
micromachines

Article

Comparative Study of Popular Deep Learning Models for
Machining Roughness Classification Using Sound and
Force Signals

Binayak Bhandari

����������
�������

Citation: Bhandari, B. Comparative

Study of Popular Deep Learning

Models for Machining Roughness

Classification Using Sound and Force

Signals. Micromachines 2021, 12, 1484.

https://doi.org/10.3390/mi12121484

Academic Editor: Stephen

Edward Saddow

Received: 31 October 2021

Accepted: 23 November 2021

Published: 29 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Railroad Engineering & Transport Management, Woosong University, Daejeon 300718, Korea;
binayak@sis.ac.kr

Abstract: This study compared popular Deep Learning (DL) architectures to classify machining
surface roughness using sound and force data. The DL architectures considered in this study include
Multi-Layer Perceptron (MLP), Convolution Neural Network (CNN), Long Short-Term Memory
(LSTM), and transformer. The classification was performed on the sound and force data generated
during machining aluminum sheets for different levels of spindle speed, feed rate, depth of cut, and
end-mill diameter, and it was trained on 30 s machining data (10–40 s) of the machining experiments.
Since a raw audio waveform is seldom used in DL models, Mel-Spectrogram and Mel Frequency
Cepstral Coefficients (MFCCs) audio feature extraction techniques were used in the DL models.
The results of DL models were compared for the training–validation accuracy, training epochs, and
training parameters of each model. Although the roughness classification by all the DL models was
satisfactory (except for CNN with Mel-Spectrogram), the transformer-based modes had the highest
training (>96%) and validation accuracies (≈90%). The CNN model with Mel-Spectrogram exhibited
the worst training and inference accuracy, which is influenced by limited training data. Confusion
matrices were plotted to observe the classification accuracy visually. The confusion matrices showed
that the transformer model trained on Mel-Spectrogram and the transformer model trained on
MFCCs correctly predicted 366 (or 91.5%) and 371 (or 92.7%) out of 400 test samples. This study also
highlights the suitability and superiority of the transformer model for time series sound and force
data and over other DL models.

Keywords: sound feature extraction; precision machining; Deep Learning; CNN; LSTM; MLP;
attention mechanisms; Smart Factory; classification; confusion matrix

1. Introduction

The Fourth Industrial Revolution, or Industry 4.0, represents a paradigm shift in the
manufacturing industries through the introduction of intelligent manufacturing systems by
integrating the Internet of Things (IoT), big data, and artificial intelligence (AI). Industries
with such intelligent systems are called ‘smart factories’ [1–3]. The concept of the Smart
Factory (SF) has been coined to define intelligent and digitized manufacturing. Digitization,
intelligence, integration, the generation of engineering knowledge, and connectivity to Man,
Machine, Material, Method, and Environment (4M&1E) make up the foundation of a Smart
Factory [4]. Although large enterprises often implement advanced technology quickly in
order to improve productivity and quality with the motive to maintain their dominance in
the global market, small and medium-sized enterprises (SMEs) have difficulty adopting
smart technologies because of financial and technical constraints.

Milling is one of the standard machining methods widely adopted for machining
metallic materials by precision manufacturing companies. Milling operation makes use
of cutters with specific machining parameters to remove material from the workpiece
while obtaining dimensional accuracy and high surface quality. In milled products, surface
roughness is the crucial quality measurement often employed by an off-line method. Hence,

Micromachines 2021, 12, 1484. https://doi.org/10.3390/mi12121484 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://doi.org/10.3390/mi12121484
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12121484
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi12121484?type=check_update&version=2

Micromachines 2021, 12, 1484 2 of 18

modern machining enterprises utilizes Computer Numerical Control (CNC) machines to
produce workpieces with fine details and tight tolerance. Machined parts with surface
roughness within the threshold limit are accepted, but those outside the limit are discarded.
The surface roughness of machined parts is measured through a profiling technique, using
either a stylus or contactless laser-based methods. Most SMEs make use of the former
technique because it is cheaper, simpler, and often more accurate. However, the stylus
method is infamous for causing scratches on the sample surface because of measuring
pressure, as shown in Figure 1.

Micromachines 2021, 12, x FOR PEER REVIEW 2 of 18

obtaining dimensional accuracy and high surface quality. In milled products, surface
roughness is the crucial quality measurement often employed by an off-line method.
Hence, modern machining enterprises utilizes Computer Numerical Control (CNC) ma-
chines to produce workpieces with fine details and tight tolerance. Machined parts with
surface roughness within the threshold limit are accepted, but those outside the limit are
discarded. The surface roughness of machined parts is measured through a profiling tech-
nique, using either a stylus or contactless laser-based methods. Most SMEs make use of
the former technique because it is cheaper, simpler, and often more accurate. However,
the stylus method is infamous for causing scratches on the sample surface because of
measuring pressure, as shown in Figure 1.

(a) (b) (c)

Figure 1. Roughness measurement: (a) stylus surface assessment illustration, (b) surface roughness tester in action, and
(c) visible scratch after surface roughness measured using a stylus.

Additionally, it is well known that the quality of a surface in end-milling operation
depends on factors such as the spindle speed, feed rate, depth-of-cut, machining time,
lubrication, cooling methods, and the work materials. The dimensional accuracy and sur-
face roughness are the two most significant machining quality characteristics. To achieve
a fine machining surface finish, it is essential to set the process parameters before machin-
ing operations [5]. Historically, engineers and scientists have attempted to maximize ma-
terial removal and tool life while, at the same time, to minimize machining time in order
to obtain the best surface finish. As recently as 1959, Olofson [4] reported that a short tool
life and low milling production rate could be minimized by a proper selection of feeds,
speeds, depth-of-cut, and rigidity of the machine, tool, and workpiece. The findings also
showed that machining time, lubrication, cooling methods, and work materials signifi-
cantly reduce surface roughness.

2. Literature Review
Over the years, several researchers have investigated, using both analytical and exper-

imental methods, the contribution of various factors in the milling surface roughness. Baek
et al. [5] developed a mathematical model for surface roughness prediction in a face-milling
operation by considering the static and dynamic components of the cutting process and ver-
ified surface roughness prediction through cutting experiments. Miko and Nowakowski [6]
developed a generalized mathematical model of roughness formation for round-nose multi-
cutter tools. They reported that tool and workpiece vibration, the cutter run-off, and chips
adversely affected the generation of the fine machining surfaces. Agustina et al. [7] per-
formed robot-assisted polishing experiments and reported that the time and frequency do-
mains features of force signal were valuable in estimating the surface roughness. Versaci et
al. [8] elaborated on the computing with words (CW) and fuzzy similarity (FS) for the clas-
sification of defectiveness of ultrasonic nondestructive evaluation.

Other studies have used Taguchi, fuzzy logic, response surface, and machine learn-
ing [9,10] for predicting the machining surface roughness of machine tools. Pimenov et al.
[11] used random forest (RF), multilayer perceptron (MLP), regression trees, and radial-

Traversing direction

Evaluation Length

Stylus

Rmax

Ve
rti

ca
l m

ot
io

n
of

 s
ty

lu
s

Work piece

Figure 1. Roughness measurement: (a) stylus surface assessment illustration, (b) surface roughness tester in action, and
(c) visible scratch after surface roughness measured using a stylus.

Additionally, it is well known that the quality of a surface in end-milling operation
depends on factors such as the spindle speed, feed rate, depth-of-cut, machining time,
lubrication, cooling methods, and the work materials. The dimensional accuracy and
surface roughness are the two most significant machining quality characteristics. To achieve
a fine machining surface finish, it is essential to set the process parameters before machining
operations [5]. Historically, engineers and scientists have attempted to maximize material
removal and tool life while, at the same time, to minimize machining time in order to
obtain the best surface finish. As recently as 1959, Olofson [4] reported that a short tool life
and low milling production rate could be minimized by a proper selection of feeds, speeds,
depth-of-cut, and rigidity of the machine, tool, and workpiece. The findings also showed
that machining time, lubrication, cooling methods, and work materials significantly reduce
surface roughness.

2. Literature Review

Over the years, several researchers have investigated, using both analytical and
experimental methods, the contribution of various factors in the milling surface roughness.
Baek et al. [5] developed a mathematical model for surface roughness prediction in a
face-milling operation by considering the static and dynamic components of the cutting
process and verified surface roughness prediction through cutting experiments. Miko and
Nowakowski [6] developed a generalized mathematical model of roughness formation
for round-nose multi-cutter tools. They reported that tool and workpiece vibration, the
cutter run-off, and chips adversely affected the generation of the fine machining surfaces.
Agustina et al. [7] performed robot-assisted polishing experiments and reported that the
time and frequency domains features of force signal were valuable in estimating the surface
roughness. Versaci et al. [8] elaborated on the computing with words (CW) and fuzzy
similarity (FS) for the classification of defectiveness of ultrasonic nondestructive evaluation.

Other studies have used Taguchi, fuzzy logic, response surface, and machine learn-
ing [9,10] for predicting the machining surface roughness of machine tools. Pimenov et al. [11]
used random forest (RF), multilayer perceptron (MLP), regression trees, and radial-based
function for the real-time prediction of surface roughness based on the cutting power,
machining time, and tool wear data. Yeganefar et al. [12] adopted Support Vector Machine

Micromachines 2021, 12, 1484 3 of 18

(SVM) to predict optimal surface roughness and cutting power from a number of cutting
parameters for machining aluminum alloys.

Researchers have recently been using state-of-the-art Deep Learning (DL) for surface
roughness prediction. The performance of ML and DL algorithms depends on the fea-
tures on which the training and testing are done [13]. Lin et al. [14] experimented with
three models: Fast Fourier Transform-Deep Neural Networks (FFT-DNN), Fast-Fourier
Transform Long Short-Term Memory Network (FFT-LSTM), and 1D convolutional neural
network (1D-CNN). Their result suggested that FFT-LSTM models performed better at
higher Ra values, while 1D-CNN was better at predicting lower Ra values. Bhandari and
Park [2] proposed a system for evaluating surface roughness employing the distribution
of shade on the surface of an object using hybrid CNN-LSTM neural networks. Similarly,
Pan et al. [15] used the DL model to establish a relation between the vibration signal and
surface roughness.

The bulk of the published papers are based on the energy consumption, machining
parameters, vibration parameters, or the force data to predict surface roughness. Although
Deshpande et al. [16] addressed the estimation of surface roughness using cutting parame-
ters and cutting force, sound, and vibration in turning operation through a simple regres-
sion model, their work focused primarily on finding the coefficient of determination (R2).

The present study builds upon the author’s previous work [17], where a transformer-
based Deep Learning model was used for predicting roughness classification. However, it
lacked benchmarking with other popular deep-learning architectures. This study fills this
knowledge gap by benchmarking the legacy DL architectures and the relative new trans-
former architecture in terms of model parameter size, computational time, and prediction
accuracy. The current study is novel in two ways. First, cutting force and machining sound
signals were used with cutting-edge DL architectures for roughness classification. Second,
four state-of-the-art DL architectures were benchmarked, and classification accuracy was
compared for identical training and validation data.

The remainder of the paper is organized as follows: in Section 3, the details of the
workpiece material, machines, and experiment design are provided. Cutting force and
machining sound data acquisition and data processing are explained in Section 4, which
is followed by the presentation of a basic proposed framework of Deep Learning models
in Section 5. Section 6 provides details on the model training. The evaluation criteria are
defined in Section 7, including results and comparisons, which are followed by conclusions
in Section 8. Finally, Section 9 discusses the limitations of the study and future course.

3. Machines, Material, and Experimental Design

Aluminum is not only the most abundant metallic element in Earth’s crust, it is also
the most widely used nonferrous metal. Notable uses of aluminum include transportation,
engineering, construction, and packaging. Fine surface quality is required for aluminum
parts to function as desired. In this study, A3003 aluminum plates of 4 mm thickness were
used as workpiece materials, since aluminum A3003 is widely used in sheet metal, chemical
equipment, and automotive parts because of its good corrosion resistance. Manganese is
the primary element in the 3XXX alloy series, enhancing its tensile strength and low-cycle
fatigue resistance.

The end-milling operation was conducted using a DAVID 3020 CNC machine from
David Motion Technology. Three flutes of square-end mill of ∅1–∅5 were used in the ex-
periment. An Audio Technica AT2020+ microphone and Cornell University Raven Lite [17]
were used for recording the machining sound. Similarly, a capacitive type fore/torque
sensor RFT60-HA01 from Robotus Inc. was used for measuring the forces. The end milling
experimental setup is shown in Figure 2. The samples of the end-mill condition and
workpiece are shown in Figure 3.

Micromachines 2021, 12, 1484 4 of 18Micromachines 2021, 12, x FOR PEER REVIEW 4 of 18

Figure 2. Experimental setup for end-milling operation.

Figure 3. Samples images of end-mill and workpiece after machining experiments (for ∅2 mm end mill).

Fractional matrix design of experiment (DOE) was used. The details of DOE are pro-
vided in [16] and not elaborated here, as the present study extends the previous study.

As shown in Figure 4, the surface of the machined workpiece has a unique pattern of
continuous ridge-and-valley, which is known as surface roughness. For each machining
experiment, the surface roughness was measured using the Mitutoyo SJ-210 surface
roughness test instrument. Surface roughness is a measure of the total spaced surface ir-
regularities [18]. By convention, 2D roughness parameters are denoted by (capital) R,
which is followed by additional subscript characters such as Ra, Rq, and Rz. The most
widely used surface measurement parameter is Ra, which is the arithmetic average of the
roughness profile. The formula for calculating Ra is given in Equation (1).

𝑅𝑎 = 1𝐿 න|𝑧(𝑥)𝑑𝑥|௅
଴ (1)

where L is the evaluation length, and Z(x) is the profile height function. Each experiment
was classified into four classes based on the surface roughness value (Ra), as shown in Table
1.

Figure 2. Experimental setup for end-milling operation.

Micromachines 2021, 12, x FOR PEER REVIEW 4 of 18

Figure 2. Experimental setup for end-milling operation.

Figure 3. Samples images of end-mill and workpiece after machining experiments (for ∅2 mm end mill).

Fractional matrix design of experiment (DOE) was used. The details of DOE are pro-
vided in [16] and not elaborated here, as the present study extends the previous study.

As shown in Figure 4, the surface of the machined workpiece has a unique pattern of
continuous ridge-and-valley, which is known as surface roughness. For each machining
experiment, the surface roughness was measured using the Mitutoyo SJ-210 surface
roughness test instrument. Surface roughness is a measure of the total spaced surface ir-
regularities [18]. By convention, 2D roughness parameters are denoted by (capital) R,
which is followed by additional subscript characters such as Ra, Rq, and Rz. The most
widely used surface measurement parameter is Ra, which is the arithmetic average of the
roughness profile. The formula for calculating Ra is given in Equation (1).

𝑅𝑎 = 1𝐿 න|𝑧(𝑥)𝑑𝑥|௅
଴ (1)

where L is the evaluation length, and Z(x) is the profile height function. Each experiment
was classified into four classes based on the surface roughness value (Ra), as shown in Table
1.

Figure 3. Samples images of end-mill and workpiece after machining experiments (for ∅2 mm end mill).

Fractional matrix design of experiment (DOE) was used. The details of DOE are
provided in [16] and not elaborated here, as the present study extends the previous study.

As shown in Figure 4, the surface of the machined workpiece has a unique pattern
of continuous ridge-and-valley, which is known as surface roughness. For each machin-
ing experiment, the surface roughness was measured using the Mitutoyo SJ-210 surface
roughness test instrument. Surface roughness is a measure of the total spaced surface
irregularities [18]. By convention, 2D roughness parameters are denoted by (capital) R,
which is followed by additional subscript characters such as Ra, Rq, and Rz. The most
widely used surface measurement parameter is Ra, which is the arithmetic average of the
roughness profile. The formula for calculating Ra is given in Equation (1).

Ra =
1
L

L∫
0

|z(x)dx| (1)

Micromachines 2021, 12, 1484 5 of 18

where L is the evaluation length, and Z(x) is the profile height function. Each experiment
was classified into four classes based on the surface roughness value (Ra), as shown in
Table 1.

Micromachines 2021, 12, x FOR PEER REVIEW 5 of 18

Class 1 Class 2 Class 3 Class 4

Figure 4. Sample of surface roughness of four different classes of roughness captured by the digital microscope.

Table 1. Machined surface categories based on the Ra values.

Class Ra Range (μm) ISO Grade Number
Class 1 0–1 N1–N6
Class 2 1–2 N7
Class 3 2–4 N8
Class 4 >4 N9+

4. Data Acquisition and Preprocessing
4.1. Cutting Force Data

The machining experiments varied from 1 to 5 min. In addition to the experiment
length, the force and sound data included pre- and post-experiment data. The data were
cleaned to remove excess data by trimming pre- and post-experiment data. In addition,
the force data included the clamping force exerted by the jig on the workpiece and the
machining force. The clamping force data before starting the experiment was taken as a
reference. Since the force sensor measured force in the x, y, and z-directions, ∑ 𝐹 = 𝐹௫ + 𝐹௬ + 𝐹௭ was compared with arbitrary value k, i.e., ∑ 𝐹 ൐ 𝑘, where the value of
k was found empirically. Force data meeting this condition were marked as the machining
experiment start point (0 s), while the machine end time was calculated based on the sam-
pling frequency of the sensors. Figure 5a shows the x-component of force data performed
for 1 min with pre and post-experiment data, and Figure 5b shows the x-component of
force data cropped for 30 s.

4.2. Machining Sound Data
Machining sound was recorded in wav files at a 44.1 kHz sample rate and a 1411 kbps

bit rate. Similar to the force data extraction process explained above, the sound data was also
extracted from the experimental data using a similar process. Figure 5a shows the complete
two-minute experimental sound waveform signal, and Figure 5b shows the cropped sound
signal (30 s).

(a) (b)

Figure 5. (a) A complete force data (x-axis) for the 1-min long experiment and (b) A cropped force data (10–40 s) of the
experiment.

Figure 4. Sample of surface roughness of four different classes of roughness captured by the digital microscope.

Table 1. Machined surface categories based on the Ra values.

Class Ra Range (µm) ISO Grade Number

Class 1 0–1 N1–N6
Class 2 1–2 N7
Class 3 2–4 N8
Class 4 >4 N9+

4. Data Acquisition and Preprocessing
4.1. Cutting Force Data

The machining experiments varied from 1 to 5 min. In addition to the experiment
length, the force and sound data included pre- and post-experiment data. The data were
cleaned to remove excess data by trimming pre- and post-experiment data. In addition, the
force data included the clamping force exerted by the jig on the workpiece and the machin-
ing force. The clamping force data before starting the experiment was taken as a reference.
Since the force sensor measured force in the x, y, and z-directions, ∑ F = Fx + Fy + Fz was
compared with arbitrary value k, i.e., ∑ F > k, where the value of k was found empirically.
Force data meeting this condition were marked as the machining experiment start point
(0 s), while the machine end time was calculated based on the sampling frequency of the
sensors. Figure 5a shows the x-component of force data performed for 1 min with pre and
post-experiment data, and Figure 5b shows the x-component of force data cropped for 30 s.

Micromachines 2021, 12, x FOR PEER REVIEW 5 of 18

Class 1 Class 2 Class 3 Class 4

Figure 4. Sample of surface roughness of four different classes of roughness captured by the digital microscope.

Table 1. Machined surface categories based on the Ra values.

Class Ra Range (μm) ISO Grade Number
Class 1 0–1 N1–N6
Class 2 1–2 N7
Class 3 2–4 N8
Class 4 >4 N9+

4. Data Acquisition and Preprocessing
4.1. Cutting Force Data

The machining experiments varied from 1 to 5 min. In addition to the experiment
length, the force and sound data included pre- and post-experiment data. The data were
cleaned to remove excess data by trimming pre- and post-experiment data. In addition,
the force data included the clamping force exerted by the jig on the workpiece and the
machining force. The clamping force data before starting the experiment was taken as a
reference. Since the force sensor measured force in the x, y, and z-directions, ∑ 𝐹 = 𝐹௫ + 𝐹௬ + 𝐹௭ was compared with arbitrary value k, i.e., ∑ 𝐹 ൐ 𝑘, where the value of
k was found empirically. Force data meeting this condition were marked as the machining
experiment start point (0 s), while the machine end time was calculated based on the sam-
pling frequency of the sensors. Figure 5a shows the x-component of force data performed
for 1 min with pre and post-experiment data, and Figure 5b shows the x-component of
force data cropped for 30 s.

4.2. Machining Sound Data
Machining sound was recorded in wav files at a 44.1 kHz sample rate and a 1411 kbps

bit rate. Similar to the force data extraction process explained above, the sound data was also
extracted from the experimental data using a similar process. Figure 5a shows the complete
two-minute experimental sound waveform signal, and Figure 5b shows the cropped sound
signal (30 s).

(a) (b)

Figure 5. (a) A complete force data (x-axis) for the 1-min long experiment and (b) A cropped force data (10–40 s) of the
experiment.

Figure 5. (a) A complete force data (x-axis) for the 1-min long experiment and (b) A cropped force data (10–40 s) of
the experiment.

Micromachines 2021, 12, 1484 6 of 18

4.2. Machining Sound Data

Machining sound was recorded in wav files at a 44.1 kHz sample rate and a 1411 kbps
bit rate. Similar to the force data extraction process explained above, the sound data was
also extracted from the experimental data using a similar process. Figure 5a shows the
complete two-minute experimental sound waveform signal, and Figure 5b shows the
cropped sound signal (30 s).

4.3. Sound Data Preprocessing

Although the numerical force data can be directly used for DL models, DL models
rarely take raw audio directly as input [19] because researchers still doubt whether NN can
effectively extract features from the raw input audio signal [20]. The audio is essentially a
time-series signal, which is categorized into speech, music, and environmental sounds. The
machining sound is an environmental sound that is spread over the whole audible range.
Thus, an audio signal needs to go through the feature extraction process, highlighting
a signal’s most dominating and discriminating characteristics in a very compact form.
The quality of feature extraction decides the DL model performance. The audio features
extraction can be sub-categorized into the time domain, the frequency domain, the joint
time-frequency domain, and in-depth features.

Time-domain and frequency-domain visualization of audio signals help analyze a
few key characteristics of a signal. This information is suitable to predict and analyze
similar short signals that have static properties over time. However, with the advent of
Deep Learning, deep features are extensively used for analyzing non-stationary sound
data employing the windowing technique. Instead of analyzing entire sound data at once,
short chunks of a quasi-stationary signal are analyzed with a sliding window function that
is zero everywhere except for the region of interest. The window slides over time from
the leftmost corner toward the right corner of the plot. The resultant windowed signal
is a subset of the original signal passed through the window; the signal is zero for the
remainder of the time. This technique is used for noise cancellation, silence reduction, and
normalization and is preferred for speaker recognition, music genre classification, and
audio analysis.

Generally, when working with audio signals, audio data are trimmed when they are
longer while audio clips are padded if they are shorter, to make all the samples the same.
Thus, it is easier to work with audio signals with the exact durations; in this study, all the
audio signals are exactly 30 s long. Each sound signal was sliced into ten segments (3 s each)
to increase the number of samples in each class. Each segment was further sliced into short
frames (20–40 ms), assuming that the sound signal does not change over this short time,
which is a process widely used in Deep Learning applications. The Python-based audio
analysis library ‘librosa’ was used for sound data preprocessing.

When Fast Fourier Transform (FFT) is performed on the audio signal windowed
segment, it is called Short-Time Fourier transform (STFT). STFT generates a spectrogram
that captures both the time and frequency contents in the signal. To match with the human
auditory system, the spectrogram is converted to Mel-scale (from linear scale) using a
Mel-scale filter bank, and the generated plot is called a Mel-Spectrogram. The relation
between frequency and Mel-frequency is given in Equation (2).

M(f) = 1125 ln
(

1 +
f

700

)
= 2595 log10

(
1 +

f
100

)
(2)

Mel-Spectrograms work well for most audio Deep Learning applications; however,
other audio feature extraction methods known as Mel-frequency Cepstral Coefficients
(MFCCs) finds application in Automatic Speech Recognition and DL [21]. MFCCs are
derived from the cepstral representation of an audio clip based on the discrete cosine
transform (DCT) to a Mel-spectrum. In MFCCs, the frequency bands are equally spaced on
Mel-scale, which mimics the human auditory system very closely, making MFCCs a key
feature in various audio signal processing applications. Another key feature of MFCC is

Micromachines 2021, 12, 1484 7 of 18

that it has a smaller set of features, capturing the essential quality of the audio signal. The
sample of the Mel-Spectrogram and MFCC of machining sound is shown in Figure 6.

Micromachines 2021, 12, x FOR PEER REVIEW 7 of 18

(a) (b)

Figure 6. (a) A complete sound data of a machining experiment and (b) a clipped sound data (10–40 s) used for DL training.

4.4. Force Data Preprocessing
Force data were logged on the txt file at 200 Hz, one line per sequence for each ex-

periment. Although the force sensor logged force (N) and moment (Nm) data, only force
data were used in this study. Although the trimmed force and sound data were each 30 s
long, a sampling frequency discrepancy existed between the force and the audio sensors.

Force data preprocessing followed audio data feature extraction. First, the shape of
the MFCC and Mel-Spectrogram was determined and stored in memory. Second, the force
data were loaded in the memory, and the length of the force data was determined. Third,
the force data length was divided by the length of the MFCC and converted to the nearest
integer value, which was used as an index to extract the force data. Finally, the minor
discrepancy between the sound and force data was resolved by randomly deleting the
excess force data from the force array. The graphical representation of force and sound
data processing is shown in Figure 7a,b. The details of sound and force data pre-pro-
cessing is shown in Figure 8.

(a) (b)

Figure 7. Sample plot of (a) Mel-Spectrogram and (b) MFCCs of sound data.

Figure 6. (a) A complete sound data of a machining experiment and (b) a clipped sound data (10–40 s) used for DL training.

4.4. Force Data Preprocessing

Force data were logged on the txt file at 200 Hz, one line per sequence for each
experiment. Although the force sensor logged force (N) and moment (Nm) data, only force
data were used in this study. Although the trimmed force and sound data were each 30 s
long, a sampling frequency discrepancy existed between the force and the audio sensors.

Force data preprocessing followed audio data feature extraction. First, the shape of
the MFCC and Mel-Spectrogram was determined and stored in memory. Second, the force
data were loaded in the memory, and the length of the force data was determined. Third,
the force data length was divided by the length of the MFCC and converted to the nearest
integer value, which was used as an index to extract the force data. Finally, the minor
discrepancy between the sound and force data was resolved by randomly deleting the
excess force data from the force array. The graphical representation of force and sound
data processing is shown in Figure 7a,b. The details of sound and force data pre-processing
is shown in Figure 8.

Micromachines 2021, 12, x FOR PEER REVIEW 7 of 18

(a) (b)

Figure 6. (a) A complete sound data of a machining experiment and (b) a clipped sound data (10–40 s) used for DL training.

4.4. Force Data Preprocessing
Force data were logged on the txt file at 200 Hz, one line per sequence for each ex-

periment. Although the force sensor logged force (N) and moment (Nm) data, only force
data were used in this study. Although the trimmed force and sound data were each 30 s
long, a sampling frequency discrepancy existed between the force and the audio sensors.

Force data preprocessing followed audio data feature extraction. First, the shape of
the MFCC and Mel-Spectrogram was determined and stored in memory. Second, the force
data were loaded in the memory, and the length of the force data was determined. Third,
the force data length was divided by the length of the MFCC and converted to the nearest
integer value, which was used as an index to extract the force data. Finally, the minor
discrepancy between the sound and force data was resolved by randomly deleting the
excess force data from the force array. The graphical representation of force and sound
data processing is shown in Figure 7a,b. The details of sound and force data pre-pro-
cessing is shown in Figure 8.

(a) (b)

Figure 7. Sample plot of (a) Mel-Spectrogram and (b) MFCCs of sound data. Figure 7. Sample plot of (a) Mel-Spectrogram and (b) MFCCs of sound data.

Micromachines 2021, 12, 1484 8 of 18Micromachines 2021, 12, x FOR PEER REVIEW 8 of 18

Figure 8. Schema chart of force and sound data processing.

5. Deep Learning Models
Four types of deep learning architectures, viz. simple Multi-Layer Perceptron (MLP),

Convolution Neural Network (CNN), Long Short-Term Memory (LSTM), and trans-
former [22], were analyzed and compared in this study. Each DL model was run twice,
firstly with Mel-Spectrogram and secondly with the MFCC feature, and the results were
compared. In addition, a preliminary classification using a simple MLP model was con-
ducted to compare the classification accuracy using a machining sound signal only and
machining sound and force signals. It was found that using machining sound and force
data for the surface roughness classification task produced higher accuracy than using
machining sound data only. Thus, all other DL models use both machining sound and
force data. The detailed list of DL models used in this study is listed in Table 2.

Table 2. DNN architectures and its variants.

Model Variant DNN Architecture Signal (s) Data Duration Audio Feature Extraction

M1

A

MLP
Machining sound only

10–40 s

Mel-Spectrogram
B MFCC
C

Machining sound + Force
Mel-Spectrogram

D MFCC

M2
A

CNN Machining sound + Force
Mel-Spectrogram

B MFCC

M3
A

RNN-LSTM Machining sound + Force
Mel-Spectrogram

B MFCC

M4
A

Transformer Machining sound + Force
Mel-Spectrogram

B MFCC

Altogether, there were four DL models (M1–M4); each DL model had two variants,
the first using Mel-spectrogram and the second using MFCCs (except for model M1,
which has four variants because of preliminary study). All DL models were trained on

Figure 8. Schema chart of force and sound data processing.

5. Deep Learning Models

Four types of Deep Learning architectures, viz. simple Multi-Layer Perceptron
(MLP), Convolution Neural Network (CNN), Long Short-Term Memory (LSTM), and
transformer [22], were analyzed and compared in this study. Each DL model was run
twice, firstly with Mel-Spectrogram and secondly with the MFCC feature, and the results
were compared. In addition, a preliminary classification using a simple MLP model was
conducted to compare the classification accuracy using a machining sound signal only and
machining sound and force signals. It was found that using machining sound and force
data for the surface roughness classification task produced higher accuracy than using
machining sound data only. Thus, all other DL models use both machining sound and
force data. The detailed list of DL models used in this study is listed in Table 2.

Table 2. DNN architectures and its variants.

Model Variant DNN
Architecture Signal (s) Data

Duration
Audio Feature

Extraction

M1

A

MLP

Machining sound only

10–40 s

Mel-Spectrogram

B MFCC

C
Machining sound + Force

Mel-Spectrogram

D MFCC

M2
A

CNN Machining sound + Force
Mel-Spectrogram

B MFCC

Micromachines 2021, 12, 1484 9 of 18

Table 2. Cont.

Model Variant DNN
Architecture Signal (s) Data

Duration
Audio Feature

Extraction

M3
A

RNN-LSTM Machining sound + Force
Mel-Spectrogram

B MFCC

M4
A

Transformer Machining sound + Force
Mel-Spectrogram

B MFCC

Altogether, there were four DL models (M1–M4); each DL model had two variants,
the first using Mel-spectrogram and the second using MFCCs (except for model M1, which
has four variants because of preliminary study). All DL models were trained on 10–40 s
machining sound data. For the completeness of this study, the result was benchmarked
against the transformer-based model (M4) designed and trained by the author using
machining sound and force signals. The results of transformer-based models have been
published in [17]. For the sake of completeness, a short description of each Deep Learning
architecture is presented below.

5.1. Multilayer Perceptron (MLP)

MLP is a relatively simple DL architecture with an input layer, hidden layers, and a
final output layer. It is sometimes colloquially referred to as “vanilla” neural networks,
especially when the model has a single hidden layer back-propagation network [23]. The
signal flows only in one direction, so this architecture is an example of a feedforward neural
network (FNN) [24]. For this multi-class classification task, a total of four output neurons
(one output neuron per class), a softmax activation function, and a categorical_crossentropy
loss function was used. For implementing multiple input data (force and machining sound),
the functional Keras API and the ‘concatenate()’ functions were used. The functional Keras
API is used to develop a complex model with multiple inputs and numerous modalities that
offer ways to create a Deep Learning model with much more flexibility and complexity [2].

5.2. Convolution Neural Network (CNN)

CNN is a type of ANN developed based on the human visual nerves [2]. CNN
consists of a convolution layer and pooling layer, which makes it different from MLP.
Although CNN is primarily used for image recognition and visual tasks, it is not restricted
to visual interpretation. CNN has also found application in other tasks such as voice
recognition and natural language processing. The convolution and pooling layers have a
role in extracting and compressing features from the input data. Equation (3) [24] shows
the output computation of a given neuron in the convolution layer.

zi,j,k = bk +
fh−1

∑
u=0

fw−1

∑
v=0

fn′−1

∑
k′=0

x
i′ ,j′ ,k

′·wu,v,k′ ,k with
{

i′ = i× sh + u
j′ = j× sw + v

}
(3)

where zi,j,k is the output of the neuron located in row i, column j in feature map k of the
convolution layer (layer l), sh and sw are the vertical and horizontal strides, fh and fw are the
height and width of the receptive field, f n′ is the number of feature maps in the previous
layer (l-1), xi′ ,j′ ,k′ is the output of the neuron located in layer l-1, row i′, column j′ feature
map k′, bk is the bias term, and wu,v,k′ ,k is the connection weight between any neuron in
feature map k of the layer l [24].

The CNN model used the ‘Conv2D()’ function for convolution operations, ‘MaxPool-
ing()’ for dimensionality reduction, ‘BatchNormalization()’ for accelerating training and
improving performance, and ‘Dropout()’ to prevent the model from overfitting.

In this study, the CNN model comprises three convolutional layers with pooling
operations; the flattening layers’ outputs are connected to the MLP model used for training
machining force to predict the machining surface classification. CNN model architecture

Micromachines 2021, 12, 1484 10 of 18

is defined in model_configrure() function, which takes two inputs, namely sound data
and force data. As in the case of images, CNN architecture expects 4D data (samples,
width, breadth, channel). To match the 4D data format, a new axis is added in the 3D
format of sound data (samples, samples per segment/hop_length, MFCC coefficients)
using Numpy’s numpy.newaxis object as Sound_train[. . . , np.newaxis]. Similar steps
are also performed for validation and testing data (please refer to the source code for the
details). As a result of the complex, nonsequential, and wide and deep neural network
model, functional Keras API was used. The concatenation layer keras.layers.concatenate()
concatenates out from the two branches. The further steps are self-explanatory.

5.3. Long Short-Term Memory (LSTM)

LSTM is a Deep Learning architecture that seeks to address the long-term dependency
problems of existing Recurrent Neural Networks (RNN) by introducing forget gates. Each
gate determines a specific operation, thereby finding the core of the learning data and
allowing the model to remember its content longer [25]. Figure 9 shows simple MLP, CNN,
and a typical LSTM cell with various labels. Equation (4) summarizes the LSTM cells
output at each time-step.

i(t) = σ
(

Wxi
TX (t) + Whi

Th(t−1) + bi

)
f(t) = σ

(
Wx f

TX (t) + Wh f
Th(t−1) + b f

)
o(t) = σ

(
Wxo

TX (t) + Who
Th(t−1) + bo

)
g(t) = tan h

(
Wxg

TX (t) + Whg
Th(t−1) + bg

)
c(t) = f(t) ⊗ c(t−1) + it ⊗ gt

y(t) = h(t) = ot ⊗ tan h(ct)

(4)

where c(t) and c(t−1) are long-term states at frame t and t − 1, h(t) and h(t−1) are the short-
term states at time t and (t − 1), and x(t) is the current input vector. Similarly, Wxi, Wxf,
Wxo, Wxg, and Whi, Whf, Who, and Whg are the weight matrices of each of the four layers to
connect to the input vector x(t)’s previous short-term states g(t−1), respectively. bi, bf, bo,
and bg are the bias terms for each of the four layers [24].

Micromachines 2021, 12, x FOR PEER REVIEW 10 of 18

5.3. Long Short-Term Memory (LSTM)
LSTM is a deep learning architecture that seeks to address the long-term dependency

problems of existing Recurrent Neural Networks (RNN) by introducing forget gates. Each
gate determines a specific operation, thereby finding the core of the learning data and
allowing the model to remember its content longer [25]. Figure 9 shows simple MLP,
CNN, and a typical LSTM cell with various labels. Equation (4) summarizes the LSTM
cells output at each time-step 𝑖(௧) = 𝜎൫𝑊௫௜ 𝑋(௧)் + 𝑊௛௜ ℎ(௧ିଵ) + 𝑏௜் ൯ 𝑓(௧) = 𝜎൫𝑊௫௙ 𝑋(௧)் + 𝑊௛௙ ℎ(௧ିଵ) + 𝑏௙் ൯ 𝑜(௧) = 𝜎൫𝑊௫௢ 𝑋(௧)் + 𝑊௛௢ ℎ(௧ିଵ) + 𝑏௢் ൯ 𝑔(௧) = tanh൫𝑊௫௚ 𝑋(௧)் + 𝑊௛௚ ℎ(௧ିଵ) + 𝑏௚் ൯ 𝑐(௧) = 𝑓(௧) ⊗ 𝑐(௧ିଵ) + 𝑖௧ ⊗ 𝑔௧ 𝑦(௧) = ℎ(௧) = 𝑜௧ ⊗ tanh (𝑐௧)

(4)

where c(t) and c(t−1) are long-term states at frame t and t−1, h(t) and h(t−1) are the short-term
states at time t and (t−1), and x(t) is the current input vector. Similarly, Wxi, Wxf, Wxo, Wxg,
and Whi, Whf, Who, and Whg are the weight matrices of each of the four layers to connect to
the input vector x(t)’s previous short-term states g(t−1), respectively. Bi, bf, bo, and bg are the
bias terms for each of the four layers [24].

(a) (b) (c)

Figure 9. A simplified DL architectures (a) MLP, (b) CNN, and (c) a typical LSTM cell.

5.4. Transformer Architecture
Transformer-based DL architecture has established itself as a new state-of-the-art in the

DL world. The transformer-based DL architecture contains a stack of encoder and decoder
layers [22] that uses the ‘attention’ mechanism to improve DL models’ performance signifi-
cantly. Attention mechanisms address the bottleneck problem that arises with the use of a
fixed-length encoding vector. The detail of the transformer mechanism is shown in Figure 10.

The encoder maps the input sequence into a continuous abstract representation that
holds the input features. Then, the continuous representation is passed onto the decoder
block, which generates a single output.

Each encoder layer contains two sub-modules called multi-headed attention and a
fully connected feed-forward network with residual connections. The multi-headed atten-
tion module has a specific attention mechanism known as self-attention, which allows a
model to associate each segment to other segments in the input sample. For this, the input
sample is fed into three distinct, fully connected layers to create the ‘query’ (Q), ‘key’ (K),
and ‘value’ (V) vectors. The dimensions of K and V are dk, and dv respectively. The weight
on the values is obtained by computing the dot products of the query with all keys and
dividing each by ඥ𝑑௞. Finally, a softmax function is applied to obtain the weight on the
values, as shown in Equation (5). 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉,) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾்ඥ𝑑௄) (5)

Hidden
Layer-1

Hidden
Layer-2

Input
Layer

FC FC FC FC

Forget gate

Input gate

Element-wise multiplication

Addition

logistic

tahn

y(t)

c(t)

h(t)

c(t-1)

h(t-1)

x(t)

f(t) g(t) i(t) o(t) Output gate

+

+

×

×

×

×

Figure 9. A simplified DL architectures (a) MLP, (b) CNN, and (c) a typical LSTM cell.

5.4. Transformer Architecture

Transformer-based DL architecture has established itself as a new state-of-the-art in
the DL world. The transformer-based DL architecture contains a stack of encoder and
decoder layers [22] that uses the ‘attention’ mechanism to improve DL models’ performance
significantly. Attention mechanisms address the bottleneck problem that arises with the
use of a fixed-length encoding vector. The detail of the transformer mechanism is shown in
Figure 10.

Micromachines 2021, 12, 1484 11 of 18

Micromachines 2021, 12, x FOR PEER REVIEW 11 of 18

The detailed description of all the components of the transformer architecture is out-
side the scope of this study. For the detail of the transformer, please refer to the original
publication [22].

Figure 10. Transformer architecture (redrawn from [22]).

6. Deep Learning Models Training
The cutting force data and machining sound dataset have 160 experimental samples,

each 30 s long. Furthermore, each experiment sample was divided into ten segments increas-
ing the number of training samples to 1600 (160 experiment × 10 segments). The preprocessed
sound and force data were split into the train–validation–test ratio of 50%–25%–25% during
training.

The goal in each DL model considered in this study was to maximize the accuracy
and minimize the loss. Model accuracy depends on the choice of the number of training
epochs; too many epochs can lead to overfitting, while too few epochs may result in an
underfitting model. Therefore, callback methods ‘keras.callbacks.EarlyStopping()’ were
used for regularizing and halting the model training at the right time. This allows speci-
fying an arbitrarily large number of training epochs and stopping training once the model
performance stops improving. The number of training epochs for all the DL models was
set to 500; however, all models reached a minimum validation error close to 100 epochs,
upon which training automatically stopped. The parameters were used consistently to
compare the DL model architecture. In the case of the transformer-based DL model, the
model with Adam optimizer experienced a convergence problem; thus, the optimizer and
corresponding learning rate was changed, as shown in Table 3.

FC**

RC &norm

Feed-Forward
Neural Network

Multi-head
attention

Masked Multi-
head attention

RC &norm

RC &norm

RC &norm

Positional
encoding

Multi-head
attention

RC* &norm

+ +
Embedding Embedding

Positional
encoding

Feed-Forward
Neural Network

Softmax

En
co

de
r

N×

* Residual Connection
** Fully-Connected

Inputs Outputs

Prediction
Result

De
co

de
r

N×

Figure 10. Transformer architecture (redrawn from [22]).

The encoder maps the input sequence into a continuous abstract representation that
holds the input features. Then, the continuous representation is passed onto the decoder
block, which generates a single output.

Each encoder layer contains two sub-modules called multi-headed attention and
a fully connected feed-forward network with residual connections. The multi-headed
attention module has a specific attention mechanism known as self-attention, which allows
a model to associate each segment to other segments in the input sample. For this, the input
sample is fed into three distinct, fully connected layers to create the ‘query’ (Q), ‘key’ (K),
and ‘value’ (V) vectors. The dimensions of K and V are dk, and dv respectively. The weight
on the values is obtained by computing the dot products of the query with all keys and
dividing each by

√
dk. Finally, a softmax function is applied to obtain the weight on the

values, as shown in Equation (5).

Attention(Q, K, V,) = so f tmax
(

QKT
√

dK

)
(5)

Micromachines 2021, 12, 1484 12 of 18

The detailed description of all the components of the transformer architecture is
outside the scope of this study. For the detail of the transformer, please refer to the original
publication [22].

6. Deep Learning Models Training

The cutting force data and machining sound dataset have 160 experimental sam-
ples, each 30 s long. Furthermore, each experiment sample was divided into ten seg-
ments increasing the number of training samples to 1600 (160 experiment × 10 segments).
The preprocessed sound and force data were split into the train–validation–test ratio of
50%–25%–25% during training.

The goal in each DL model considered in this study was to maximize the accuracy
and minimize the loss. Model accuracy depends on the choice of the number of training
epochs; too many epochs can lead to overfitting, while too few epochs may result in an
underfitting model. Therefore, callback methods ‘keras.callbacks.EarlyStopping()’ were
used for regularizing and halting the model training at the right time. This allows specifying
an arbitrarily large number of training epochs and stopping training once the model
performance stops improving. The number of training epochs for all the DL models was
set to 500; however, all models reached a minimum validation error close to 100 epochs,
upon which training automatically stopped. The parameters were used consistently to
compare the DL model architecture. In the case of the transformer-based DL model, the
model with Adam optimizer experienced a convergence problem; thus, the optimizer and
corresponding learning rate was changed, as shown in Table 3.

Table 3. Parameters used for compiling the DL models.

M1, M2, M3 M4

Loss Function categorical_crossentropy categorical_crossentropy
Optimizer Adam RAdamOptimizer

Learning Rate 0.0001 0.01
metrics accuracy accuracy

Given the stochastic nature of the DL algorithm, evaluation procedure, and numerical
precision, it is difficult to get the exact score in DL. Therefore, each model was run five
times, and another callback ‘tf.keras.callbacks.CDVLogger()’ method was used to save each
epoch result to a CSV file.

7. Results and Discussion

The data processing, design of all Deep Learning model architecture, training, valida-
tion, and testing codes were written in the Python programming language using Tensor-
Flow’s implementation of the Keras high-level API. The complete code was uploaded to the
Github repository and can be found at the following line: https://github.com/thebinayak/
benchmark_study.

As mentioned previously, a total of ten models were studied. Each DL model was
trained either on Mel-Spectrogram or MFCCs. For consistency, all odd variants (e.g., A, C)
were trained on Mel-Spectrogram, while all even variants (e.g., B, D) were trained on
MFCCs. The MLP-based DL model has four variants; the first two were trained only on the
machining sound data, and the last two were trained with machining sound and cutting
force data. Model M1, when only trained on machining sound data, had poor training and
validation accuracies, as seen in Table 4. Although the Mel-spectrogram-based training
accuracy for M1-A is slightly higher than that for M1-B, the validation accuracies were
similar. Compared to all other DL models in this study, the M1-A and M1-B training
and validation loss were the lowest; thus, all other models used machining sound and
cutting force for DL model training. The training and validation accuracy improved
when machining sound and cutting force data were used to train the M1 models (M1-C
and M1-D).

https://github.com/thebinayak/benchmark_study
https://github.com/thebinayak/benchmark_study

Micromachines 2021, 12, 1484 13 of 18

Model M2-A took more than 200 epochs to complete the training; despite that, the
validation loss was poor amongst all other models. Model M2-A also had the most
training parameters.

Transformer-based DL models (M4-A and M4-B) had the lowest number of training
parameters, while the validation accuracies were among the highest in all the models. In all
the DL models considered in this study, models trained in Mel-Spectrum had more param-
eters than the models trained in MFCCs because MFCCs are a compressed representation
of Mel-Spectrogram.

Table 4. Average epoch, training accuracy, and validation accuracy for each model for comparison.

Models Signal Used Variant Audio Feature
Extraction Max Epochs Training

Accuracy Val Accuracy Total
Parameters

M1
Sound Only A Mel-Spectrogram 144 0.928 0.839 8,934,468

B MFCC 133 0.865 0.831 1,146,948

Sound + Force
C Mel-Spectrogram 115 0.990 0.866 8,887,940

D MFCC 140 0.986 0.877 8,828,036

M2
Sound + Force A Mel-Spectrogram 207 0.996 0.692 12,292,740

Sound + Force B MFCC 65 0.996 0.919 4,919,940

M3
Sound + Force A Mel-Spectrogram 72 0.995 0.873 4,532,612

Sound + Force B MFCC 102 0.994 0.895 4,502,660

M4
Sound + Force A Mel-Spectrogram 40 0.966 0.894 299,445

Sound + Force B MFCC 71 0.963 0.892 34,674

As a result of the stochastic nature of the DL algorithm, the results of the DL models
change slightly in every run. Therefore, each model was run five times, and the average
score was plotted in Figures 11–14 (second and third column). The ‘matplotlib.pyplot.fill_b-
etween()’ function was used to generate a filled plot, using the upper and lower bounds of
training accuracy and validation accuracy, as shown in the figures below.

Micromachines 2021, 12, x FOR PEER REVIEW 13 of 18

all the DL models considered in this study, models trained in Mel-Spectrum had more
parameters than the models trained in MFCCs because MFCCs are a compressed repre-
sentation of Mel-Spectrogram.

As a result of the stochastic nature of the DL algorithm, the results of the DL models
change slightly in every run. Therefore, each model was run five times, and the average score
was plotted in Figures 11–14 (second and third column). The ‘matplotlib.pyplot.fill_between()’
function was used to generate a filled plot, using the upper and lower bounds of training ac-
curacy and validation accuracy, as shown in the figures below.

All the trained DL models were further used for inference purpose to predict the unseen
testing data (25% of 1600). For most DL architectures, the inference results showed comparable
model accuracy and loss results compared to the validation accuracy and loss, confirming that
the models were generalized well. It is difficult for the multi-class classification problem to
make sense of the inference results only by comparing inference accuracies.

To overcome this problem, confusion matrices were plotted for the inference results
to visually observe the prediction accuracy of the models using ‘sklearn.metrics.confu-
sion_matrix()’ method. The confusion matrix provides an overall idea of how accurate the
models are at inferring on the test data. The confusion matrices can be seen in the first
column of Figures 11–14. As seen in the figures, the predicted labels are on the x-axis, and
the true labels are on the y-axis. Generally, the confusion is read from the top left to the
bottom right diagonally; the values in the diagonal are the correct predictions.

For M1-A, Figure 11a shows 346 correct predictions out of 400 test samples (or 86.5%).
Similarly, Figure 11d,g,j shows 337 (or 84.2%), 297 (74.2%), and 311 (77.7%) correct predic-
tions, respectively. The figures illustrate that for the first two cases (using only machining
sound data), the confusion matrices have similar distribution; both of the models were
good at classifying course and fine classes.

However, for the latter two cases, although the validation accuracy increases signifi-
cantly compared to the first two, the inference accuracy drops slightly, as seen in the con-
fusion matrix. Both models (M1-C and M1-D) better classify course roughness while they
had difficulty classifying the fine and smooth classes.

(a) (b) (c)

(d) (e) (f)

Figure 11. Cont.

Micromachines 2021, 12, 1484 14 of 18Micromachines 2021, 12, x FOR PEER REVIEW 14 of 18

(g) (h) (i)

(j) (k) (l)

Figure 11. M1 variants confusion matrix, training–validation accuracy, and training–validation loss. (a) M1-A confusion
matrix; (b) M1-A training and validation accuracy; (c) M1-A training and validation loss; (d) M1-B confusion matrix; (e)
M1-B training and validation accuracy; (f) M1-B training and validation loss; (g) M1-C confusion matrix; (h) M1-C training
and validation accuracy; (i) M1-C training and validation loss; (j) M1-D confusion matrix; (k) M1-D training and validation
accuracy; (l) M1-D training and validation loss.

In the case of model M2-A, which uses CNN architecture with Mel-Spectrogram, the
training accuracy steadily increased for the first few epochs, after which the training and
validation accuracy and training and validation loss had an erratic pattern, as seen in Fig-
ure 12b,c, respectively. As a result of this erratic pattern, model M2-A took more epochs
(>200 epochs) to train but failed to improve the validation accuracies satisfactorily. While
the M2-B variant (with MFCCs) shows a steady increase in training and validation accu-
racies, no abnormalities can be seen in the M2-B training and validation loss. With these
results, it can be inferred that in the case of CNN architecture with fewer training data,
MFCC-based feature extraction performs better than Mel-Spectrogram. The confusion
matrix Figure 12d has excellent results, with most of the classes predicted accurately while
struggling to classify the fine class 329/400 (or 82.2%).

(a) (b) (c)

Figure 11. M1 variants confusion matrix, training–validation accuracy, and training–validation loss. (a) M1-A confusion
matrix; (b) M1-A training and validation accuracy; (c) M1-A training and validation loss; (d) M1-B confusion matrix;
(e) M1-B training and validation accuracy; (f) M1-B training and validation loss; (g) M1-C confusion matrix; (h) M1-C
training and validation accuracy; (i) M1-C training and validation loss; (j) M1-D confusion matrix; (k) M1-D training and
validation accuracy; (l) M1-D training and validation loss.

Micromachines 2021, 12, x FOR PEER REVIEW 14 of 18

(g) (h) (i)

(j) (k) (l)

Figure 11. M1 variants confusion matrix, training–validation accuracy, and training–validation loss. (a) M1-A confusion
matrix; (b) M1-A training and validation accuracy; (c) M1-A training and validation loss; (d) M1-B confusion matrix; (e)
M1-B training and validation accuracy; (f) M1-B training and validation loss; (g) M1-C confusion matrix; (h) M1-C training
and validation accuracy; (i) M1-C training and validation loss; (j) M1-D confusion matrix; (k) M1-D training and validation
accuracy; (l) M1-D training and validation loss.

In the case of model M2-A, which uses CNN architecture with Mel-Spectrogram, the
training accuracy steadily increased for the first few epochs, after which the training and
validation accuracy and training and validation loss had an erratic pattern, as seen in Fig-
ure 12b,c, respectively. As a result of this erratic pattern, model M2-A took more epochs
(>200 epochs) to train but failed to improve the validation accuracies satisfactorily. While
the M2-B variant (with MFCCs) shows a steady increase in training and validation accu-
racies, no abnormalities can be seen in the M2-B training and validation loss. With these
results, it can be inferred that in the case of CNN architecture with fewer training data,
MFCC-based feature extraction performs better than Mel-Spectrogram. The confusion
matrix Figure 12d has excellent results, with most of the classes predicted accurately while
struggling to classify the fine class 329/400 (or 82.2%).

(a) (b) (c)

Micromachines 2021, 12, x FOR PEER REVIEW 15 of 18

(d) (e) (f)

Figure 12. M2 variants confusion matrix, training–validation accuracy, and training–validation loss. (a) M2-A confusion
matrix; (b) M2-A training and validation accuracy; (c) M2-A training and validation loss; (d) M2-B confusion matrix; (e)
M2-B training and validation accuracy; (f) M2-B training and validation loss.

Similar to the CNN models above, the LSTM models have similar patterns. Figure
13a,b show that the models were good at predicting course, rough, and smooth roughness
classes but had difficulty in correctly predicting fine classes. As seen in the confusion ma-
trices, model M3-A correctly predicted 324 (or 81.0%), and M3-B correctly predicted 312
(or 78.0%) out of 400.

(a) (b) (c)

(d) (e) (f)

Figure 13. M3 variants confusion matrix, training–validation accuracy, and training–validation loss. (a) M3-A confusion
matrix; (b) M3-A training and validation accuracy; (c) M3-A training and validation loss; (d) M3-A confusion matrix; (e)
M3-B training and validation accuracy; (f) M3-B training and validation loss.

The best-performing model in this study is the transformer-based DL model (M4). It
can be seen that the transformer-based DL model trained on MFCC data had higher vali-
dation accuracy than the model trained on the Mel-Spectrogram data. This is evident because
MFCC is a compressed, decorrelated version of the Mel-Spectrum. A previous study [26]
showed that MFCCs often perform better when limited data are available. The confusion ma-
trices in Figure 14a,d show that model M4-A correctly predicted 366 (or 91.5%) and model M4-
B correctly predicted 371 (or 92.7%) out of 400 test samples.

Figure 12. M2 variants confusion matrix, training–validation accuracy, and training–validation loss. (a) M2-A confusion
matrix; (b) M2-A training and validation accuracy; (c) M2-A training and validation loss; (d) M2-B confusion matrix; (e) M2-B
training and validation accuracy; (f) M2-B training and validation loss.

Micromachines 2021, 12, 1484 15 of 18

Micromachines 2021, 12, x FOR PEER REVIEW 15 of 18

(d) (e) (f)

Figure 12. M2 variants confusion matrix, training–validation accuracy, and training–validation loss. (a) M2-A confusion
matrix; (b) M2-A training and validation accuracy; (c) M2-A training and validation loss; (d) M2-B confusion matrix; (e)
M2-B training and validation accuracy; (f) M2-B training and validation loss.

Similar to the CNN models above, the LSTM models have similar patterns. Figure
13a,b show that the models were good at predicting course, rough, and smooth roughness
classes but had difficulty in correctly predicting fine classes. As seen in the confusion ma-
trices, model M3-A correctly predicted 324 (or 81.0%), and M3-B correctly predicted 312
(or 78.0%) out of 400.

(a) (b) (c)

(d) (e) (f)

Figure 13. M3 variants confusion matrix, training–validation accuracy, and training–validation loss. (a) M3-A confusion
matrix; (b) M3-A training and validation accuracy; (c) M3-A training and validation loss; (d) M3-A confusion matrix; (e)
M3-B training and validation accuracy; (f) M3-B training and validation loss.

The best-performing model in this study is the transformer-based DL model (M4). It
can be seen that the transformer-based DL model trained on MFCC data had higher vali-
dation accuracy than the model trained on the Mel-Spectrogram data. This is evident because
MFCC is a compressed, decorrelated version of the Mel-Spectrum. A previous study [26]
showed that MFCCs often perform better when limited data are available. The confusion ma-
trices in Figure 14a,d show that model M4-A correctly predicted 366 (or 91.5%) and model M4-
B correctly predicted 371 (or 92.7%) out of 400 test samples.

Figure 13. M3 variants confusion matrix, training–validation accuracy, and training–validation loss. (a) M3-A confusion
matrix; (b) M3-A training and validation accuracy; (c) M3-A training and validation loss; (d) M3-A confusion matrix;
(e) M3-B training and validation accuracy; (f) M3-B training and validation loss.

Micromachines 2021, 12, x FOR PEER REVIEW 16 of 18

(a) (b) (c)

(d) (e) (f)

Figure 14. M4 variants confusion matrix, training–validation accuracy, and training–validation loss. (a) M4-A confusion
matrix; (b) M4-A training and validation accuracy; (c) M4-A training and validation loss; (d) M4_B confusion matrix; (e)
M4-B training and validation accuracy; (f) M4-B training and validation loss.

8. Conclusions
This study is a continuation of an extensive study on implementing various DL ar-

chitectures to predict surface roughness in real time. The machining surface roughness
was categorized into four classes viz. fine, smooth, rough, and coarse. There have been a
concern and need for comparative study on the prediction accuracy of many popular
deep-learning models. This study benchmarked the four most popular DL architectures,
MLP, CNN, LSTM, and transformer using machining sound and cutting force data. Since
raw sound data are seldom used in DL models, two of the most widely used audio feature
extraction techniques, Mel-Spectrogram and MFCCs, were used in each model to compare
the suitability and performances of the models.

Complex functional DL models were designed using Keras functional API for multi-
ple inputs (machining sound and cutting force). It was found that employing machining
sound and cutting force data yielded better training and validation accuracy than just us-
ing machining sound data.

One of the most critical requirements of DL models is to be trained in the shortest
possible time. MLP-based DL models took more than 100 epochs to train and automati-
cally stopped after the model performance saturated. CNN and LSTM-based models took
less than 100 epochs to train, except for model M2-A, which performed poorly in Mel-
Spectrogram data. The most efficient models were transformer-based DL models, which
took less than 70 epochs and had the lowest number of training parameters.

In the case of classification accuracy, the most accurate DL models were transformer-
based DL models. The confusion matrix suggested that M4-A and M4-B have prediction
accuracies close to 92%. No other DL model considered in this study was comparable to
transformer-based DL models. It is proposed that this benchmarking study could be used
to select the DL models to be used in predicting the machining surface roughness in real
time with high accuracy in real-time machining operation. Since the transformer-based
architecture has the least parameters, it can also be used in edge computing, making the
implementation even cheaper and more portable.

9. Limitations and Future Study

Figure 14. M4 variants confusion matrix, training–validation accuracy, and training–validation loss. (a) M4-A confusion
matrix; (b) M4-A training and validation accuracy; (c) M4-A training and validation loss; (d) M4_B confusion matrix;
(e) M4-B training and validation accuracy; (f) M4-B training and validation loss.

All the trained DL models were further used for inference purpose to predict the
unseen testing data (25% of 1600). For most DL architectures, the inference results showed
comparable model accuracy and loss results compared to the validation accuracy and loss,
confirming that the models were generalized well. It is difficult for the multi-class classifica-
tion problem to make sense of the inference results only by comparing inference accuracies.

Micromachines 2021, 12, 1484 16 of 18

To overcome this problem, confusion matrices were plotted for the inference results to
visually observe the prediction accuracy of the models using ‘sklearn.metrics.confusion_ma-
trix()’ method. The confusion matrix provides an overall idea of how accurate the models
are at inferring on the test data. The confusion matrices can be seen in the first column of
Figures 11–14. As seen in the figures, the predicted labels are on the x-axis, and the true
labels are on the y-axis. Generally, the confusion is read from the top left to the bottom
right diagonally; the values in the diagonal are the correct predictions.

For M1-A, Figure 11a shows 346 correct predictions out of 400 test samples (or 86.5%).
Similarly, Figure 11d,g,j shows 337 (or 84.2%), 297 (74.2%), and 311 (77.7%) correct predic-
tions, respectively. The figures illustrate that for the first two cases (using only machining
sound data), the confusion matrices have similar distribution; both of the models were
good at classifying course and fine classes.

However, for the latter two cases, although the validation accuracy increases signif-
icantly compared to the first two, the inference accuracy drops slightly, as seen in the
confusion matrix. Both models (M1-C and M1-D) better classify course roughness while
they had difficulty classifying the fine and smooth classes.

In the case of model M2-A, which uses CNN architecture with Mel-Spectrogram,
the training accuracy steadily increased for the first few epochs, after which the training
and validation accuracy and training and validation loss had an erratic pattern, as seen
in Figure 12b,c, respectively. As a result of this erratic pattern, model M2-A took more
epochs (>200 epochs) to train but failed to improve the validation accuracies satisfactorily.
While the M2-B variant (with MFCCs) shows a steady increase in training and validation
accuracies, no abnormalities can be seen in the M2-B training and validation loss. With
these results, it can be inferred that in the case of CNN architecture with fewer training
data, MFCC-based feature extraction performs better than Mel-Spectrogram. The confusion
matrix Figure 12d has excellent results, with most of the classes predicted accurately while
struggling to classify the fine class 329/400 (or 82.2%).

Similar to the CNN models above, the LSTM models have similar patterns. Figure 13a,b
show that the models were good at predicting course, rough, and smooth roughness classes
but had difficulty in correctly predicting fine classes. As seen in the confusion matrices,
model M3-A correctly predicted 324 (or 81.0%), and M3-B correctly predicted 312 (or 78.0%)
out of 400.

The best-performing model in this study is the transformer-based DL model (M4).
It can be seen that the transformer-based DL model trained on MFCC data had higher
validation accuracy than the model trained on the Mel-Spectrogram data. This is evident
because MFCC is a compressed, decorrelated version of the Mel-Spectrum. A previous
study [26] showed that MFCCs often perform better when limited data are available. The
confusion matrices in Figure 14a,d show that model M4-A correctly predicted 366 (or
91.5%) and model M4-B correctly predicted 371 (or 92.7%) out of 400 test samples.

8. Conclusions

This study is a continuation of an extensive study on implementing various DL
architectures to predict surface roughness in real time. The machining surface roughness
was categorized into four classes viz. fine, smooth, rough, and coarse. There have been
a concern and need for comparative study on the prediction accuracy of many popular
deep-learning models. This study benchmarked the four most popular DL architectures,
MLP, CNN, LSTM, and transformer using machining sound and cutting force data. Since
raw sound data are seldom used in DL models, two of the most widely used audio feature
extraction techniques, Mel-Spectrogram and MFCCs, were used in each model to compare
the suitability and performances of the models.

Complex functional DL models were designed using Keras functional API for multiple
inputs (machining sound and cutting force). It was found that employing machining sound
and cutting force data yielded better training and validation accuracy than just using
machining sound data.

Micromachines 2021, 12, 1484 17 of 18

One of the most critical requirements of DL models is to be trained in the shortest
possible time. MLP-based DL models took more than 100 epochs to train and automatically
stopped after the model performance saturated. CNN and LSTM-based models took
less than 100 epochs to train, except for model M2-A, which performed poorly in Mel-
Spectrogram data. The most efficient models were transformer-based DL models, which
took less than 70 epochs and had the lowest number of training parameters.

In the case of classification accuracy, the most accurate DL models were transformer-
based DL models. The confusion matrix suggested that M4-A and M4-B have prediction
accuracies close to 92%. No other DL model considered in this study was comparable to
transformer-based DL models. It is proposed that this benchmarking study could be used
to select the DL models to be used in predicting the machining surface roughness in real
time with high accuracy in real-time machining operation. Since the transformer-based
architecture has the least parameters, it can also be used in edge computing, making the
implementation even cheaper and more portable.

9. Limitations and Future Study

This study can be considered an essential milestone in machining surface roughness
prediction using DL models. The current study sheds light on the accuracy and suitability of
various Deep Learning architectures for force and sound data used in machining operations.
However, the author would like to point out a few potential future study areas. In the
present study, the machining experiments with each roughness class were small; more
extensive experiments data with an extensive range of end-mill diameters will undoubtedly
be helpful for DL training. Furthermore, this study was conducted on the aluminum plate;
however, engineering materials differ in their physical and chemical properties, so more
studies are needed for a multitude of materials. In addition, the current study considers
only four roughness classes; however, to match the ISO standards, more roughness classes
must be implemented. This can be achieved by collaboration between research institutes
and the manufacturing industry.

Funding: No funding received.

Data Availability Statement: The complete code, including data creation, data preprocessing, model
design, and validation codes, is uploaded to the Github repository and found at the following link
https://github.com/thebinayak/benchmark_study.

Conflicts of Interest: The author declare no potential conflict of interest concerning this article’s
research, authorship, and/or publication.

References
1. Jung, W.-K.; Kim, D.-R.; Lee, H.; Lee, T.-H.; Yang, I.; Youn, B.D.; Zontar, D.; Brockmann, M.; Brecher, C.; Ahn, S.-H. Appropriate

Smart Factory for SMEs: Concept, Application and Perspective. Int. J. Precis. Eng. Manuf. 2021, 22, 201–215. [CrossRef]
2. Bhandari, B.; Park, G. Development of a Surface Roughness Evaluation Method from Light and Shade Composition using Deep

Learning. IEIE Trans. Smart Process. Comput. 2021, 10, 189–198. [CrossRef]
3. Kim, D.-H.; Kim, T.J.Y.; Wang, X.; Kim, M.; Quan, Y.-J.; Oh, J.W.; Min, S.-H.; Kim, H.; Bhandari, B.; Yang, I.; et al. Smart Machining

Process Using Machine Learning: A Review and Perspective on Machining Industry. Int. J. Precis. Eng. Manuf. Technol. 2018, 5,
555–568. [CrossRef]

4. Lee, G.-Y.; Kim, M.; Quan, Y.-J.; Kim, M.-S.; Kim, T.J.Y.; Yoon, H.-S.; Min, S.; Kim, D.-H.; Mun, J.-W.; Oh, J.W.; et al. Machine
health management in smart factory: A review. J. Mech. Sci. Technol. 2018, 32, 987–1009. [CrossRef]

5. Baek, D.K.; Ko, T.J.; Kim, H.S. A dynamic surface roughness model for face milling. Precis. Eng. 1997, 20, 171–178. [CrossRef]
6. Miko, E.; Nowakowski, A. Analysis and verification of surface roughness constitution model after machining process. Procedia

Eng. 2012, 39, 395–404. [CrossRef]
7. De Agustina, B.; Marín, M.M.; Teti, R.; Rubio, E.M. Analysis of Force Signals for the Estimation of Surface Roughness during

Robot-Assisted Polishing. Materials 2018, 11, 1438. [CrossRef] [PubMed]
8. Versaci, M.; Calcagno, S.; Cacciola, M.; Morabito, F.C.; Palamara, I.; Pellicanò, D. Innovative Fuzzy Techniques for Characterizing

Defects in Ultrasonic Nondestructive Evaluation. In Ultrasonic Nondestructive Evaluation Systems: Industrial Application Issues;
Burrascano, P., Callegari, S., Montisci, A., Ricci, M., Versaci, M., Eds.; Springer International Publishing: Cham, Switzerland,
2015; pp. 201–232.

https://github.com/thebinayak/benchmark_study
https://github.com/thebinayak/benchmark_study
http://doi.org/10.1007/s12541-020-00445-2
http://doi.org/10.5573/IEIESPC.2021.10.3.189
http://doi.org/10.1007/s40684-018-0057-y
http://doi.org/10.1007/s12206-018-0201-1
http://doi.org/10.1016/S0141-6359(97)00043-3
http://doi.org/10.1016/j.proeng.2012.07.043
http://doi.org/10.3390/ma11081438
http://www.ncbi.nlm.nih.gov/pubmed/30111692

Micromachines 2021, 12, 1484 18 of 18

9. Tlhabadira, I.; Daniyan, I.; Masu, L.; VanStaden, L. Process Design and Optimization of Surface Roughness during M200 TS
Milling Process using the Taguchi Method. Procedia CIRP 2019, 84, 868–873. [CrossRef]

10. Dweiri, F.; Al-Jarrah, M.; Al-Wedyan, H. Fuzzy surface roughness modeling of CNC down milling of Alumic-79. J. Mater. Process.
Technol. 2003, 133, 266–275. [CrossRef]

11. Pimenov, D.Y.; Bustillo, A.; Mikolajczyk, T. Artificial intelligence for automatic prediction of required surface roughness by
monitoring wear on face mill teeth. J. Intell. Manuf. 2018, 29, 1045–1061. [CrossRef]

12. Yeganefar, A.; Niknam, S.A.; Asadi, R. The use of support vector machine, neural network, and regression analysis to predict and
optimize surface roughness and cutting forces in milling. Int. J. Adv. Manuf. Technol. 2019, 105, 951–965. [CrossRef]

13. Sharma, G.; Umapathy, K.; Krishnan, S. Trends in audio signal feature extraction methods. Appl. Acoust. 2020, 158, 107020.
[CrossRef]

14. Lin, W.-J.; Lo, S.-H.; Young, H.-T.; Hung, C.-L. Evaluation of Deep Learning Neural Networks for Surface Roughness Prediction
Using Vibration Signal Analysis. Appl. Sci. 2019, 9, 1462. [CrossRef]

15. Pan, Y.; Kang, R.; Dong, Z.; Du, W.; Yin, S.; Bao, Y. On-line prediction of ultrasonic elliptical vibration cutting surface roughness
of tungsten heavy alloy based on Deep Learning. J. Intell. Manuf. 2020, 2020, 1–11. [CrossRef]

16. Deshpande, Y.; Andhare, A.; Sahu, N.K. Estimation of surface roughness using cutting parameters, force, sound, and vibration in
turning of Inconel 718. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 5087–5096. [CrossRef]

17. Bhandari, B.; Park, G. Implementation of Transformer-Based Deep Learning Architecture for the Development of Surface
Roughness Classifier using Sound & Cutting Force Signals. Int. J. Precis. Eng. Manuf. Technol. 2021, 115, 2683–2709, (submitted).

18. Reliability Hotwire. Reliasoft Corporation, Issue 131. 2020. Available online: https://www.weibull.com/hotwire/issue131
/hottopics131.htm (accessed on 22 January 2021).

19. Doshi, K. Audio Deep Learning Made Simple (Part 2): Why Mel Spectrograms Perform Better. 2021. Available online: https:
//towardsdatascience.com/audio-deep-learning-made-simple-part-2-why-mel-spectrograms-perform-better-aad889a93505 (ac-
cessed on 30 October 2021).

20. Lin, Y.-K.; Su, M.-C.; Hsieh, Y.-Z. The application and improvement of deep neural networks in environmental sound recognition.
Appl. Sci. 2020, 10, 5965. [CrossRef]

21. Doshi, K. Audio Deep Learning Made Simple (Part 3): Data Preparation and Augmentation. 2021. Available online: https://
towardsdatascience.com/audio-deep-learning-made-simple-part-3-data-preparation-and-augmentation-24c6e1f6b52 (accessed
on 20 March 2021).

22. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.
arXiv 2017, arXiv:1706.03762. Available online: http://arxiv.org/abs/1706.03762 (accessed on 30 October 2021).

23. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New
York, NY, USA, 2009.

24. Geron, A. Hands-On Machine-Learning with Scikit-Learn, Keras and Tensorflow-Concepts, Tools, and Techniques to Built Intelligent
Systems, 2nd ed.; O’reilly: Sebastopol, CA, USA, 2019.

25. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
26. Banerjee, G.; Huang, E.; Lettiere, A. Understanding Emotion Classification in Audio Data. Available online: https://web.stanford.

edu/class/cs224n/reports/final_reports/report043.pdf (accessed on 30 October 2021).

http://doi.org/10.1016/j.procir.2019.03.200
http://doi.org/10.1016/S0924-0136(02)00847-6
http://doi.org/10.1007/s10845-017-1381-8
http://doi.org/10.1007/s00170-019-04227-7
http://doi.org/10.1016/j.apacoust.2019.107020
http://doi.org/10.3390/app9071462
http://doi.org/10.1007/s10845-020-01669-9
http://doi.org/10.1007/s40430-017-0819-4
https://www.weibull.com/hotwire/issue131/hottopics131.htm
https://www.weibull.com/hotwire/issue131/hottopics131.htm
https://towardsdatascience.com/audio-deep-learning-made-simple-part-2-why-mel-spectrograms-perform-better-aad889a93505
https://towardsdatascience.com/audio-deep-learning-made-simple-part-2-why-mel-spectrograms-perform-better-aad889a93505
http://doi.org/10.3390/app10175965
https://towardsdatascience.com/audio-deep-learning-made-simple-part-3-data-preparation-and-augmentation-24c6e1f6b52
https://towardsdatascience.com/audio-deep-learning-made-simple-part-3-data-preparation-and-augmentation-24c6e1f6b52
http://arxiv.org/abs/1706.03762
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://web.stanford.edu/class/cs224n/reports/final_reports/report043.pdf
https://web.stanford.edu/class/cs224n/reports/final_reports/report043.pdf

	Introduction
	Literature Review
	Machines, Material, and Experimental Design
	Data Acquisition and Preprocessing
	Cutting Force Data
	Machining Sound Data
	Sound Data Preprocessing
	Force Data Preprocessing

	Deep Learning Models
	Multilayer Perceptron (MLP)
	Convolution Neural Network (CNN)
	Long Short-Term Memory (LSTM)
	Transformer Architecture

	Deep Learning Models Training
	Results and Discussion
	Conclusions
	Limitations and Future Study
	References

