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Abstract
Randomised assignment of individuals to treatment and controls groups is often considered the gold standard to draw valid
conclusions about the efficacy of an intervention. In practice, randomisation can lead to accidental differences due to chance.
Researchers have offered alternatives to reduce such differences, but these methods are not used frequently due to the requirement
of advanced statistical methods. Here, we recommend a simple assignment procedure based on variance minimisation (VM),
which assigns incoming participants automatically to the condition that minimises differences between groups in relevant
measures. As an example of its application in the research context, we simulated an intervention study whereby a researcher
used the VM procedure on a covariate to assign participants to a control and intervention group rather than controlling for the
covariate at the analysis stage. Among other features of the simulated study, such as effect size and sample size, we manipulated
the correlation between the matching covariate and the outcome variable and the presence of imbalance between groups in the
covariate. Our results highlighted the advantages of VM over prevalent random assignment procedure in terms of reducing the
Type I error rate and providing accurate estimates of the effect of the group on the outcome variable. The VM procedure is
valuable in situations whereby the intervention to an individual begins before the recruitment of the entire sample size is
completed. We provide an Excel spreadsheet, as well as scripts in R, MATLAB, and Python to ease and foster the implemen-
tation of the VM procedure.

Keywords Variance minimisation . Randomised controlled trial . Research design . Clinical trials . Imbalance . Allocation
methods

Introduction

Randomisation in controlled trials

A common problem in intervention studies is comparing the
effect of intervention while minimising the influence of con-
founding factors. In the pre-treatment assessment, a researcher
usually measures the characteristics that the treatment aims to
modify (i.e., outcome measures) as well as other variables that
can exert an influence on the treatment (i.e., covariates). Then,

the researcher will randomly assign individuals to the treat-
ment and the control condition. In the ideal scenario, the con-
trol condition matches the treatment condition except for that
specific feature of the treatment that the researcher considers
to be crucial for causing a change in the outcome measures
(e.g., placebo vs the active molecule in pharmacological stud-
ies). If the treatment is effective, the treatment group should
improve in the outcome measures compared to the control
group.

In the case of randomisation with large sample size, the
statistical test for a difference at baseline or in other covariates
becomes irrelevant as occurring significant differences reflect
Type I error (de Boer et al., 2015; Roberts & Torgerson,
1999), which more likely arises when several covariates are
considered (Austin et al., 2010). However, large sample sizes
are difficult to achieve. Many researchers, especially in the
clinical sciences, rely on small naturally occurring samples
composed of individuals who voluntarily join the study when
they wish to. In this scenario, the sampling is suboptimal as
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participants are not randomly sampled from the population,
but they take part in the study based on convenience and
opportunity. Although the assignment to different treatment
conditions can be random, differences at baseline are more
likely to emerge in small compared to large trials (Bruhn &
Mckenzie, 2009; Chia, 2000; Nguyen & Collins, 2017; Saint-
mont, 2015). Unfortunately, there is no statistical way to con-
trol for these differences between groups at pre-test (Miller &
Chapman, 2001; Van Breukelen, 2006). Therefore, the imbal-
ance in the pre-treatment scores can compromise the evalua-
tion of the treatment efficacy, and seriously harm the interpret-
ability of the results. To correct for this, the researcher may
choose to allocate individuals to a condition based on previ-
ously collected pre-treatment scores and match the groups on
these scores. However, this procedure requires the researcher
to complete the pre-treatment assessment of all participants
before the beginning of the treatment. The whole process
may take several months, increase the attrition rate before
the treatment begins and cannot account for unwanted chang-
es in the measures of interest. Furthermore, the immediate
implementation of the treatment is frequently necessary, espe-
cially in a clinical setting, where the treatment must begin in a
critical phase of the patients’ clinical condition.

Minimising group differences

One solution is the use of covariate-adaptive randomisation
procedures (Chen & Lee, 2011; Dragalin et al., 2003; Endo
et al., 2006; Scott et al., 2002), which allocate participants to
the different conditions as they join the study and, at the same
time, reduce the difference between groups on predefined crit-
ical variables. There are three commonly used types of
covariate-adaptive randomisation methods: stratified
randomisation, dynamic hierarchical randomisation, and
minimisation (Lin et al., 2015). Differences at baseline can
be reduced by using stratified randomisation, whereby specif-
ic (prognostic) variables are divided into strata and partici-
pants are randomly selected from each stratum. However,
stratified randomisation becomes difficult to implement as
the factors to control for increase (Therneau, 1993). In dynam-
ic hierarchical randomisation, covariates are ranked in order of
importance and participants are assigned to conditions via
biased coin allocation when thresholds of imbalance are
exceeded in selected covariates (Signorini et al., 1993). A
minimisation procedure, the focus of this paper, calculates
the level of imbalance in covariates that assigning a participant
to each condition would cause, then allocates with high prob-
ability (to maintain a degree of randomness) the current par-
ticipant to the condition that minimises the imbalance.

In this vein, the use of covariate-adaptive randomisation
procedures not only matches groups on covariates, but also
implicitly forces researchers to state in advance those critical
covariates related to the treatment rather than controlling for

their effect at a later stage, when running statistical analyses
(Simmons et al., 2011). A covariate-adaptive randomisation
procedure attempts to reduce the unwanted differences at
baseline that inadvertently emerge from a random assignment.
However, it is worth highlighting that the covariate-adaptive
randomisation procedures aim to solve the imbalances at pre-
test that might emerge from the random assignment of partic-
ipants, rather than issues related to non-random selection of
participants from naturally occurring samples.

Despite a variety of covariate-adaptive randomisation pro-
cedures at disposal, researchers conducting training/treatment
studies, including randomised control trials (RCTs), seldom
implement these methods (Ciolino et al., 2019; Lin et al.,
2015; Taves, 2010). The lack of popularity of these proce-
dures might be due to multiple factors. Researchers may feel
more comfortable in implementing more traditional and easier
to understand stratified/block randomisation. In this vein, an
efficient implementation of covariate-adaptive procedures
would require the consultancy of an expert statistician for
the entire duration of the trial; an extra cost that principal
investigators may prefer to avoid (Ciolino et al., 2019).
Finally, the lack of free, easy-to-use, computerised functions
to automatically implement covariate-adaptive procedures
may have contributed to their still limited dissemination
(Treasure & Farewell, 2012; Treasure & MacRae, 1998).

Here, we provide a procedure based on variance
minimisation (VM; Frane, 1998; Pocock & Simon, 1975;
Scott et al., 2002; Treasure & MacRae, 1998), which assigns
the next incoming participant to the condition that minimises
differences between groups in the chosen measures. Our pro-
cedure brings the benefit of using multiple covariates without
creating strata in advance, as done in the stratified
randomisation, and it is relatively easy to implement com-
pared with the more complex dynamic hierarchical
randomisation. The logic and the calculation behind the pro-
cedure are simple and easy-to-grasp also from an audience of
non-experts. We provided ready-to-use code to implement the
procedure using different (also free) software along with step-
by-step written instructions, thereby reducing any costs asso-
ciated with product licenses or consultancy from expert
statisticians.

Methods

Description of the VM procedure

The goal of the VM procedure is to find the best group as-
signment for participants prior to an intervention, such that the
groups are matched in terms of the scores that the researcher
suspects might cause random differences in post-intervention
outcomes. The VMprocedure requires the researcher to define
the number of groups to which participants can be assigned
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and to collect individual scores for each variable on which
groups are matched. These variables can be continuous or
binary, where nominal variables with more than two catego-
ries can be transformed into multiple dummy variables (as in
regression analysis) before being passed to the VM procedure
(see section Using VM Procedure on Non-Dichotomous
Nominal Variables, in the SupplementaryMaterials). The pro-
cedure particularly suits those studies in which proper
matching is essential, but the assignment to groups needs to
occur while the recruitment is still ongoing. It works as
follows.

The first participants joining the study are sequentially
assigned one to each group. For example, in case of three
different groups (i.e., A, B, C), the first participant is assigned
to Group A, the second participant to Group B, and the third
participant to Group C. Then the fourth participant is added
temporarily to each group, and for each temporary group as-
signment, the algorithm checks which group assignment for
this participant would minimize the between-group variance
(i.e., V in Fig. 1) of the measures of interest and assigns the
participant to that group. The next (fifth) participant un-
dergoes the same procedure, but the algorithm will not assign
the present participant to the group of the previous participant
in order to ensure a balanced distribution of participants in
each condition. The same procedure goes on until there is only
one group remaining, which in the case of three groups would

be for the sixth participant. The sixth participant would be
automatically assigned to the remaining group, such that each
group would now have two participants assigned to them.
Then, the entire procedure starts again with the possibility
for the next participant to be assigned to all available groups
(for a formal description of the variance minimisation
procedure, see section Details of the Minimisation
Procedure, in the Supplementary Materials).

To avoid predictable group assignments due to this shrink-
ing set of available groups, the user can also specify a small
probability of random assignment over the VMprocedure (see
section Discontinuous Implementation of the VM Procedure:
The Parameter pRand, in the Supplementary Materials). This
random component makes the assignment unpredictable even
if the researcher has access to previous group allocations.

Simulations

We present multiple simulations to illustrate how the VM
procedure can be implemented in different scenarios and the
advantages it provides.

In the first simulation, we implemented the VM procedure
to assign participants to three experimental groups based on
three continuous and one dichotomous variable. We com-
pared the matching obtained from the VM procedure with
random assignment. In the second simulation, we showed that

Random assignment
Training + 

S�mula�on Training Passive control

Training + 
S�mula�on Training Passive control

Variance minimisa�on

New par�cipant: (IQ: 102, EFs: 110, AP: 98, Gender: F)

New par�cipant: (IQ: 102, EFs: 110, AP: 98, Gender: F)

Random blind 
assignment…

Which assignment 
best matches the 

groups?

V = 7V = 10V = 5

A

B

V = 5 V = 10 V = 7

V = Variance between groups given assignment

Fig. 1 Comparison of assignment to groups using (a) variance
minimisation and (b) random assignment. When a new participant joins
a study, variance minimisation assigns the participant to the group that
minimises the variance between groups along with the pre-defined vari-
ables (i.e., V); in this case intelligence (IQ), executive functions (EFs),

attentional performance (AP), and gender, while keeping the number of
participants in each group balanced. Random assignment, on the other
hand, assigns the participant to every group with equal probability and
does not match the groups
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the VM procedure better detects group differences and pro-
vides better estimates of effects compared with the attempt to
control for the effect of covariates. In the supplementary ma-
terials, we demonstrate how to incorporate a random compo-
nent in the VM procedure to ensure a non-deterministic as-
signment of participants to conditions (section Discontinuous
Implementation of the VM Procedure: The Parameter pRand )
and how the VM can match participants also on non-
dichotomous nominal variables (section Using VM
Procedure on Non-Dichotomous Nominal Variables ). We
briefly discuss the results of these two additional simulations
in the Discussion section.

The functions to implement the VM procedure in Excel,
MATLAB, Python, and R along with tutorials, as well as the
R code of the simulation, can be found at the Open Science
F r amewo rk ( h t t p s : / / o s f . i o / 6 j f v k / ? v i ew_on l y=
8d405f7b794d4e3bbff7e345e6ef4eed).

Results

VM procedure outperforms random assignment in
matching groups on continuous and dichotomous
variables

In the first fictional example, a researcher wants to evaluate
whether the combination of cognitive training of executive
functions and brain stimulation improves the clinical symp-
toms of ADHD. The study design comprises three groups: the
first group receives brain stimulation and the executive func-
tions training; the second group receives sham stimulation and
the training; the third group receives neither training nor stim-
ulation (passive control group). The researcher aims to match
the three groups on intelligence, executive functions perfor-
mance, attentional performance, and gender. Figure 1 illus-
trates how VM assigns incoming participants compared with
a traditional random assignment.

We simulated 1,000 data sets whereby we randomly drew
the scores for IQ, executive functions, and attentional perfor-
mance from a normal distribution, with a mean of 100 and a
standard deviation of 15. Participants’ gender came from a
binomial distribution with the same probability for a partici-
pant to be male or female. The simulated values for the
matching variables were randomly generated, therefore there
were no real differences between groups. We varied the sam-
ple size to be very small (n = 36), small (n = 66), medium (n =
159), and large (n = 969), reflecting the researcher’s intention
to evaluate the possible presence of an extremely large (f =
0.55), large (f = 0.40), medium (f = 0.25), and small (f = 0.10)
effect size, respectively, while keeping the alpha at .05 and
power at 80% (Faul et al., 2009). We assigned participants to
the three groups randomly or by using the VM procedure.

We ran univariate analyses of variance (ANOVAs) with
IQ, executive functions, and attentional performance as de-
pendent variables and group as factor whereas differences in
gender distribution across groups were analysed using χ2

tests. In Fig. 2, we show the distributions ofF, p, and η2 values
from ANOVAs on IQ, executive functions, and attentional
performance (top panel), whereas in the case of gender, we
presented the distribution and χ2, p, and Cramer’s V values
(bottom panel) separately for the random assignment and the
VM procedure across different sample sizes. Compared with
random assignment, the VM procedure yielded smaller F, η2,
χ2, and Cramer’s V values and the distribution of p-values was
skewed toward 1, rather than uniform. The VM procedure
demonstrated an efficient matching between groups starting
from a very small sample size while keeping the number of
participants in each group balanced. Moreover, both the VM
procedure and the random assignment violated ANOVA as-
sumptions on the normality of residuals and homogeneity of
variance between groups with a similar rate (see
Supplementary Materials, Fig. S1).

Matching groups on a covariate versus controlling for
a covariate with imbalance

We simulated an intervention study to display the advantages
that the minimisation procedure provides in terms of detecting
group differences and better estimates of effects compared
with the attempt to control for the effect of covariates in the
statistical analysis after the intervention was completed. A
researcher evaluates the effect of an intervention on a depen-
dent variable Y while controlling for the possible confounding
effect of a covariate A, which positively correlates with Y, and
a covariate B that correlates with covariate A (i.e., pattern
correlation 1), or Y (i.e., pattern correlation 2), or neither of
them (i.e., pattern correlation 3). In this vein, the covariate A
represents a variable that the researchers ought to control for,
given its known relation with the dependent variable Y,
whereas the covariate B represents a non-matching variable
that is still inserted into the model as it might have a real or
spurious correlation with the covariate A and the dependent
variable Y. We simulated a small, medium, and large effect of
the intervention (i.e., Cohen’s d = 0.2; d = 0.5; d = 0.8) and,
accordingly, we varied the total sample size to be 788, 128,
and 52 to achieve a power of 80% while keeping the alpha at
.05 (Faul et al., 2009). For comparison, we used the same
sample sizes, 788, 128, and 52, when simulating the absence
of an intervention effect (i.e., Cohen’s d = 0). Crucially, we
compared the scenario whereby the researcher matches partic-
ipants on the covariate A (i.e., VM on CovA) before
implementing the intervention or randomly assigns partici-
pants to the control and training group and then attempts to
control for the effect of covariate after the intervention (i.e.,
Control for CovA). The subsequent inclusion of the covariate
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A in the analysis, especially in the case of imbalance between
groups in the covariate A, would bias the effect of the group
on Y when the difference between groups in the covariate A is
larger in the direction of the intervention effect. Conversely,
the minimisation procedure reduces the difference between
groups on the covariate A and the inclusion of the covariate
A into the analysis (i.e., analysis of covariance; ANCOVA)
would not cause biases in the estimation of the effect of the
group on Y.

In the case of the control for covariate approach, we
generated the scores of the covariate A by taking them
from a standard normal distribution (M = 0, SD = 1) and
we randomly assigned participants to the control and
training group. We generated an imbalance in the covar-
iate A by calculating the standard error of the mean and
multiplying it for the standard normal deviates ±1.28,
±1.64, ±1.96 corresponding to the 20%, 10%, and 5%
probabilities respectively of the standard normal distribu-
tion. The use of the standard error allowed to keep the
imbalance proportionate to the sample size. The obtained
imbalance was added to the scores of the covariate A only
for the training group, thereby generating a difference in
covariate A that went in the same or in the opposite

direction with respect to the intervention effect (i.e.,
larger scores on the dependent variable only for the
training group; Egbewale et al., 2014). We also included
the case of absent imbalance for reference. In the case of
the VM procedure, we took the previously generated
scores of the covariate A with the imbalance, and we
assigned participants to the control or training group using
the VM procedure. Then, we generated the scores of Y
that were correlated with the covariate A according to
four correlations, that were, 0, 0.5, 0.7, and 0.9. Finally,
we added 0, 0.2, 0.5, 0.8 to the Y scores of the training
group to simulate an absent, small, medium, and large
effect of the intervention.

In both the random assignment and the VM procedure, the
covariate B was generated to alternatively have a correlation
of 0.5 (SD = 0.1) with the covariate A (i.e., Pattern 1), Y (i.e.,
Pattern 2), or no correlation with these two variables (i.e.,
Pattern 3). We randomly selected the correlation from a nor-
mal distribution with an average 0.5 and standard deviation of
0.1 to add some noise to the correlation while maintaining it
positive and centred on 0.5.

Overall, we varied multiple experimental conditions in 504
scenarios (for a similar approach, see Egbewale et al., 2014):

Fig. 2 A comparison of the VM procedure and random assignment based
on simulated data. Top panel: Distributions of F-values, p-values, and η2

values from ANOVAs comparing groups on intelligence (IQ), executive
functions (EFs), and attentional performance (AP) separately for the VM
procedure (orange boxplots) and the random assignment (blue boxplots).

Bottom panel: Distributions of χ2, p-values, and Cramer’s V values com-
paring groups on gender separately for the VM procedure (orange
boxplots) and the random assignment (blue boxplots). The boxplots rep-
resent the quartiles whereas the whiskers represent the 95% limits of the
distribution. (Colour figure online)
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– seven imbalances on the covariate A: −1.96, −1.64,
−1.28, 0, 1.28, 1.64, 1.96;

– four correlations between covariates A and Y: 0, 0.5, 0.7,
0.9;

– six treatment effects: 0 (×3 as the absence of the effect
was tested with three sample sizes, that were, 52, 128,
788), 0.2, 0.5, 0.8;

– three patterns of correlation between the covariate B, co-
variate A, and Y.

We simulated each scenario 1,000 times.
As expected, the correlations between the covariate B and

the other two variables varied according to the pre-specified
patterns of correlations, which were practically identical in the
VM and control for covariate approach (see Table S1 in the
Supplementary Materials).

We ran a series of ANCOVAs with Y as the dependent
variable, the covariates A and B, and group [Training,
Control] as independent variables. We used a regression ap-
proach as the variable group was converted to a dichotomous

numerical variable (i.e., control = 0, training = 1) to directly
use the regression coefficients as estimates for the effect of
each variable on Y. Both the VM procedure and the control
for the covariate approach display a similar rate in violating
ANCOVA assumptions of the normality of residuals and ho-
mogeneity of variance between groups (see Supplementary
Materials; Fig. S2).

In this fictitious scenario, the researcher would be interest-
ed in evaluating the effect of the group on Y while controlling
for covariates. Therefore, we reported the proportion of sig-
nificant results (p < .05; Fig. 3) and the estimated effect (i.e.,
coefficient of the regression; Fig. 4) for the effect of group on
Y depending on the imbalance in the covariate A, the effect
size of the intervention, and the degree of correlation between
the covariate A and Y. For simplicity, in Figs. 3 and 4, we
reported only the simulation with a large sample size (i.e., n =
788) when the effect of the intervention was absent (i.e., d=0).
The pattern of results remained stable across the patterns of
correlations of the covariate B. Therefore, we reported the
proportion of significant results and estimated effects for the
group, covariate A, and covariate B across the patterns
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the ANCOVA (Y ~ CovA + CovB + Group) separately for the VM
procedure (orange lines) and control for CovA approach (blue lines)
across imbalances of the covariate A (x-axis) when the sample size
varied according to the effect size to be detected (rows; absent = 0, n =

788; small = 0.2, n = 788; medium = 0.5, n = 128; large = 0.8, n = 52) and
the correlation between the covariate A and the dependent variable Y
ranged between 0 and 0.9 (columns). The black dotted line represents
alpha (i.e., 0.05) and the dashed black line represents the expected power
(i.e., 0.8). (Colour figure online)
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correlation of the covariate B in the Supplementary Materials
(Figs. S5–S22).

When the effect of the intervention was present (second to
fourth rows in Fig. 3), the VM procedure showed a more
stable detection of significant results also in the presence of
serious imbalances in the covariate A. This stability became
clearer as the correlation between the covariate A and Y in-
creased. When the effect of the intervention was absent (first
row in Fig. 3), the VM procedure always kept the Type I error
around 0.05 while the control covariate approach inflated
Type I error rate in the case of strong imbalance in the covar-
iate A when it was highly correlated (i.e., 0.7, 0.9) with the
outcome variable Y.

A similar pattern of results emerged when we compared the
estimates of the effect of the group (i.e., regression coeffi-
cients) yielded by the VM procedure and the control for co-
variate approach. The VM procedure always provided accu-
rate estimates of the effect of the group. Conversely, the con-
trol for covariate approach returned biased estimates with
large imbalances in the covariate A and when its correlation
with the outcome variable Y was high (i.e., 0.7, 0.9; Fig. 4).

Discussion

In treatment studies, groups should be as similar as possible in
all the variables of interest before the beginning of the treat-
ment. An optimal matching can ensure that the effect of the
treatment is not related to the pre-treatment characteristics of
the groups and can, therefore, be extended to the general pop-
ulation. In contrast, the random assignment can yield relevant,
and even statistically significant, differences between the
groups before the treatment (Treasure & MacRae, 1998).

The proposed VM procedure constitutes a quick and useful
tool to match groups before treatment on both continuous and
categorical covariates (Pocock & Simon, 1975; Scott et al.,
2002; Treasure & MacRae, 1998). The latter, though, need to
be transformed into dummy variables to be passed to the
minimisation algorithm (for a minimisation procedure that
directly handles nominal covariates see Colavincenzo,
2013). We simulated an intervention study whereby a re-
searcher used the VM procedure on a covariate to assign par-
ticipants to a control and intervention group rather than con-
trolling for the covariate at the analysis stage. Among other
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online)
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features of the simulated study, we manipulated the correla-
tion between the matching covariate and the outcome variable
and the presence of imbalance between groups in the covari-
ate. Controlling for covariates post hoc inflated Type I error
rate and yielded biased estimates of the effect of the group on
the outcome variable when the imbalance between groups in
the covariate increased and the correlation between the covar-
iate and the outcome variable was high. Conversely, the use of
VM on the covariate did not inflate Type I error rate and
provided accurate estimates of the effect of the group on the
outcome variable.

The progressive shrinking of available conditions when
using the VM procedure ensures a perfect balance in the num-
ber of participants across conditions while still minimising
covariate imbalance. However, some participants will be
forcefully assigned to a given condition irrespective of their
scores in the covariates. Therefore, in some instances, the
researcher will know in advance the condition the participants
will be assigned to and not all participants will have the
chance to be assigned to each of the available conditions.
This restriction might be relevant for clinical trials where
one of the conditions is potentially beneficial (i.e., the treat-
ment group). In this case, the researcher can insert a random
component into the VM procedure by defining the probability
to implement a random assignment. The random component
prevents the researcher from being sure about the condition
some participants will be assigned to and gives all participants
the possibility, in principle, to be assigned to one of the con-
ditions. Using a small amount of randomness (e.g., pRand =
0.1) provides a good balance between matching groups on
covariates while avoiding predictable allocation (see section
Discontinuous Implementation of the VM Procedure: The
Parameter pRand, in the Supplementary Materials).

Despite the benefits of the minimisation procedure,
limitations must be carefully considered. First, the appli-
cation of the VM procedure on small sample sizes does
not prevent the treatment effect from being influenced by
the unequal distribution of unobserved confounding vari-
ables, whose equal distribution is most likely achieved
with large sample sizes. This limitation related to small
sample sizes affects both the VM procedure and random
assignment. Nevertheless, the selection of matching co-
variates for the minimisation procedure encourages re-
searchers to carefully think in advance about possible
confounding variables and match participants on them.
Secondly, we showed that the VM is beneficial in simple
ANOVA/ANCOVA simulations. In the case of more
complex models (e.g., with an interaction), the researcher
should carefully consider whether the minimisation pro-
cedure constitutes an advantage to the design. We recom-
mend running simulations tailored to specific research de-
signs to ensure that the VM procedure adequately matches
participants across conditions.

Third, the minimisation procedure considers all covariates
equally important without giving the user the possibility to
allow more imbalance in some covariates compared to others
(for a minimisation procedure that allows weighting see
Saghaei, 2011). It is therefore paramount that the researchers
will carefully consider the covariates they wish to match the
groups on.

Overall, our minimisation procedure, even after consider-
ing the above-mentioned limitations, provides important ad-
vantages over the randomisation procedure that is used fre-
quently. Its relative simplicity encourages researchers to use
covariate-adaptive matching procedures (Ciolino et al., 2019;
Lin et al., 2015). To allow the requested shift from the
randomisation procedure, we provide scripts, written using
popular software (i.e., R, Python, MATLAB, and Excel),
which allow a fast and easy implementation of the VM pro-
cedure and integration with other stimulus presentation and
analysis scripts. In this light, the treatment can start in the same
session in which pre-treatment measures are acquired, thereby
reducing the total number of sessions and, consequently, the
overall costs. The immediate application of the treatment also
excludes the possibility that pre-treatment measures change
between the period of the initial recruitment and the actual
implementation of the treatment. We strongly recommend
using the VM procedure in these studies to yield more effec-
tive and valid RCTs.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.3758/s13423-021-01970-5.
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