irradiance. The subculture interval was 5 to 6 weeks.

3.2. Extraction of Metabolites From Leaves

The extraction of aboveground tissues of Hypericum species was performed according to our
previously established procedures [7].

3.3. HPLC-HRMS Instrumentation and Measurement Conditions

The extracts were analyzed using an HPLC instrument (Agilent 1200 series, Santa Clara, CA,
USA) coupled with LTQ Orbitrap XL mass spectrometer (Thermo Scientific, Waltham, MA, USA)
with HESI (Heated electrospray interface) source. The column used was Luna C18 (50 × 3 mm, 3 µm
particle size) from Phenomenex, USA, and oven temperature was maintained at 33 ◦C. Measurement
parameters were according to our previously established protocol [7], slightly modified. Briefly,
mobile phase was a gradient of water, 10 mmol L−1 ammonium acetate, and 0.1% formic acid (A)
and acetonitrile and 10% methanol (B); the gradient method was as follows: 0 min, 75% A, 25% B;
0.5 min, 75% A, 25% B; 3 min, 45% A, 55% B; 5 min, 0% A, 100% B; 9 min, 0% A, 100% B; 9.1 min, 75%
A, 25% B; 13 min, 75% A, 25% B; 14 min, 75% A, 25% B. The flow rate was maintained at 0.6 mL/min.
The mass spectrometer was run in negative mode with a mass range of m/z 110–800 at a resolution
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of 60,000 at m/z 200. For the HRMSn measurements, collision-induced dissociation was kept at 35 eV.
MS2 measurements of skyrin (7) ([M −H]− were executed at m/z 537.08 ± 0.5 amu with a scan range
of m/z 450–600, higher-energy collisional dissociation (HCD) with 45 eV, and a resolution of 35,000
at m/z 200. The analyses were performed using Xcalibur software v. 2.2 SP1.48. (Thermo Scientific,
Bremen, Germany). The detection and identification of the compounds were performed according to
our previously established method [33].

3.4. Sample Preparation for MALDI-HRMS Imaging

Fresh leaves were harvested from healthy plants and subjected to sample preparation. In each
case, the second set of 2 leaves from the shoot apex was harvested and used for analysis from both the
ventral and dorsal sides. Leaves were fixed on glass slides using adhesive tapes. The samples were
sprayed uniformly with matrix HCCA (alpha-cyano-4-hydroxycinnamic acid; 7 mg/mL) prepared in a
1:1 ratio of acetonitrile and distilled water with 0.1% FA. A SMALDI Prep spray device (TransMIT
GmbH, Giessen, Germany) was utilized for matrix spraying. Before proceeding with MALDI-HRMS
imaging, a photographic image was taken for each sample using a specialized digital microscope
(VHX-5000, Keyence Deutschland GMBH, Neu-Isenburg, Germany) to evaluate the measured area and
record the optical image.

3.5. MALDI-HRMS Imaging

MALDI-HRMS imaging experiments of the leaf samples were carried out with an atmospheric
pressure scanning microprobe matrix-assisted laser desorption/ionization source (AP-SMALDI;
TransMIT GmbH, Giessen, Germany) coupled with a Q-Exactive high-resolution mass spectrometer
(Thermo Scientific Inc., Bremen, Germany). The parameters used were according to our previously
established protocol [7], with slight modifications. A 60 Hz pulsed N2 laser MNL 100 series (LTB
Lasertechnik GmbH, Berlin, Germany) was used for the UV beam generation at 337.1 nm. The resolution
of measurement was adjusted to 10–15µm, and measurements were made in full scan negative ion mode
at m/z 100–800 mass range with an internal lock mass correction utilizing m/z 333.08808, corresponding
to the HCCA matrix ion signal [2M−H−CO2]−. Furthermore, measurements were performed with
a mass resolution of 140,000 at m/z 200, and the source spray voltage was set at 3000 V. For HRMS2

measurements in the imaging mode, the isolation width of m/z 1.5 and collision energy of 50 eV was
used. HRMS2 measurements for the skyrin (7) were recorded within a mass range of m/z 500–800 in
the negative-ion mode. Processing of data and mapping of mass pixels of the target compounds was
done with the software package ImageQuest (v. 1.1.0; Thermo Fisher Scientific, Bremen, Germany).
Ion images were generated with a bin width of ±2.0 ppm for full scans. The mass pixels are shown
color-coded (Figures 2–9), starting with blue, indicating lower intensities and red, indicating the
highest intensities.

4. Conclusions and Outlook

Herein we report for the first time the spatial distribution of skyrin (7) in leaves of
five Hypericum species using MALDI-HRMS imaging. We also mapped the localization of its
precursors, namely, skyrin-6-O-β-glucopyranoside (9), 1,2,4,5-tetrahydroxy-7-methyl-9,10-anthraquinone-
2-O-β-glucopyranoside (11), and 1,2,4,5-tetrahydroxy-7-(hydroxymethyl)-9,10-anthraquinone (10).
In our HPLC-HRMS and MALDI-HRMS imaging analyses, we could not detect oxyskyrin-6-O-β-
glucopyranoside (8) (<LOD), probably due to the unstable behavior of the compound or that it is a
reactive intermediate in the biosynthetic pathway of hypericin (6). In the leaves of H. humifusum and
H. tetrapterum plants, skyrin (7) and its precursors are localized in the dark glands along with hypericin
(6). In H. annulatum, H. bupleuroides, and H. rumeliacum, skyrin (7) is distributed around the dark glands
similar to emodin (1), whereas its precursor skyrin-6-O-β-glucopyranoside (9), interestingly, accumulates
in the dark glands. Antimicrobial activities of skyrin (7) further reinforce the fact that the distribution of
skyrin (7) across tissues for combating the pathogen effects is an ecologically-primed possibility [19,20].
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Besides, the present results lend a scientific handle to support further that skyrin (7) is an immediate
precursor of hypericin (6) (Figure 1) due to their typical colocalization in the dark glands. Emodin (1)
accumulation in all Hypericum species irrespective of hypericin (6) production supports the possible role
of skyrin (7) in hypericin (6) biosynthesis.

Skyrin (7) and its precursors are not abundantly available in plants, but these compounds
are produced by different classes of endophytic filamentous fungi [34]. It could be possible that
Hypericum plant-associated endophytes produce these metabolites in planta and contribute to hypericin
production, given that endophytes are known to produce secondary metabolites found in their host
plants [23,35]. Besides, native endophytes might have acquired the skyrin (7) producing gene machinery
through horizontal gene transfer in the course of co-evolution with Hypericum host plants. It would be
interesting to identify candidate genes responsible for converting skyrin (7) to hypericin (6), and their
biological validation would bring more light into understanding the final steps in the biosynthetic
pathway of hypericin (6).

Supplementary Materials: The followings are available online. Table S1. The phytochemical composition of
leaves of the five Hypericum species under study by HPLC-HRMS.
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7. Kusari, S.; Sezgin, S.; Nigutová, K.; Čellárová, E.; Spiteller, M. Spatial chemo-profiling of hypericin and
related phytochemicals in Hypericum species using MALDI-HRMS imaging. Anal. Bioanal. Chem. 2015, 407,
4779–4791. [CrossRef]

8. Hölscher, D.; Shroff, R.; Knop, K.; Gottschaldt, M.; Crecelius, A.; Schneider, B.; Heckel, D.G.; Schubert, U.S.;
Svatos, A. Matrix-free UV-laser desorption/ionization (LDI) mass spectrometric imaging at the single-cell
level: Distribution of secondary metabolites of Arabidopsis thaliana and Hypericum species. Plant J. 2009, 60,
907–918. [CrossRef]

http://dx.doi.org/10.1016/j.molp.2015.03.012
http://www.ncbi.nlm.nih.gov/pubmed/25840349
http://dx.doi.org/10.1021/acs.jafc.5b01173
http://www.ncbi.nlm.nih.gov/pubmed/26281949
http://www.ncbi.nlm.nih.gov/pubmed/22662019
http://dx.doi.org/10.1155/2017/2865610
http://dx.doi.org/10.3389/fpls.2016.01039
http://dx.doi.org/10.1007/s00216-015-8682-6
http://dx.doi.org/10.1111/j.1365-313X.2009.04012.x


Molecules 2020, 25, 3964 13 of 14

9. Rizzo, P.; Altschmied, L.; Stark, P.; Rutten, T.; Gündel, A.; Scharfenberg, S.; Franke, K.; Bäumlein, H.;
Wessjohann, L.; Koch, M.; et al. Discovery of key regulators of dark gland development and hypericin
biosynthesis in St. John’s Wort (Hypericum perforatum). Plant Biotechnol. J. 2019, 17, 2299–2312. [CrossRef]

10. Jendželovská, Z.; Jendželovský, R.; Kuchárová, B.; Fedoročko, P. Hypericin in the light and in the dark:
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26. Kucharíková, A.; Kimáková, K.; Janfelt, C.; Čellárová, E. Interspecific variation in localization of hypericins
and phloroglucinols in the genus Hypericum as revealed by desorption electrospray ionization mass
spectrometry imaging. Physiol. Plant. 2016, 157, 2–12. [CrossRef]

27. Zobayed, S.M.; Afreen, F.; Goto, E.; Kozai, T. Plant-environment interactions: Accumulation of hypericin in
dark glands of Hypericum perforatum. Ann. Bot. 2006, 98, 793–804. [CrossRef]

28. Soelberg, J.; Jørgensen, L.B.; Jäger, A.K. Hyperforin accumulates in the translucent glands of Hypericum perforatum.
Ann. Bot. 2007, 99, 1097–1100, reprinted in Ann. Bot. (Lond.) 2007, 100, 679. [CrossRef]

29. Zaynab, M.; Fatima, M.; Abbas, S.; Sharif, Y.; Umair, M.; Zafar, M.H.; Bahadar, K. Role of secondary
metabolites in plant defense against pathogens. Microb. Pathog. 2018, 124, 198–202. [CrossRef]

http://dx.doi.org/10.1111/pbi.13141
http://dx.doi.org/10.3389/fpls.2016.00560
http://dx.doi.org/10.1074/jbc.M301681200
http://www.ncbi.nlm.nih.gov/pubmed/12799379
http://dx.doi.org/10.1071/FP10144
http://www.ncbi.nlm.nih.gov/pubmed/32480860
http://dx.doi.org/10.1007/s00299-006-0240-4
http://dx.doi.org/10.3389/fpls.2016.00526
http://www.ncbi.nlm.nih.gov/pubmed/27148343
http://dx.doi.org/10.1016/j.jsb.2009.10.008
http://dx.doi.org/10.3389/fpls.2016.00668
http://dx.doi.org/10.1007/s00216-018-1384-0
http://dx.doi.org/10.1007/s10295-006-0126-z
http://dx.doi.org/10.1016/j.jbiotec.2017.06.410
http://dx.doi.org/10.1021/np070669k
http://www.ncbi.nlm.nih.gov/pubmed/18220354
http://dx.doi.org/10.1371/journal.pone.0217060
http://www.ncbi.nlm.nih.gov/pubmed/31112560
http://dx.doi.org/10.1055/a-1130-4703
http://dx.doi.org/10.1016/j.plaphy.2018.12.024
http://www.ncbi.nlm.nih.gov/pubmed/30612057
http://dx.doi.org/10.3389/fpls.2016.01616
http://dx.doi.org/10.1111/ppl.12422
http://dx.doi.org/10.1093/aob/mcl169
http://dx.doi.org/10.1093/aob/mcm057
http://dx.doi.org/10.1016/j.micpath.2018.08.034


Molecules 2020, 25, 3964 14 of 14

30. Izhaki, I. Emodin—A secondary metabolite with multiple ecological functions in higher plants. New Phytol.
2002, 155, 205–217. [CrossRef]

31. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture.
Physiol. Plantarum. 1962, 15, 473–497. [CrossRef]

32. Gamborg, O.L.; Miller, R.A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells.
Exp. Cell Res. 1968, 50, 151–158. [CrossRef]

33. Nigutová, K.; Kusari, S.; Sezgin, S.; Petijová, L.; Henzelyová, J.; Bálintová, M.; Spiteller, M.; Čellárová, E.
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