
1Scientific Reports |          (2019) 9:1218  | https://doi.org/10.1038/s41598-018-38046-9

www.nature.com/scientificreports

Usefulness of continuous 
probability distributions of rates for 
modelling radionuclide biokinetics 
in humans and animals
Igor Shuryak1 & Ekaterina Dadachova2

Modelling the biokinetics of radionuclide excretion or retention is important in nuclear medicine and 
following accidental/malicious radioactivity releases. Sums of discrete exponential decay rates are often 
used, but we hypothesized that continuous probability distributions (CPD) of decay rates can describe the 
data more parsimoniously and robustly. We tested this hypothesis on diverse human and animal data sets 
involving various radionuclides (including plutonium, strontium, caesium) measured in the laboratory 
and in regions contaminated by the Fukushima and Chernobyl nuclear accidents. We used four models on 
each data set: mono-exponential (ME) with one discrete decay rate, bi-exponential (BE) with two rates, 
gamma-exponential (GE) with a Gamma distribution of stretched-exponential rates, and power-decay 
(PD) with a Gamma distribution of power-decay rates. Information-theoretic model selection suggested 
that radionuclide biokinetics, e.g. for plutonium in humans, are often better described by CPD models 
like GE and PD, than by discrete rates (ME and BE). Extrapolation of models fitted to data at short times 
to longer times was frequently more robust for CPD formalisms. We suggest that using a set of several 
CPD and discrete-rate models, and comparing them by information-theoretic methods, is a promising 
strategy to enhance the analysis of radionuclide excretion and retention kinetics.

Mathematical models of radionuclide excretion and retention kinetics from living organisms are important in 
a variety of contexts. For example, they are needed to estimate radiation doses and health risks from medical 
(e.g. nuclear medicine procedures), accidental (e.g. nuclear power plant accidents like Chernobyl or Fukushima), 
malicious (e.g. terrorist attacks using radioactive materials) or occupational (e.g. nuclear industry workers) expo-
sures resulting in radionuclide dispersal and/or incorporation into the body. Such models are also needed in 
application to organisms other than humans, e.g. when nuclear power plant accidents such as Fukushima cause 
radioactive contamination of fish and game animals that are used for human consumption.

Radionuclides undergo well-understood physical decay. Importantly, however, many other chemical, bio-
logical and ecological processes also affect the kinetics of their removal from living organisms. Whereas physi-
cal decay has an exponential time dependence, these other processes can be much more complex and result in 
non-exponential time patterns. Detailed models have been developed to address this complexity, e.g. human 
radionuclide biokinetics models1 and models for the uptake and turnover of radionuclides in ecosystems2.

Complex models, however, have some important limitations. When the number of modelled processes that 
operate on different time scales and often have non-linear dependences is large, and the number of model param-
eters is correspondingly large, the model can become difficult to solve and parameter estimates can have very 
large uncertainties3,4. The latter phenomenon is sometimes called model “sloppiness”4.

Here we investigated the possibilities of using simple models, with small numbers of adjustable parameters, to 
describe radionuclide biokinetics data. For this purpose, we developed two new simple models based on the con-
cept of a continuous probability distribution (CPD) of decay rates. The first, abbreviated as gamma-exponential 
(GE), combined the stretched exponential function5 with a Gamma distribution of rates. The second, abbreviated 
as power-decay (PD), combined a simplified version of the stretched hyperbola with a Gamma distribution of 
rates6. Using the Akaike information criterion with sample size correction (AICc) and multimodel inference 
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(MMI)7,8, which are described in the Methods section, we compared the performances of these models with those 
of the commonly-used mono-exponential (ME) and bi-exponential (BE) models9–11, which represent a single 
decay rate and the sum of two rates, respectively.

For the comparisons, we used the following diverse real data sets, both human and animal, as examples. 
(I) Urinary excretion of plutonium in healthy human volunteers over time after administration12. (II) Plasma 
concentrations of strontium in healthy human volunteers over time after administration13. (III). Animal data 
measured under laboratory conditions: (a) Concentrations of humanized melanin-binding 111In-labeled IgG anti-
bodies in mouse blood over time after injection. (b) 137Cs retention in the sea urchin Strongylocentrotus nudus14. 
(IV). Caesium (137Cs, 134Cs) radioactivity concentrations in the following animals inhabiting the area contami-
nated by the Fukushima nuclear power plant accident in Japan: (a) wild boars (Sus scrofa), (b) Asian black bears 
(Ursus thibetanus), (c) sika deer (Cervus nippon), and (d) ocellate spot skate (Okamejei kenojei). (V). 137Cs radio-
activity concentrations in wild boars (Sus scrofa) in the area contaminated by the Chernobyl nuclear power plant 
accident in Ukraine15.

The main goal of this study was to conduct a proof of principle investigation of whether or not continuous 
probability distribution models like GE and PD could be reasonable for application in the fields of radionuclide 
biokinetics and radioecology, compared with models with discrete rates like ME and BE. The concept of con-
tinuous rate distribution models would be potentially useful to investigators in these fields because different 
types of biological and/or ecological processes can be summarized, producing robust numerical predictions, 
by continuous distributions of rates. In situations when the kinetics data for a particular radionuclide are well 
fitted by GE or PD functions, but not by ME or BE functions, the result suggests that many (rather than only 1 or 
2) compartments and/or rates are likely to be involved. Detailed mechanistic models (e.g.)1 would be needed to 
refine the information on specific rates and compartments, but such models may not be available for some studied 
radionuclides and/or organisms.

Methods
Data sets.  Our goal was to apply the proposed set of models (ME, BE, GE and PD) to a diverse set of real data 
examples on radionuclide biokinetics from both humans and animals to assess a realistic range of model perfor-
mance patterns, e.g. dominance of discrete rate models, dominance of CPD models, or no clearly best-supported 
model(s). For this purpose, we identified the following data sets.

	(I)	 Urinary excretion of plutonium in healthy human volunteers over time after administration12. Each 
study subject ingested 244Pu citrate solution and was injected intravenously with additional 244Pu several 
months later. This type of administration mimics a complicated pattern of plutonium incorporation into 
the human body that can result from accidental or malicious radioactive contamination. Here we ana-
lysed the urinary excretion data on 5 male volunteers over time after injection, which were presented in 
Table 4 of Ham et al.12. On this and all other data sets analysed here, we ln-transformed the data to bring 
the uncertainty distribution closer to Normal. We analysed the data from each subject separately, instead 
of resorting to mixed-effects modelling, because we focused on comparing the performances of different 
models by information-theoretic methods (described below), rather than on variations in parameter values 
for a single model across subjects.

	(II)	 Plasma concentrations of strontium in healthy human volunteers over time after administration13. Each 
study subject ingested 86Sr and was simultaneously injected intravenously with 84Sr. We analysed the data 
on 3 volunteers (separately for each one), which were presented in Table 4 of Li et al.13.

	(III)	Animal data measured under laboratory conditions. The first example involves a vertebrate model organ-
ism, the C57Bl6 female laboratory mouse. We used our own unpublished data on the kinetics of 111In-la-
beled IgG antibody to melanin in mouse blood over time after injection, corrected for physical decay of 
111In. The data are presented in Supplementary Data File 1. The second example involves an invertebrate 
model organism, the sea urchin Strongylocentrotus nudus14. We analysed the data on 137Cs excretion in sea 
urchins, which were obtained by first holding the urchins in radioactively contaminated water for 7 days, 
and then transferring them to clean water and monitoring their radioactivity levels over time. These data 
were presented in Fig. 1 of Nakamura et al.14, where each data point is the average value for 5 urchins. We 
digitized the data using GetData Graph Digitizer 2.26 software (http://getdata-graph-digitizer.com/).

	(IV)	Radiocaesium (combined 137Cs and 134Cs) radioactivity concentrations in wild game animals inhabiting 
the area contaminated by the Fukushima nuclear power plant accident in Japan: (a) wild boars (Sus scrofa), 
(b) Asian black bears (Ursus thibetanus), and (c) sika deer (Cervus nippon) (Supplementary Data File 2). 
These data were obtained from the Japan Atomic Energy Agency (JAEA) Radiation Monitoring Survey 
Results of Wild Birds and Animals (https://emdb.jaea.go.jp/emdb/en/portals/1040501000/). We analysed 
the data collected after September 1, 2011, i.e. approximately 6 months after the accident, because by this 
time the accumulation of radionuclides within animals probably reached its full extent and their subse-
quent excretion kinetics could be evaluated. This time frame was chosen because earlier times would likely 
be too soon for the ecological factors of radionuclide uptake and excretion in animals inhabiting the con-
taminated zone to reach a semi-equilibrium. Instances when the radiocaesium level was below detection 
(usually <10 Bq/kg) were rare (0.8% of observations for wild boars, 4.1% for black bears, and 6.1% for sika 
deer), and we excluded them from analysis. The exclusion of these small fractions of very low radioactivity 
measurements should not substantially bias the analysis results.
Since only the sum of 137Cs and 134Cs activities, rather than each isotope individually, was recorded in 
animal tissues, we estimated the ratio of these two isotopes using data from the JAEA Unmanned Heli-
copter Monitoring in the Distribution Survey of Radioactive Substances (https://emdb.jaea.go.jp/emdb/
en/portals/b1020202/). We assumed that the isotope ratio would be the same for all studied animals, and 
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estimated it to be about 47.4% 134Cs vs 52.6% 137Cs on September 1, 2011. The ratio changed at subsequent 
times based on the physical half-lives of 134Cs and 137Cs.
In addition to these data on terrestrial mammals, we also analysed data on 137Cs in a bottom-dwelling ma-
rine fish, the ocellate spot skate (Okamejei kenojei) (Supplementary Data File 2). We used data collected in 
Fukushima prefecture, starting on April 1, 2012 (no earlier measurements were available), taken from the 
Results of the monitoring on radioactivity level in fisheries products database (http://www.jfa.maff.go.jp/e/
inspection/). Because the fraction of instances with undetectable 137Cs levels increased over time after the 
accident, the end date of May 13, 2015 was chosen to keep this fraction under 10%, so that exclusion of 
undetectable measurements from analysis would not substantially bias the results.

	(V)	 137Cs radioactivity concentrations in wild boars (Sus scrofa) in the area contaminated by the Chernobyl 
nuclear power plant accident in Ukraine. These data were presented in Table 1 of Gulakov15. We used time 
since 1991, in years, as the independent variable for this analysis.

Because the focus of the current study is to investigate the time dependence of radioactivity excretion or 
retention processes, in all of these data sets we did not include other variables such as location. The effects of these 
other variables were not explicitly modelled here and were treated as components of random noise.

Models.  The simplest mono-exponential (ME) decay model is represented by the following equation, where 
RME (t) is the radioactivity at time t, Q is the intercept parameter (exp[Q] is the radioactivity at t = 0), PD(t) is the 
physical decay function of the radioactivity, and k represents other radioactivity excretion and retention processes 
(e.g. biochemical, ecological):

= × − × ×R t Q k t PD t( ) exp[ ] exp[ ] ( ) (1)ME

On a logarithmic scale, equation 1 can be rewritten as follows:

= + − ×R t Q PD t k tln[ ( )] ln[ ( )] (2)ME

The physical decay function PD(t) for X radionuclides is the following sum of exponential dependences, where Cj 
is the fractional contribution of the j-th radionuclide at t = 0, and Thj is the physical half-life of this radionuclide:
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The bi-exponential (BE) decay model is represented by the following equation, where Q and PD(t) have the same 
meanings as in the ME model, k2 is the slow radioactivity reduction process, and k1 is the additional reduction 
process, which acts on fraction F of the radioactivity:

= × × − + × + − × − × ×R t Q F k k t F k t PD t( ) exp[ ] ( exp[ ( ) ] (1 ) exp[ ]) ( ) (4)BE 1 2 2

Figure 1.  Comparison of decay patterns generated by a sum of three exponential rates (solid blue curve) and 
by the GE model (green dashed curve) and the PD model (red dashed curve) fitted to these patterns. Details are 
described in the main text.
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The parametrization of equation 4 was chosen so that when k1 ≥ 0 and k2 ≥ 0, then k1 + k2 ≥ k2, thereby unambig-
uously defining F as the “fast-decaying” fraction of radioactivity and 1 – F as the “slow-decaying” fraction. On a 
logarithmic scale, equation 4 can be rewritten as follows:

= + + × − + × + − × − ×R t Q PD t F k k t F k tln[ ( )] ln[ ( )] ln[ exp[ ( ) ] (1 ) exp[ ]] (5)BE 1 2 2

Of course, if either k1 or k2 approach 0, and/or if F approaches 0 or 1, the BE model simplifies to the ME model.
The proposed gamma-exponential (GE) decay model is based on the following assumptions: (1) The radio-

activity reduction processes, except physical decay, are summarized by the stretched exponential dependence tr, 
where r is an adjustable parameter. (2) The rate of these processes (u) follows a continuous probability distribution 
P(u). In other words, there is a continuous distribution of stretched exponential decay patterns. The GE model is 
mathematically represented as follows:

( )R t Q u t P u du PD t( ) exp[ ] exp[ ] ( ) ( )
(6)GE

u

r

0∫= × − × × × ×
=

∞

The selected probability distribution P(u) is the following customized version of the Gamma distribution, where 
µ is an adjustable parameter (the mean), ν is a variance-determining parameter (so that variance = ν × µ2), and Γ 
is the Gamma function:
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Explicit solutions to equations 6 and 7 on the linear and logarithmic scales are as follows:
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When parameter ν approaches 0, the “width” of the P(u) distribution shrinks, and the GE model approaches 
stretched exponential behaviour where ln[RGE(t)] depends on −µ × tr. The same phenomenon occurs when µ 
approaches 0. When parameter r approaches 1, the GE model approaches mono-exponential behaviour and 
becomes identical to the ME model (equation 1) where µ is substituted for k.

The proposed power-decay (PD) model is based on the observation that deviations from simple exponential 
decay, such as the weighted sum of several exponential functions, can be parsimoniously represented by a power 
function like (1 + z × t)−u, where z and u are adjustable parameters. The resulting PD model equation is as follows, 
where Q, P(u) and PD(t) have the same meanings as in equations above:

∫= × + × × × ×
=

∞ −( )R t Q z t P u du PD t( ) exp[ ] (1 ) ( ) ( )
(9)PD

u

u

0

Data sets: organisms, radionuclides
Best-supported model  
(the one with lowest AICc)

Sum of Akaike weights 
for GE and PD models

Minimum RMSE loss for

GE and PD 
models

ME and BE 
models

I. Humans, plutonium

Subject 1 PD 1.000 110.3 7706.3

Subject 2 PD 1.000 19.3 7367.0

Subject 3 PD 1.000 −61.6 2246.0

Subject 4 BE 0.379 1037.2 144556.7

Subject 5 PD 1.000 166.7 28807.9

II. Humans, strontium

Subject 1 ME 0.272 406.7 1002.1

Subject 2 GE 0.667 248.8 4543.5

Subject 3 ME 0.002 838.5 1132.7

III. Laboratory animals
Mouse ME 0.493 42.4 67.6

Sea urchin BE 0.549 273.5 729.4

IV. Wild animals in 
Fukushima nuclear 
accident zone, caesium

Wild boar GE 0.943 26.6 50.3

Black bear ME 0.245 107.8 106.7

Sika deer BE 0.277 48.9 −23.9

Ocellate spot 
skate BE 0.533 −121.5 −132.1

V. Wild animals in 
Chernobyl nuclear 
accident zone, caesium

Wild boar NA NA NA NA

Table 1.  Comparison of model performances on different data sets. Instances when CPD models were favoured 
over discrete rate models are shown in bold font. The NA label for data set V indicates that these data were 
explained exclusively by physical decay of radionuclides, as described in the main text, and all tested models 
therefore produced equivalent fits.
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Explicit solutions to equation 9 on the linear and logarithmic scales are as follows:

ν
ν ν

= × × + × × + ×
= + − × + × × + ×

ν−µ
µ

R t Q PD t z t
R t Q PD t z t

( ) exp[ ] ( ) (1 ln[1 ]) ,
ln[ ( )] ln[ ( )] (1/ ) ln[1 ln[1 ]] (10)
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when parameter ν approaches 0, ln[RPD(t)] depends on −µ × ln[1 + z × t]. When parameter z approaches 0, the 
PD model approaches mono-exponential behaviour and becomes identical to the ME model (equation 1) where 
µ × z is substituted for k.

Model fitting and parameter estimation.  We used maximum likelihood estimation to find best-fit 
parameters for each of the 4 tested models (ME, BE, GE and PD) on each analysed data set. We maximized the 
following log likelihood function16, which assumes that the statistical uncertainties are normally distributed on a 
logarithmic scale, where N is the number of data points, σ is the statistical uncertainty magnitude parameter, Wi is 
the uncertainty “weight” for the i-th data point (so that the variance = [σ × Wi]2), RO,i is the observed radioactivity 
at the i-th data point, and RM,i is the corresponding radioactivity predicted by the M-th model (i.e. by one of the 
tested models):

∑ ∑π σ
σ

= − ×




×
−



 − −

×
× −

= =
LL W R R WN ln[2 ]

2
ln[ ] ln[ ] 1

2
(ln[ ] ln[ ]) /

(11)M
i

N

i
i

N

O i M i i
1

2
1

, ,
2 2

For all analysed data sets, expect for the wild boar data from Chernobyl (data set V)15, the Wi values were 
unknown and presumably equal, so we set them to 1 for all data points. For the Chernobyl boar data, the radioac-
tivity measurements in individual animals were not reported15, so we used the reported summary data: number 
of animals (ni), mean (AVi) and maximum (MAXi) concentrations of 137Cs in boar muscle tissue (kBq/kg) at 
each i-th time point (during each studied year). These summary data were used to approximate ln[RO,i] and Wi 
as follows, where GE(ni) is the median extreme value for a sample of size ni taken from the standard Normal 
distribution:

= = −R AV W MAX AV GE nln[ ] ln[ ], (ln[ ] ln[ ])/ ( ) (12)O i i i i i i,

The values of GE(ni) were estimated from 30,000 Monte Carlo simulations using Maple 2017® software. For 
example, for ni = 5 random values drawn from the standard Normal distribution, GE(ni) = 1.13, which means 
that the median value (across all simulations) for the maximum of the sample is approximately 1.13 standard 
deviation units above the mean. Of course, GE(ni) increases with ni, and for ni = 20, GE(ni) reached 1.82. Here we 
used GE(ni) to approximate Wi. Sensitivity calculations showed that the analysis results for this data set were not 
very sensitive to perturbations of Wi.

The log likelihood function (equation 11) for each model on each data set was maximized using the sequen-
tial quadratic programming (SQP) algorithm in Maple 2017® software17. The following procedure was used to 
maximize the probability of finding the global, rather than a local, log likelihood maximum: (1) Initial parameter 
values for each model on each data set were identified manually by substituting various values and keeping those 
which generated a model curve that visually passed through most of the data. (2) Five hundred parameter values 
were randomly selected from the parameter space in the vicinity of the initial values. (3) The model was fitted 
using each of these 500 starting parameter combinations, and the combination which produced the highest log 
likelihood was retained as the best-fit parameter set. During the optimization procedure, the parameters were 
restricted to biologically plausible ranges, such as positive values or values > 10−6. Uncertainties (95% confidence 
intervals, CI) for each parameter were estimated using profile likelihood18.

Information theoretic model selection.  The performances of different models fitted to the same data 
were compared using the Akaike information criterion with sample size correction (AICc)7,8. AICc for the M-th 
model (AICcM) is calculated below, where ΛM is the number of adjustable parameters and LLM is the maximized 
log-likelihood value:

= − × + × Λ + × Λ × Λ + − Λ −AICc LL N2 2 2 ( 1)/( 1) (13)M M M M M M

The model that achieves the lowest AICc value is considered to be best supported among those considered. 
The relative likelihood of the M-th model is called the evidence ratio (ERM) and can be expressed as follows:

=





−

∆ 





∆ = −ER AICc AICc AICc AICcexp
2

,
(14)M

M
M M min

here, AICcmin is the lowest AICc value generated by the set of compared models.
The evidence ratio for M-th model, divided by the sum of the evidence ratios for all models, is the Akaike 

weight, WM. It represents the probability that the M-th model would be considered best-supported, among those 
tested, upon repeated sampling of the data. WM is described by the following equation:

∑=W ER ER/
(15)M M

M
M

As noted above, the BE, GE and PD models can all approach simple exponential behaviour (i.e. simplify to the ME 
model) if certain parameters approach limiting values such as zero. Consequently, if any of these models failed 
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to achieve a higher log likelihood than the ME model, their Akaike weights were assigned to the ME model. For 
example, if all 4 models had the same log likelihoods on a given data set, the simplest ME model was assigned an 
Akaike weight of 1 and all of the other more complex models were assigned weights of zero.

Extrapolation of models from short to long times.  On each data set, we compared how the different 
models performed when each model was fitted to the data at short times and then extrapolated to data at longer 
times. The comparison was performed by calculating root mean squared error (RMSE) for each model on each 
data set under the following conditions: (1) Fitting the M-th model to all the data over the entire available time 
range, but calculating RMSE only on 1/3 of the data at the longest times. This produced RMSEFull,M. (2) Fitting the 
M-th model only to those data points over the shortest 2/3 of the time range, but again calculating RMSE only 
on 1/3 of the data at the longest times. This produced RMSEShort,M. Based on these two metrics, we calculated the 
RMSE loss (RMSELM), which represents a difference in RMSE between conditions 1 and 2:

= −RMSEL RMSE RMSE (16)M Short M Full M, ,

Usually (but not always) RMSELM was a positive number, which suggests that RMSE calculated on data at long 
times was generally worse when the model was fitted to data at short times only instead of to all the data. The 
model that achieved the smallest RMSE loss, compared with other tested models, was considered to perform the 
best when extrapolated from short to long times. In other words, a small RMSE loss value indicates that the model 
has the right “shape” to decently predict the data at long times based on best-fit parameters obtained from fitting 
the data at short times. In addition, we also calculated RMSE for each model on each full data set.

Results
Comparison of discrete rate model and CPD model behaviours.  Models that consist of sums of sev-
eral discrete exponential rates are frequently used to analyse complex patterns of radioactivity excretion or reten-
tion in human and animal data. However, when a decay pattern involves two or more rates, models that assume a 
continuous distribution of rates, such as the GE and PD formalisms proposed here, can fit the data very similarly 
to discrete rate models, but using fewer adjustable parameters. For example, consider a sum of 3 exponential 
rates, where 60% of the radioactivity decays at a rate of 1 time−1, 30% decays at a slower rate of 1/16 time−1, and 
the remaining 10% decays at an even slower rate of 1/256 time−1. When GE and PD models were fitted by least 
squares (on a logarithmic scale) to the decay curve generated by this sum of three rates model, very similar curves 
were obtained (Fig. 1). Notably, the discrete-rates model contains six adjustable parameters (neglecting the sta-
tistical uncertainty term in this model comparison example), whereas the continuous rate distribution models 
contain two fewer parameters each (Q = 0, µ = 0.677 time−1, r = 0.606, ν = 0.857 for GE and Q = 0, µ = 0.588, 
z = 1.004 time−1, ν = 0 for PD, see Methods section for parameter meanings). This example illustrates the point 
that CPD models represent parsimonious alternatives to discrete rate models.

Because discrete rate and CPD models often produce similar fits to the data, relatively large and detailed data 
sets can be required to identify the best-supported model. We illustrate this point by simulating some data from 
a “true” GE model with parameters Q = 3.0, µ = 1.8 time−1, r = 2/3, ν = 1.0 (see Methods section for parameter 
meanings), and σ (the standard deviation) = 0.25 ln units. The simulations covered the time range of 0–100 arbi-
trary units, using 5 simulated data points per time point, but varying the number of regularly spaced time points 
from 10 to 100. For example, using 10 time points implies that the spacing between them would be 100/10 = 10 
time units, and so the time points would be 10, 20, 30 and so on until 100. A sample simulation with 75 time 
points is shown in Fig. 2A. The simulated data were analysed by four models (ME, BE, GE and PD), using the 
information theoretic approach described in the Methods section. Although the GE formalism was the “true” 
data-generating model in this case, the median Akaike weight of the GE model across simulations was very low 
(<0.1) in data sets with <40 time points, and remained <0.5 even when 100 time points were used (Fig. 2B). 
Because the Akaike weights of all tested models have a sum of unity (see Methods section), such low values 
indicate that the GE model was usually not selected as best-supported on small data sets even though it was the 
true model. The median value for the sum of Akaike weights for the GE and PD models, however, increased 
more rapidly with increasing number of time points, and reached 0.5 at about 40 time points and 0.9 at about 70 
time points (Fig. 2B). Therefore, this data simulation example shows that: (1) It can be quite difficult to identify 
the “true” data-generating model, or even any best-supported model, in radioactivity biokinetics data. (2) It is, 
however, feasible to discriminate between discrete rate models (ME and BE in this case) and continuous rate 
distribution models (GE and PD in this case) in sufficiently large data sets because summed Akaike weights for 
the GE and PD models grow rapidly with increasing number of time points (Fig. 2B). Thus, sufficiently detailed 
data should allow an investigator to estimate whether continuous rate distributions or discrete rates describe the 
studied process better by applying information theoretic criteria. This information would provide mechanistic 
insight and potentially increase the accuracy of model predictions.

Analysis of data set I.  Our analysis of real data on plutonium excretion in human volunteers (data set I) 
showed that the PD model strongly outperformed all other tested models (ME, BE and GE) on data from 4 out 
of 5 subjects (Table 1, Fig. 3, Supplementary Data File 3). This conclusion was supported by the PD model’s very 
high Akaike weight (essentially unity) and low root mean squared error (RMSE), compared with other models 
(Supplementary Data File 3). The PD model also outperformed other models when each model was fitted to 
data at short times and extrapolated to longer times. This is shown by the PD model’s low RMSE loss value (see 
Methods section), compared with other models (Supplementary Data File 3).

Subject 4 was an exception: the BE model was best-supported, whereas the PD model and the PD and GE 
models taken together had much lower Akaike weights (Table 1, Supplementary Data File 3). However, the best 
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RMSE loss was still achieved by the PD model (Table 1, Supplementary Data File 3). The likely reason for why 
the analysis results for subject 4 differed from those for the other subjects is the absence of data points at times 
between 7 and 84 days (Fig. 3).

Overall, these results suggest that the PD formalism, which assumes a continuous distribution of decay rates, 
reasonably approximated most of the plutonium data in a parsimonious manner, outperforming other tested 
models. The PD model (and the other formalisms tested here) are intended to generate simple and parsimonious 
“summaries” of the complex processes of plutonium biokinetics in the human body processes using a minimum 
number of parameters. In contrast, there is a different class of models - detailed and highly parametrized mecha-
nistic formalisms, such as the model by Leggett et al.1. We believe that detailed biokinetics models and the simple 

Figure 2.  Information theoretic model selection examples on simulated data. (A) An example of data (black 
symbols) simulated from the GE model (red curve). (B) Summary of model selection results on simulated data 
sets with different numbers of time points. Blue solid curve = median Akaike weight for the GE model, which 
is the true data-generating model in this case. Blue dashed curves = 95% CIs. Red solid curve = median for the 
sum of Akaike weights for the GE and PD models. Red dashed curves = 95% CIs.

Figure 3.  Model best fits to the human plutonium data (black circles), data set I. The y-axis represents ln-
transformed urinary excretion of 244Pu by male volunteers after intravenous injection in citrate solution  
(%/day)12. The x-axis represents time after plutonium administration. Green curve = ME model, cyan 
curve = BE model, blue curve = GE model, red curve = PD model.
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summary models proposed here have different purposes. Both model classes can be applied to plutonium data, 
depending on the goals of the investigator.

Analysis of data set II.  A different pattern was seen in the analysis of data set II on strontium retention in 
healthy human volunteers (Table 1, Fig. 4, Supplementary Data File 3). The decay kinetics appeared simpler than 
the kinetics for plutonium, possibly because of smaller data set size and shorter investigated time range. The ME 
model was best-supported on data for 2 out of the 3 subjects, but continuous rate distribution models achieved 
the best RMSE loss on data from all 3 subjects (Table 1, Supplementary Data File 3). These results suggest that 
strontium retention in the human body, perhaps expectedly, may deviate somewhat from ME kinetics, but that 
this deviation is difficult to quantify using the data and models described here.

Analysis of data set III.  Data set III contains two examples of radioactivity retention kinetics in animals 
measured under laboratory conditions. The first example, melanin-binding 111In-labeled antibodies in mouse 
blood, was visually well described by the BE, GE and PD models (Fig. 5A), but because of the data set’s small size 
the simplest ME model achieved the highest Akaike weight (Supplementary Data File 3). The Akaike weights and 
RMSE values showed little difference between different models (Supplementary Data File 3 online), suggesting 
that none of these models clearly outperformed the others. RMSE loss was lowest for the PD model, which pro-
vides some indication that this formalism performed better than others when extrapolated from short to long 
times on this data set (Table 1, Supplementary Data File 3).

Figure 4.  Model best fits to the human strontium data (black circles), data set II. The y-axis represents ln-
transformed plasma concentrations (µg/L) of 84Sr and 86Sr for three individuals, as a function of time after 
administration13. The x-axis represents time after strontium administration. Green curve = ME model, cyan 
curve = BE model, blue curve = GE model, red curve = PD model.

Figure 5.  Model fits to data set III: laboratory animal data. (A) Model best fits to the data on melanin-binding 
111In-labeled antibody in mouse blood (black circles). The y-axis represents percentage of injected radioactive 
dose per gram tissue, corrected for physical decay of 111In and ln-transformed. The x-axis represents time after 
injection. (B) Model best fits to radiocaesium data in sea urchins (black circles). The y-axis represents the 137Cs 
radioactivity concentration in the sea urchins14, relative to its concentration in water, divided by the value at day 
0 and ln-transformed. The x-axis represents time after the urchins were placed in non-radioactive water. In both 
panels, green curve = ME model, cyan curve = BE model, blue curve = GE model, red curve = PD model.
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The second example, radiocaesium retention in sea urchins, appeared to be best described by the BE model 
(Table 1, Supplementary Data File 3), as reported in the original publication from which data were extracted14. 
The GE and PD models, however, were not far behind the BE model, the sum of Akaike weights for the GE and 
PD models was >0.5 (Table 1), and all three formalisms produced similar best-fit curves (Fig. 5B). The BE, GE 
and PD models all had similar RMSE values, and the PD model had the best RMSE loss performance (Table 1, 
Supplementary Data File 3). The ME model had very poor support (Supplementary Data File 3). These results 
suggest that radiocaesium biokinetics in sea urchins involves at least two, and possibly more, decay rates. These 
rates are relatively rapid, which is consistent with observations that radiocaesium levels in sea urchins after the 
Fukushima nuclear disaster declined to undetectable levels within 3–4 years after the accident, whereas they 
remained elevated for much longer time in some other marine organisms like bottom-dwelling fish19.

Analysis of data set IV.  Data set IV contains four examples of ecological radioactivity data in terrestrial and 
aquatic animals in regions contaminated by the Fukushima nuclear power plant accident in Japan. On the first 
example, radiocaesium data in wild boars, the PD model simplified to approach the ME model, and the BE model 
exhibited unreasonable behaviour at short times (Table 1, Fig. 6A, Supplementary Data File 3). The GE model 
strongly outperformed all other tested formalisms (Table 1, Supplementary Data File 3), probably because it was 
the only model flexible enough to reproduce a slow decay pattern at short times, followed by faster decay at longer 
times, and the large data set size allowed this difference in curve shapes to become important (Fig. 6A). These 
results suggest that the decrease in radiocaesium concentrations in wild boars after the Fukushima nuclear power 
plant accident is probably influenced by multiple ecological factors that can be approximated by the GE model, 
but not by the other tested models such as those that assume only one or two decay rates.

In contrast, radiocaesium in black bears from the same contaminated area of Japan appeared to decrease over 
time with simpler kinetics than in wild boars: the ME model achieved the highest support on black bear data 
(Table 1, Supplementary Data File 3). The best fits from all other models essentially overlapped the one from the 
ME model (Fig. 6B), and the ME model was favoured in information theoretic analysis due to its simplicity. Sika 
deer data from the Fukushima-contaminated area displayed yet another pattern: they were best described by the 
BE model, which predicted rapid decay at short times and essentially no decay (other than physical) at longer 
times (Table 1, Fig. 6C, Supplementary Data File 3).

Model-averaged (MMI) best-fit curves for boars, bears and deer are shown in Fig. 6E. These species liv-
ing in a contaminated habitat were subjected to continuous intakes of radionuclides and hence approached a 
semi-equilibrium in terms of radionuclide intake and excretion, which is often attained after a year or two after 

Figure 6.  Model fits to data set IV: radiocaesium levels in animals from areas contaminated by the Fukushima 
nuclear accident. Panels (A–C) show the time kinetics of radioactivity levels in different species. (A) wild boars, 
(B) black bears, (C) sika deer, (D) ocellate spot skate. Black symbols = data points, green curve = ME model, 
cyan curve = BE model, blue curve = GE model, red curve = PD model. Panel € shows the radioactivity time 
kinetics in the three terrestrial animal species (boars, bears and deer), but normalized to the values at time zero. 
The curves represent weighted averages of all four models (ME, BE, GE and PD) constructed by MMI. Black 
curve = wild boars, green curve = black bears, green curve = sika deer.
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the initial contamination event. The time-patterns seen here therefore primarily reflect ecological processes, 
rather than the metabolic patterns in the species.

The last example, aquatic ocellate spot skate data, favoured the BE model, although the sum of Akaike weights 
for the GE and PD models was >0.5 (Table 1, Fig. 6D, Supplementary Data File 3). Most of the tested models 
produced visually similar fits to the data, and their RMSE and RMSE loss values were similar (Table 1, Fig. 6D, 
Supplementary Data File 3). The ocellate spot skate is an example of a bottom-dwelling fish species in which radi-
ocaesium levels remained elevated even several years after the Fukushima accident19.

Analysis of data set V.  Our analysis of the final data set (V) on 137Cs in wild boars from the area contami-
nated by the Chernobyl nuclear power plant accident15 suggested that caesium levels in Chernobyl boars (Table 1, 
Fig. 7) did not decrease at all due to ecological processes over the studied period. The best-fit curves from all 
tested models therefore overlapped, with the decrease in caesium radioactivity attributable exclusively to physical 
decay (Fig. 7). This pattern likely reflects the ecological turnover of radiocaesium and the dietary habits of the 
studied species. Wild boars consume mushrooms, which strongly accumulate caesium20, and the boar radioac-
tivity fluctuations over the years may arise from the fact that particular years exhibit a more intense mushroom 
growth.

Discussion
We applied two proposed models with continuous probability distributions of decay rates (GE and PD) and two 
conventional models with sums of discrete decay rates (ME and BE) to a deliberately diverse collection of human 
and animal data sets on the biokinetics of radioactive materials in living organisms. This collection included 
kinetics data on multiple elements (plutonium, strontium, caesium, indium) generated in the laboratory (data 
sets I-III) and under natural conditions in areas contaminated by nuclear accidents (data sets IV-V). The focus of 
the study was to evaluate how the selected assemblage of four models behaves on each of these different example 
data sets, and what inferences these models can provide about the biological, chemical and ecological processes 
involved in radionuclide kinetics.

The rationale for developing and using these models was that simple formalisms can often bring out the key 
features of the studied system and produce reliable interpolations and extrapolations, based even on limited 
amounts of data, using only a few adjustable parameters3,4,21. In the case of radionuclide biokinetics, simple easy to 
use models are needed for predicting radioactivity values at long times based on data measured at shorter times. 
Such predictions are important in many situations, e.g. for estimating the cumulative radiation dose absorbed by 
a person exposed to radionuclides in a medical setting, or for estimating how long after a nuclear accident will 
game animals in the area retain radioactivity concentrations too high for human consumption.

The most common approach to simple modelling of radionuclide biokinetics involves a sum of exponential 
decay rates22–26. A certain fraction of radioactivity (e.g. the one contained in a given organ or body “compart-
ment”) is assumed to be eliminated at one rate, another fraction at a different (e.g. slower) rate, and so on. In this 
system, the different rate constants have compensatory effects: a decrease in one rate can be compensated for by 
increases in other rate(s). Consequently, parameter uncertainties tend to be large4 and extrapolation of model 
predictions to times longer than those used for model fitting tends to be unreliable.

These problems can be addressed by assuming that the complex chemical, biological and ecological processes 
during radionuclide excretion or retention can be approximated by a continuous distribution of decay rates. In 
other words, instead of using a sum of several discrete rates, one can use an integral over an infinite number of 

Figure 7.  Model best fits to the radiocaesium data in Chernobyl wild boars (data set V). Black circles 
represent data points, error bars represent standard deviations. The y-axis represents the ln-transformed 137Cs 
radioactivity concentration in boar meat15. The x-axis represents time after 1991. The fits from all models 
overlapped on this data set. They are shown by the same red curve.
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rates described by a certain probability distribution. This approach, which is known in pharmacokinetics, chem-
istry and physics3,6,21,27–29, allows multiple incompletely understood processes to be combined into a “mixture” 
represented by only a few adjustable parameters. Specifically, solutions for kinetic equations that characterize 
relaxation in disordered systems often lead to simple functions such as the stretched exponential or stretched 
hyperbola, which are known since the 19th century5,6,21,29.

We used this line of reasoning to develop the GE and PD models. The diverse data sets chosen for model test-
ing were intended to represent a variety of scenarios where modelling of radionuclide biokinetics can be impor-
tant. They also represent a variety of decay patterns, from simple to more complex. We fitted each model to each 
data set and compared model performances by information theoretic approaches7,8. We also compared the ability 
of each model on each data set to extrapolate from short times to longer times.

As expected, the relative performances of different models varied widely depending on data set. The variabil-
ity in model performance on different data sets likely reflects underlying differences in radionuclide biokinetics 
due to differences in organism, radionuclide type and environment, and the effects of data set size and structure. 
Whereas on some data sets one model was dominant (e.g. the PD model on data set I), in other cases no model 
was strongly favoured over others (e.g. on data set III). On one data set (V) none of the models was required to 
explain the data because the time trend was sufficiently explained by physical radionuclide decay alone. Larger 
data sets (e.g. IV, I) of course tend to support more complex models and provide more information for model 
selection, than smaller ones (e.g. III, VII).

The sum of Akaike weights for the proposed GE and PD models can be interpreted as evidence for >2 
decay rates being involved. This sum was frequently >0.5 among the human and animal data sets analysed here 
(Table 1). Even more frequently, the GE and/or PD models achieved the lowest RMSE loss, suggesting that these 
models tend to be more robust than discrete rate models (ME and BE) during extrapolation from short to long 
times (Table 1). Even greater robustness can potentially be achieved by model averaging (MMI), particularly 
when no single model has a clearly dominant Akaike weight.

Taken together, our results suggest that radionuclide biokinetics in living organisms are often sufficiently 
complex to be reasonably described by a continuous distribution of decay rates (as assumed in the GE and PD 
models), than by the commonly used assumption of one or two discrete rates (as in the ME and BE models). For 
example, the PD model showed strong performance on human plutonium excretion data and is notably much 
more parsimonious than the extensively parametrized multi-compartment kinetic models30,31. Consequently, we 
think that CPD models are useful alternatives to discrete rate models.

The CPD approach can be used to determine whether the radionuclide biokinetics involve multiple compart-
ments and/or rate constants. Robust results based on all tested models can be obtained using MMI7,8, and they 
can prove to be very useful in many situations involving medical use of radionuclides and accidental or malicious 
radioactive contamination.
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