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Abstract

Influenza A virus commonly circulating in swine (IAV-S) is characterized by large genetic

and antigenic diversity and, thus, improvements in different aspects of IAV-S surveillance

are needed to achieve desirable goals of surveillance such as to establish the capacity to

forecast with the greatest accuracy the number of influenza cases likely to arise. Advance-

ments in modeling approaches provide the opportunity to use different models for surveil-

lance. However, in order to make improvements in surveillance, it is necessary to assess

the predictive ability of such models. This study compares the sensitivity and predictive

accuracy of the autoregressive integrated moving average (ARIMA) model, the generalized

linear autoregressive moving average (GLARMA) model, and the random forest (RF) model

with respect to the frequency of influenza A virus (IAV) in Ontario swine. Diagnostic data on

IAV submissions in Ontario swine between 2007 and 2015 were obtained from the Animal

Health Laboratory (University of Guelph, Guelph, ON, Canada). Each modeling approach

was examined for predictive accuracy, evaluated by the root mean square error, the normal-

ized root mean square error, and the model’s ability to anticipate increases and decreases

in disease frequency. Likewise, we verified the magnitude of improvement offered by the

ARIMA, GLARMA and RF models over a seasonal-naïve method. Using the diagnostic sub-

missions, the occurrence of seasonality and the long-term trend in IAV infections were also

investigated. The RF model had the smallest root mean square error in the prospective anal-

ysis and tended to predict increases in the number of diagnostic submissions and positive

virological submissions at weekly and monthly intervals with a higher degree of sensitivity

than the ARIMA and GLARMA models. The number of weekly positive virological submis-

sions is significantly higher in the fall calendar season compared to the summer calendar

season. Positive counts at weekly and monthly intervals demonstrated a significant
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increasing trend. Overall, this study shows that the RF model offers enhanced prediction

ability over the ARIMA and GLARMA time series models for predicting the frequency of IAV

infections in diagnostic submissions.

Introduction

Influenza A virus (IAV) circulates in swine populations worldwide and has recently been char-

acterized by the continuous emergence of novel viral recombinants and variants in some

regions [1–3]. Coupled with the complex demographics of swine populations and their high

birth and replacement rate, such viral diversity could result in increased incidence of influenza

infection and present a challenge for the development of infection and disease control strate-

gies in animal populations. This could also cause some concerns from the public health per-

spective, similar to those caused by the spill-over infections from swine to people observed in

2012 in the US [4]. Thus, the development of new surveillance methods for IAV has its merits

from multiple perspectives. Among different goals of surveillance, an important objective is

the establishment of the capacity to forecast with the greatest accuracy the number of influenza

cases likely to arise. Such an objective could be accomplished on the basis of statistical data-

driven models, and is important whether the infection occurs as a major epidemic of a single

strain, during the endemic state characterized by the continuous circulation of existing strains,

or under the limited emergence of novel strains. Such an approach to forecasting could repre-

sent the basis for planning resource allocation by both animal and public health authorities. Of

course, a reliably high forecasting accuracy would be key.

Diagnostic submissions for IAV from swine populations in Ontario, Canada, repeatedly peak

in January and April [5]. For diseases that show recurrent seasonal patterns or occur in cyclic pat-

terns, time series models are the most widely used statistical models by health researchers for fore-

casting [6]. Time series forecasting is commonly performed using autoregressive integrated

moving average (ARIMA) models [6] that can accommodate both trend and seasonal variations.

ARIMA models are typically selected by maximizing some measure of predictive accuracy. How-

ever, a drawback of ARIMA models is that they assume a Gaussian distribution of the response.

Given count data, a Box-Cox transformation of counts using either a logarithmic or power trans-

formation may yield approximately Gaussian-distributed data. Nevertheless, Gaussian modeling

with transformed data may result in an inaccurate predictive distribution.

Another approach developed by Davis et al. [7] uses generalized linear autoregressive mov-

ing average (GLARMA) models. These models accommodate time series of counts that are

assumed to follow a Poisson distribution. Recently, Dunsmuir et al. [8] developed an auto-

mated algorithm that provides for model identification within a given class of models and an

assessment of model adequacy in regression modeling of count time series that follow Poisson,

negative binomial or binomial distributions.

An additional, alternative approach for modeling count data is to use random forest (RF)

models as developed by Breiman [9]. RF models offer a rule-based methodological approach

that recursively partition data, creating regression trees. RF models have been successfully

applied in many fields, including public health studies. Studies by Cootes et al. [10] and Kane

et al. [11], among others, suggest this modeling approach provides computational efficiency

and high predictive accuracy.

Despite the fact that ARIMA, GLARMA, and RF models have been used in several studies,

these approaches have never been applied to time series data for IAV surveillance or any other

pathogens in swine populations. Furthermore, recent studies highlight the fact that swine have

ARIMA, GLARMA and RF time series models and influenza A virus frequency in swine

PLOS ONE | https://doi.org/10.1371/journal.pone.0198313 June 1, 2018 2 / 17

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0198313


the highest rate of emergence of new viral infectious agents and, therefore, enhanced surveil-

lance and comprehensive assessment are needed [12]. Thus, the objective of this study is to

compare the performance of ARIMA, GLARMA, and RF models with respect to predicting

the frequency of IAV in diagnostic submissions from swine populations in Ontario. Our main

interest was to identify a model that would predict increases in the number of diagnostic sub-

missions and positive virological submissions with a high degree of sensitivity, using data

based on diagnostic submissions to the Animal Health Laboratory (AHL; University of

Guelph, Guelph, Ontario, Canada). We were also interested in investigating the occurrence of

seasonality and the long-term trend of IAV infections by applying time series and recursive

partitioning modeling approaches to the same data from the AHL.

Materials and methods

Data processing

Our data set contain the test-level records from porcine submissions that were voluntarily sup-

plied from Ontario swine farms between May 2007 and December 2015 at the largest animal

health diagnostic laboratory (AHL) in Ontario. We processed the data and extracted relevant

information for the analysis, as shown in Fig 1.

Fig 1. Graphical illustration of data processing procedure. Data were obtained from records of swine submissions

supplied from farms in Ontario, Canada, to the Animal Health Laboratory over the period from May 2007 to

December 2015.

https://doi.org/10.1371/journal.pone.0198313.g001
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Each diagnostic submission contained one or more samples, and all samples were tested for

IAV for research, monitoring, or diagnostic purposes. The test results for research and moni-

toring were excluded from the analysis based on the rationale that they might not represent

actual clinical influenza disease in a herd. The diagnostic test results indicated if the samples

were tested using serological and/or virological methods. We disregarded the serological find-

ings since a serological diagnosis is based on the detection of antibodies, and could be a conse-

quence of vaccination or historical exposure at an unknown point in time. Virological tests

were from procedures such as real-time reverse transcription polymerase chain reaction

(rtPCR), immunohistochemistry, or virus isolation. These techniques were applied to either

different samples or the same sample within a submission. Test results interpreted as “incon-

clusive”, “suspicious”, or “weak positive” were considered negative. When a categorical result

(positive/negative) was not declared for quantitative real-time rtPCR test results, we used a

cycle threshold (Ct) to declare a test result. Ct is the (amplification) cycle number when fluo-

rescence increases above the background level. The reagents employed were manufactured by

Life Technologies, and we used their recommended Ct of 36 as a positive cut off value; that is,

Ct� 36 was used to declare a positive test. Any test that indicated a positive result for influenza

A virus was considered a positive individual virological test, and a submission with at least one

positive individual virological test was considered a positive submission. Test results reported

descriptively were excluded from the analysis. The number of daily submissions, and the num-

ber of daily positive diagnostic submissions at the herd level, were aggregated into monthly

and weekly intervals with variables corresponding to the date of the beginning of the week or

month, resulting in four individual historical datasets. A week was considered to run from

Monday to Sunday and each study year included 52 weeks. The 53rd week for years 2007 and

2012 was omitted to ensure the same number of weeks in each study year and enable simple

conversion of the outcome measures into comparable time series. The time series of the num-

ber of diagnostic submissions, and positive virological submissions at weekly and monthly

intervals were analyzed individually.

Data

Each historical data set contains information on the outcome measures and variables that were

included in the analysis. The outcome measures of interest were the time series of: (i) the num-

ber of diagnostic submissions per week, (ii) the number of diagnostic submissions per month,

(iii) the number of positive virological submissions per week, and (iv) the number of positive

virological submissions per month. A detailed description of the explanatory variables used is

given under each model description.

Statistical methods

A time series decomposition was performed on the four historical time series. Using the results

from the decomposition, ARIMA, GLARMA and RF models were built to assess and predict

the frequency of IAV in the swine population in Ontario. The predictive accuracy of each

modeling approach was evaluated via the root mean square error (RMSE) and the normalized

root mean square error (NRMSE). We also assessed the models’ ability to anticipate increases

and decreases in the number of diagnostic submissions and positive virological submissions at

weekly and monthly intervals.

We implemented a seasonal-naïve method based on weekly/monthly averages over past

years for each historical time series and it was used as a benchmark comparison for the

ARIMA, GLARMA and RF models. The seasonal-naïve method was assessed in the same way

as the other models.

ARIMA, GLARMA and RF time series models and influenza A virus frequency in swine
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The statistical analyses were performed using R version 3.3.1 [13] with the significance level

set at P< 0.05. An enhanced description of each methodology is contained in the Supplemen-

tary Material (S1 File). The computation methods for the RMSE and NRMSE are also elabo-

rated upon in the Supplementary Material (S1 File).

Time series decomposition. Before applying the time series techniques, the four outcome

measures were investigated for temporal autocorrelation in the residuals using the Durbin-

Watson test. Under this test, the null hypothesis is that the residuals are serially uncorrelated,

and this is tested against the alternative hypothesis that they follow a first-order autoregressive

process. The value of the test statistics observed suggested a pattern of positive serial correla-

tion for each series (d< 2). This was also confirmed by examining the time series graphically.

Applying a filtering procedure, the time series were decomposed into trend, season, and

remainder components using the STLPLUS function [14]. The procedure is based on a local

regression smoother. The naïve smoothing parameter, ns, was set to 19 lags based on the sea-

sonal-diagnostic plots. The value of trend window, nt, was calculated considering the fre-

quency of the time series and the seasonal smoothing parameter and assessed with trend-

diagnostic plots [14]. For the weekly time series, nt.week was set to 87 lags; for the monthly time

series, nt.month was set to 21 lags. The robust STLPLUS estimation procedure was used based

on the seasonal-diagnostic and trend-diagnostic plots. For the robust procedure, the number

of inner iterations used was 2 and the number of outer iterations used was 5, which provided

convergence of the procedure.

ARIMA. We first considered the representation of the observed time series via an

ARIMA model. Identifying and fitting an ARIMA model can be quite complex and time con-

suming as it can have a large number of parameters. Therefore, the model estimation proce-

dure was performed using the stepwise automatic algorithm with the AUTO.ARIMA function

in R. The best of all possible models was selected according to Akaike’s Information Criterion

(AIC) [15]. A Box-Cox transformation was used to help satisfy the ARIMA assumptions.

GLARMA. Because the time series of the number of diagnostic submissions and positive

virological submissions per week and per month consist of counts, it is natural to model them

using GLARMA models. The GLARMA modeling process was performed on the four histori-

cal count time series using the R package GLARMA [8]. The explanatory variables used were

the linear trend and the season. The trend represents an increase by one unit over the entire

study period and was centered at the mid-point of the study period. The season effect was

introduced as a categorical variable with either four levels (winter, spring, summer, and

autumn, with summer used as the reference level) for the weekly historical count time series or

12 levels (12 months of the year, with August used as the reference level) for the monthly his-

torical count time series. The ARMA components were selected based on the estimated auto-

correlation and partial autocorrelation functions using the residuals from the generalized

linear model regression. The best model was selected based on the Wald test, the likelihood

ratio test, and the AIC; here these measures were always in agreement. The response distribu-

tion for each time series was selected depending on the estimated value of the shape parameter:

if the parameter was significant, a negative binomial distribution was used; otherwise, a Pois-

son distribution was used. The validity of the assumed distribution was examined via the prob-

ability integral transformation.

Random forests. Finally, random forest regression [9] was used to analyze the four time

series. Regression was performed with the R randomForest package [16]. Explanatory variables

included were the linear trend and the season (as for the GLARMA model), as well as the

count time series up to five lags. The importance of each variable was calculated. The perfor-

mance of RF-based regression was evaluated and optimized for the smallest error estimate via

10-fold cross-validation (CV) and the “out-of-bag” (OOB) error.

ARIMA, GLARMA and RF time series models and influenza A virus frequency in swine
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Retrospective analysis

A retrospective analysis was performed on each historical time series for the period from May

2007 to December 2015. In this approach, the ARIMA, GLARMA, and RF models were built

to assess the effect of seasonality and the long-term trend of IAV infections on the number of

diagnostic submissions and positive virological submissions at weekly and monthly intervals.

Simulated prospective analysis

A simulated prospective analysis was performed on each historical time series to compare the

performance of the ARIMA, GLARMA and RF models. The simulations started by training a

model on the first 44 weeks (or months) of data. The process proceeded by iteratively adding a

successive week (or month), retraining the model using the updated data, and predicting the

number of submissions or positive submissions, excluding the training period. This process is

known as “forecast evaluation with a rolling origin” [17]. The ARIMA, GLARMA and RF mod-

els in the simulated prospective analysis were built in a similar fashion to the retrospective analy-

sis. The predictions and residuals were examined graphically to verify the adequacy of different

aspects of the model. We also implemented leave-one-season-out cross-validation, LOSO,

where each season was successively “left out” from the training period and used for validation.

To investigate the ability of each model to predict increases and decreases in the number of

diagnostic submissions and positive virological submissions, confusion matrices were con-

structed where predicted increases and decreases were classified into correctly (and incor-

rectly) identified actual increases and decreases. The accuracy for each modeling approach was

calculated to determine the proportion of the total number of predictions that were correct.

Sensitivity, the proportion of correctly identified increases, was also computed.

Results

Retrospective ARIMA, GLARMA, and RF

Overall, 1414 unique submissions from swine herds were submitted to the AHL. Of the 1304

(92.2%) diagnostic submissions, 1100 (84.4%) were tested with virological procedures (Fig 1).

Of these, 1095 (99.6%) submissions, including 312 (28.5%) positive submissions, were aggre-

gated based on the submission date to obtain the number of diagnostic submissions and posi-

tive virological submissions per week and month. In total, 463 weekly and 104 monthly

observations were converted into the time series used for analysis. Total weekly diagnostic sub-

missions ranged from 0 to 11, increasing from an average of 2.5 per week in 2007 to 3 per

week in 2015. Total weekly positive virological submissions ranged from 0 to 6, increasing

from an average of 0.5 per week in 2007 to 1.3 per week in 2015. Total monthly diagnostic sub-

missions ranged from 2 to 23, increasing from an average of 10.8 per month in 2007 to 13.3

per month in 2015. Total monthly positive virological submissions ranged from 0 to 13,

increasing from an average of 2 per month in 2007 to 5.8 per month in 2015.

The four count time series are shown in Fig 2. The series seem to exhibit seasonal fluctua-

tions. The trend from the weekly and monthly diagnostic submissions is apparent from visual

inspection and seems to behave in a cyclic manner but with some tendency to upward drift.

The positive counts at weekly and monthly intervals show a slow increasing trend.

The ARIMA analysis indicated the presence of trend in the time series of the number of

monthly diagnostic submissions, and the number of weekly and monthly positive virological

submissions. First differencing reduced the effect of the trend. The coefficient estimates of the

retrospective ARIMA components are provided in S1 Table in the Supporting Materials. Fig 3

presents a graphical representation of the retrospective ARIMA, GLARMA and RF models

ARIMA, GLARMA and RF time series models and influenza A virus frequency in swine
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and shows that, overall, the models can successfully detect increases and decreases in the num-

ber of submissions and positive submissions, with the exception of the number of weekly posi-

tive submissions. The predictive accuracy of the models is summarized in Table 1 and S2

Table. The RMSE and NRMSE in the retrospective analysis vary among the models from 0.966

to 4.429 (Table 1) and 0.111 to 0.210 (S2 Table), respectively, where the large values relate to

the monthly submission prediction.

In the GLARMA model retrospective analysis, the likelihood ratio test and Wald tests indi-

cate that the GLARMA model provides a better fit than the generalized linear model. Based on

the estimated value of the shape parameter, the monthly count time series were modeled with a

Poisson GLARMA, and the weekly count time series with a negative binomial GLARMA. The

diagnostic plots of the probability integral transformation indicate that the models with the cho-

sen serial correlations are adequate. The results from the analyses reveal a significant upward

trend in the number of weekly and monthly positive virological submissions in the study period

(P< 0.01, P< 0.01, respectively); however, this upward trend is not significant (P = 0.22 and

P = 0.12, respectively) in the number of diagnostic submissions at weekly and monthly intervals.

Relative to the baseline summer season, the winter, spring, and fall season regression terms

were all found to be highly significant (P = 0.003, P = 0.0004, P = 0.001, respectively), indicating

that season has a significant impact on the number of weekly diagnostic submissions. Only the

fall season was significant (P = 0.0419) for the number of weekly positive virological submis-

sions. Furthermore, relative to the August baseline, late fall months, early winter months, spring

months and June were found to have a significant impact on the number of monthly diagnostic

submissions (P< 0.05). Fall and early winter months and May were found significant

(P< 0.05) when modeling the number of monthly positive virological submissions.

Fig 2. Number of diagnostic submissions and positive virological submissions for IAV per week and month. The counts were obtained from swine samples

submitted to the Animal Health Laboratory in Ontario from May 2007 (week 19) to December 2015 (week 52). The original data are represented by blue lines for

diagnostic submissions and by pink lines for positive virological submissions. The four time series were subjected to the decomposition, and the somewhat upward

trend-cycle component in diagnostic submissions is shown in black while the slow increasing trend in positive counts is displayed in red.

https://doi.org/10.1371/journal.pone.0198313.g002
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With the retrospective regression RF model, we examined the relative influence of the

explanatory variables on the count time series and present the results in Table 2. The impor-

tance values for season were found to be among the highest for the monthly and weekly sub-

mission counts, but not for the monthly and weekly positive submissions. Trend was found to

have the largest importance value for the monthly and weekly positive submission counts. This

may suggest that (as was found under the GLARMA model) season affects the monthly and

weekly count time series of diagnostic submissions, and the upward trend affects the monthly

and weekly count time series of positive diagnostic submissions.

Simulated prospective ARIMA, GLARMA, and RF

The predictive accuracy of the simulated prospective time series models are shown in Table 1

and S2 Table. Overall, the predicted and actual counts are very close. The RMSE ranges from

1.018 to 5.1694 with the smallest value for each of the four time series corresponding to the RF

Fig 3. Retrospective predicted counts of weekly and monthly submissions and positive submissions for IAV. The autoregressive integrated moving average

(ARIMA) is shown in red, the generalized linear autoregressive moving average (GLARMA) in blue, and the random forest (RF) in green. The actual observations are

represented by black lines.

https://doi.org/10.1371/journal.pone.0198313.g003

Table 1. Predictive accuracy evaluated via the root mean square error (RMSE) of autoregressive integrated moving average (ARIMA), generalized linear autoregres-

sive moving average (GLARMA), and random forest (RF) time series models.

Counts RMSE retrospective RMSE prospective

ARIMA GLARMA RF ARIMA GLARMA RF

Weekly submissions 1.449 1.804 1.822 1.970 1.946 1.890

Monthly submissions 3.823 3.443 4.429 4.926 5.169 4.851

Weekly positive submissions 0.983 0.966 1.010 1.021 1.198 1.018

Monthly positive submissions 1.444 1.759 2.313 2.677 2.786 2.529

https://doi.org/10.1371/journal.pone.0198313.t001
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model (Table 1). The NRMSE ranges from 0.169 to 0.246 and the smallest value for each of the

four time series likewise corresponds to the RF model (S2 Table). Fig 4 illustrates predictions

with the simulated prospective models for the last three years. The plots show that high and

low counts are not well predicted. Fig 5 contains the residual plots. Figs 4 and 5 both indicate

that, on average for the four historical time series, the GLARMA and ARIMA models tend to

underestimate counts, whereas the RF model has a tendency to overestimate them. This can be

most clearly seen for the weekly data.

The RMSE and the NRMSE for the naïve forecasts of the number of submissions and posi-

tive submissions are reported in S3 Table. In all cases but in one (the monthly submissions for

Table 2. Retrospective random forest variable importance measurements.

Variables Percent increase in root mean square error (RMSE)

Submission counts Positive submission counts

Monthly Weekly Monthly Weekly

Counts Lag 1 0.41 4.04 1.34 5.48

Counts Lag 2 0.40 2.31 0.19 9.34

Counts Lag 3 4.40 1.50 3.96 0.41

Counts Lag 4 3.26 0.91 2.72 5.87

Counts Lag 5 2.58 0.93 6.05 0.79

Season 5.79 9.61 0.37 3.82

Trend 5.93 3.45 19.21 13.07

https://doi.org/10.1371/journal.pone.0198313.t002

Fig 4. Prospective simulated counts of weekly and monthly submissions and positive submissions for IAV. Counts were predicted for the last three years. The

autoregressive integrated moving average (ARIMA) is shown in red, the generalized linear autoregressive moving average (GLARMA) in blue, and the random forest

(RF) in green. The actual observations are represented in black.

https://doi.org/10.1371/journal.pone.0198313.g004
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the GLARMA model), the predictions with the simple method were less accurate than the pre-

dictions obtained under the three time series models.

The predictive accuracy of the simulated prospective models based on the LOSO cross-vali-

dation are summarized in S4 Table. Overall, the results are similar to those reported in Table 1

and S2 Table, and the magnitude of the difference between the two validation processes is very

small (Table 1 and S2 and S4 Tables).

The simulated prospective model validation results are provided in Table 3 and S5–S15

Tables. Overall, the accuracy of correctly identifying increases and decreases in the number of

diagnostic submissions, and positive virological submissions at weekly and monthly intervals,

is over 50% (Table 3 and S5–S7 Tables). However, overall the RF model outperformed the

GLARMA and ARIMA models. The proportion of increases and decreases correctly identified

by the RF model ranged from 61% to 68% (see Supplementary Material (S5–S7 Tables)).

Fig 5. Residuals plots. The residuals were obtained after fitting with simulated prospective autoregressive integrated moving average (ARIMA), generalized linear

autoregressive moving average (GLARMA), and random forest (RF) model predicted counts at weekly and monthly intervals.

https://doi.org/10.1371/journal.pone.0198313.g005

Table 3. Confusion matrix for predicted monthly positive submissions with the prospective autoregressive integrated moving average (ARIMA), generalized linear

autoregressive moving average (GLARMA) and random forest (RF) time series models.

Predicted Actual Accuracy Sensitivity

Up Down

ARIMA Up 0.24 0.10 0.66 0.50

Down 0.24 0.42

GLARMA Up 0.22 0.12 0.63 0.47

Down 0.25 0.41

RF Up 0.27 0.14 0.68 0.60

Down 0.18 0.41

https://doi.org/10.1371/journal.pone.0198313.t003
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Furthermore, the RF tends to predict the actual increases with a higher degree of sensitivity

than the GLARMA and ARIMA models, ranging from 0.6 to 0.69.

The prospective validation results for the seasonal-naïve method are presented in S8–S11

Tables. This method poorly identified the actual increases in the counts, resulting in low accu-

racy and sensitivity (particularly, for predicting increases in the number of positive virological

submissions at weekly and monthly intervals).

The simulated prospective model results based on the LOSO cross-validation are given in

S12–S15 Tables. The accuracy with regard to correctly identifying increases and decreases in

the number of diagnostic submissions and positive virological submissions at weekly and

monthly intervals ranges from 45 to 73%, with the highest and lowest accuracy for each of the

four time series corresponding to the RF and ARIMA models, respectively. More specifically,

accuracies were 56–73%, 48–59% and 45–62% for the RF, GLARMA and ARIMA models,

respectively. Additionally, the proportions of correctly identified increases found were 62–

88%, 56–72% and 0–55% for the ARIMA, RF and GLARMA models, respectively.

Fig 6 shows the normal quantile-quantile (QQ) plots of the residuals, plotting the predicted

quantiles against the theoretical quantiles. The points for weekly diagnostic submissions,

monthly diagnostic submissions, and monthly positive virological submissions seem to fall on

a straight line, indicating that the residuals are normally distributed. The QQ plots for the

weekly positive time series are roughly linear from -1 to 1 (about 68% of the data), and then

the points curve off in the extremities, This suggests the residuals have more extreme values in

either the right or left tails than would be expected if they came from a normal distribution.

These values correspond to poor prediction of sudden increases or decreases observed.

Fig 6. Normal Quantile-|Quantile (Q-Q) plots of the residuals. Residuals were obtained after fitting with simulated prospective autoregressive integrated moving

average (ARIMA), generalized linear autoregressive moving average (GLARMA), and random forest (RF) model predicted counts at weekly and monthly intervals.

https://doi.org/10.1371/journal.pone.0198313.g006
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Discussion

The literature on different alternatives to analyze time series of IAV or other pathogens in

swine populations for surveillance purposes is sparse. To the best of our knowledge, this is the

first paper to focus on different approaches for forecasting IAV frequency in swine and to

compare the outputs of such approaches to a suitable reference for the purpose of calculating

sensitivity and predictability. Based on the AHL swine diagnostic IAV data, we have shown

that the prospective RF model outperforms the prospective time series models. A similar con-

clusion was reached by Kane et al. (2014), who considered the RF and ARIMA models for the

prediction of avian influenza outbreaks.

The retrospective and prospective analyses conducted herein highlighted different aspects

of modeling performance. Evidence of seasonality could be detected in four time series to

various extents. GLARMA models based on the number of submissions per week and per

month suggested the existence of seasonal differences among individual months (compared to

August) and calendar seasons. Similarly, the RF models based on the latter two time series also

indicated season as the most, or second most, important term in the model, respectively. This

agrees with a general consensus among experts that respiratory diseases have peaks in the first

or second periods of the year [18,19]; it is also consistent with previous results [5]. Evidence

for seasonality based on the number of positive virological submissions was less consistent.

While several months had statistically higher positive submissions than the month of August

for monthly positive submissions, no season other than the fall could be identified as statisti-

cally significantly different to summer for weekly positive submissions. In addition, the season

effect had among the lowest importance scores among all variables included in RF models.

Therefore, strong conclusions about the existence of seasonality based on the number of posi-

tive virological submissions cannot be made based on these data alone. However, an increasing

trend in the frequency of positive submissions based on monthly and weekly data was detected

regardless of the modeling approach considered. This could be a consequence of: (i) improved

laboratory methods, or (ii) more effective sampling strategies applied in the field, or (iii) an

increasing trend in IAV frequency, or (iv) all, or some, of the above combined.

Prospective ARIMA, GLARMA and RF models were evaluated with respect to their predic-

tive abilities. Results were compared with those obtained with the seasonal-naïve method.

Each of the models had problems predicting sudden increases and decreases in the number of

diagnostic and positive virological submissions. Such difficulties with forecasting “shocks” are

commonly found in economics [20] and outbreak investigations [11,21], among others. An

overall comparison of the three time series models indicated that RF models outperformed the

ARIMA and GLARMA. The RMSE (or NRMSE) for the prospective forecast of the RF models

was the lowest of the three methods. Furthermore, RF models were found to have a tendency

to predict increases in counts with a higher degree of sensitivity than ARIMA and GLARMA

models. This could be due to several reasons. For instance, in the prospective forecasts the ex-

planatory variables for the GLARMA models remained the same when the model was retra-

ined from one iteration to the next, as well as across the four different time series. However,

the parameters of ARIMA and the explanatory variables for RF changed. In fact, within the RF

algorithm predictors were sampled at each node of a tree when the model was retrained from

one iteration to the next. These adaptive advantages might in part explain the lower RMSE (or

NRMSE) of RF over ARIMA and GLARMA, and the lower RMSE (or NRMSE) of ARIMA

over GLARMA, in prospective forecasts. Another reason might be that a Box transformation

of counts in the ARIMA models did not approximate a Gaussian distribution very well, leading

to poor predictive performance. We note that the RF model does not rely on any distributional

assumptions and that, although it seems to have higher sensitivity than the other two methods,
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this model appears to be poorer at predicting decreases in submissions. A possible explanation

for not detecting increases as well as decreases could be the existence of factors associated with

the variation of the counts that were not included in the analyses.

The three models tested outperformed the seasonal-naïve method. In particular, the predic-

tive values found under the RF model were more accurate and detected the actual increases

with a much higher degree of sensitivity than the naïve method. This could be explained by the

fact that the seasonal-naïve method ignored all predictor information.

The ARIMA, GLARMA and RF models’ predictive abilities were assessed under the LOSO

cross-validation. The RF model was more accurate in predicting the number of diagnostic sub-

missions, and the ARIMA model was more accurate in identifying the actual increases in the

positive counts. We note that the three models performed better on the weekly than on the

monthly time series. The reason could be that the weekly data had more observations.

In this study, the predictive accuracy of ARIMA, GLARMA and RF models was assessed

under different cross-validation approaches. All of the methods yielded qualitatively similar

conclusions. However, the application of the validation techniques to time series forecasting

was found to not be straightforward due to the inherit serial correlation and non-stationary

nature of the data. Therefore, the LOSO cross-validation was used for all three models and the

10-fold cross-validation was used for RF models as part of Breiman’s RF algorithm [9]. It

should be noted that both cross-validation techniques are based on partitioning data into

training and test sets to estimate the expected prediction error. It is feasible to apply both tech-

niques to RF models, and in both approaches RF models tended to predict increases with a

higher degree of sensitivity than ARIMA and GLARMA models. On the other hand,

GLARMA models under the LOSO cross-validation failed to predict increases in the number

of monthly positive virological submissions. Failure of this cross-validation technique in a

time series context was also demonstrated in a study by Moreno-Torres et al. [22] among oth-

ers. Furthermore, it was found to be difficult to 10-fold cross-validation for GLARMA models

because of the need to select appropriate lags for the ARMA components. That is, the algo-

rithm for a GLARMA model is designed in such a way that the use of the 10-fold cross-valida-

tion requires the manual specification of the degree of serial dependence for each training set.

Moreover, the misspecification of lag structure leads to identifiability issues and lack of con-

vergence of the likelihood optimization algorithm. These were found to result in a very time-

consuming validation procedure. There was also a problem with the application of the 10-fold

cross-validation for ARIMA models on the weekly time series. The validation process was

computationally exhaustive because ARIMA models are fully iterative and have computation-

ally intensive fitting.

Considering the above, it appears that overall the RF is the most accurate model among the

ones tested. Based on these findings, and on the fact that detecting increases in disease fre-

quency (sensitivity) is important for veterinary authorities, public health planners and policy

makers [23,24], we conclude that the RF models could potentially be used for predicting

weekly and monthly counts of IAV submissions, under the conditions that were considered in

this analysis. Certainly among the three considered approaches, RF models appear to be the

most suitable choice for ongoing reporting systems, and they appear particular suited for pre-

dicting increases in disease frequency.

One limitation of this study was the surveillance nature of the data. The rate of swine sub-

missions is likely associated with numerous and varied reasons affecting voluntary participa-

tion. The development of innovative strategies to promote participation in a surveillance

program would be beneficial for both the swine industry, and due to the pandemic potential of

novel influenza virus infections, human populations. Another limitation was that our analyses

did not include a number of variables that might be associated with IAV frequency. So, the
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inclusion of environmental factors (e.g., temperature, humidity) in surveillance models for

IAV in swine populations might be another area for further investigation.

Conclusion

The results from the simulated prospective analysis suggested the RF approach tends to predict

increases in the number of diagnostic and positive virological submissions at weekly and

monthly intervals with a higher degree of sensitivity than ARIMA and GLARMA models. The

predictive performance of each prospective modeling approach was evaluated with the RMSE

and NRMSE, which were found to be smallest for the RF model. Overall, the RF modeling

approach offers enhanced prediction ability over ARIMA and GLARMA time series models

for the diagnostic data under the conditions considered in the analysis of this study. The retro-

spective ARIMA, GLARMA, and RF models indicate that the fall months and January have the

most significant impact on the (increasing) number of weekly and monthly diagnostic and

positive virological submissions for IAV infections in Ontario swine populations. A significant

linear increasing trend was found for the positive counts at both weekly and monthly intervals.

Future research should explore formulations of time series with other factors that could influ-

ence the frequency of IAV in swine populations.
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