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Abstract
The activity of a biological community is the outcome of complex processes involving inter-

actions between community members. It is often unclear how to accurately incorporate

these interactions into predictive models. Previous work has shown a range of positive and

negative metabolic pairwise interactions between species. Here we examine the ability of a

modified general Lotka-Volterra model with cell-cell interaction coefficients to predict the

overall metabolic rate of a well-mixed microbial community comprised of four heterotrophic

natural isolates, experimentally quantifying the strengths of two, three, and four-species

interactions. Within this community, interactions between any pair of microbial species were

positive, while higher-order interactions, between 3 or more microbial species, slightly mod-

ulated community metabolism. For this simple community, the metabolic rate of can be well

predicted only with taking into account pairwise interactions. Simulations using the experi-

mentally determined interaction parameters revealed that spatial heterogeneity in the distri-

bution of cells increased the importance of multispecies interactions in dictating function at

both the local and global scales.

Author Summary

Many wild microbial ecosystems contain hundreds to thousands of species, suggesting
that interactions between species likely play an important role in regulating the behavior
of such complex cellular networks. Predicting how these interactions impact the overall
activity of microbial communities remains a challenge. Here we quantify the contribution
of interactions between more than two species to the overall metabolic rate of a mixture of
four freshwater bacteria. We systematically measure interactions between these species
and use theoretical models to examine the influence cell-cell interactions on spatially non-
uniform microbial populations. Our results demonstrate that although interactions
between species are key regulators of system behavior, only considering interactions
between pairs of species is sufficient to predict ecosystem activity. Simulations demon-
strate that activity at both the single-cell and population level would be strongly influenced
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by how microbes are distributed in space. These findings improve our understanding of
how best to examine groups of microbes that coexist in environments such as soil, water,
and the human body.

Introduction
We are surrounded by complex communities of microbes, many that play a fundamental role
in our everyday lives. Microbial ecosystems in nature are typically composed of hundreds or
thousands of microbial species, heterogeneously distributed in space and time. Working
together, these networks of microorganisms are critical in environmental remediation, food
production, wastewater treatment, and human health and disease and there is great interest
designing synthetic microbial ecosystems for new biotechnologies. Given the diversity of
microbial ecosystems [1], there are many potential types of interactions between species,
including all combination of positive, negative, and neutral interactions [2]. Understanding the
properties of the community interaction network will help identify strategies to study and
manipulate microbial networks. Developing a quantitative understanding of how ecosystems
of microbes interact will be essential to predicting how microbial networks respond to environ-
mental or biological changes and aid in designing synthetic communities with tailored func-
tionality [3].

To quantify how interactions between species impact overall community function, previous
experimental work has systematically measured pairwise interactions between species, such as
crossfeeding between E. coli auxotrophs [4, 5] or natural isolates [6, 7]. Other work has inferred
interactions between species from measurements of the population dynamics within a complex
community [8–11]. These previous studies focused on pairwise interactions and the ability of
pairwise interaction models to predict network function [2, 12]. Given the increase in data for
biological interactions, there is great emphasis on the development of predictive models of bio-
logical networks, including constraint based, Boolean, and directed network models [13–18].

It is currently unclear how to accurately account for cell-cell interactions within models of
microbial ecosystems and whether pairwise interactions are generally sufficient. Foster and Bell
measured total productivity of subsets of microbial microcosms with up to 72 species, and no
evidence for positive high-order interactions was observed [19]. In other biological contexts,
measurements of interactions in neural or cytokine networks revealed pairwise interactions
were dominant, although a few high-order combinations significantly altered patterns of cyto-
kine activity [20, 21]. The impact of high-order interactions, between 3 or more components,
have not been quantified in microbial ecosystems.

Here we examine the interaction network of a four-species microbial community through
the systematic experimental measurement of multispecies interactions and a theoretical model.
Using a fluorogenic indicator, we quantify the metabolic rate of different subsets of this com-
munity at a variety of species ratios. From these measurement, interactions coefficients are
inferred that account for two to four-species interactions using a modified general Lotka-Vol-
terra model [8]. We found that interactions between species do influence overall community
activity. We examine the contribution of pairwise and higher interactions within the model
community, and predict the impact of such interactions on community-level activity using a
theoretical model. Although in the model community, overall activity is well described by pair-
wise model, theoretical results highlight the importance of the interaction network and specifi-
cally high-order interactions in spatially heterogeneous populations of cells.

High-Order Interactions in Microbial Communities
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Results and Discussion

Interactions between species set the overall metabolic rate of a four
species microbial community
The four strains that comprise the community were all isolated from freshwater environments,
including three isolates from the Los Angeles area and the previously isolated Shewanella onei-
densisMR-1 [22]. Strains were collected near the water surface and isolated on low strength LB
plates. 16S rRNA sequencing has identified the strains as being closely related to Escherichia
coli K-12, Aeromonas veronii, and Aeromonas hydrophila, see S8 Text for details. Throughout
the paper these strains will be referred as So, Ec, Av, and Ah respectively, as shown in Fig 1A.
We aim to elucidate the general properties of the interaction network within a microbial com-
munity by exhaustively measuring the output of all subsets of the community under a specific
set of conditions. These four species were chosen based on viability under the same culturing
conditions, no particular metabolic capabilities or potential for interactions were assumed.

To quantify the contribution of interactions between the species on metabolic rate, we first
measured the metabolic rate of the four strains in isolation. Strains were grown in 5 mL scale
cultures of low strength LB. After growth to an OD600 around 0.2, strains were transferred to a
96 wellplate. The metabolic rate was quantified using a fluorogenic assay for the presence of
metabolic intermediates, the AlamarBlue assay containing the redox activity indicator com-
pound resazurin [23–25]. Resazurin based assays have been used to quantify metabolism in a
variety of bacterial and eukaryotic cells [26–32], making it a useful, universal indicator for
metabolism in multispecies bacterial communities. Resazurin-based metabolic assays are based
on the reduction of non-fluorescent resazurin to fluorescent resofurin by redox active com-
pounds inside the cell. Although components of respiratory chain are known to reduce resa-
zurin [33], multiple redox active compounds likely contribute to the fluorescent signal.
Resofurin can also undergo a second, reversible redox reaction, forming a non-fluorescent
compound [28], so care must be taken to ensure that the fluorescent signal is proportional to
cell number and activity, as shown in S2 Text. Resazurin-based assays are amenable to high
throughput measurements [29, 34], an advantage we leverage here for a comprehensive charac-
terization of the four-species metabolic network. In initial measurements, the relative meta-
bolic rates of the four species were determined, as shown in Fig 1B.

Fig 1. Metabolic activity of a 4-species community. (A) The community contains four freshwater isolates, Escherichia coli (Ec), Aeromonas veronii
(Av), Aeromonas hydrophila (Ah), and Shewanella oneidensis (So). Species were grown separately and combined to measure the impact of multispecies
interactions on the metabolic rate. (B) The overall metabolic rate of all four strains together was greater than the prediction made frommeasurements of the
metabolic rate of individual strains, demonstrating that multispecies interactions contributed to the overall metabolic rate. Error bars show standard error.
Metabolic rate has been normalized such that the 4-strain measurement has a value of 1.

doi:10.1371/journal.pcbi.1005079.g001
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To determine the influence of multispecies interactions on ecosystem outputs, we compared
the overall metabolic rate of a 4-species microbial community to the metabolic rate of each
strain in isolation. If the species did not interact, the overall metabolic rate of 4 strains together
would simply be the average metabolic rate. However when mixing the 4 species together the
overall metabolic rate was 31% larger than the prediction made assuming no interactions, as
shown in Fig 1B. This demonstrates that interactions between species significantly modulate
the metabolic rate of one or more strains within the community. To further dissect the distri-
bution of interactions within our community, we measured interactions between all combina-
tions of species.

Measuring the interaction between two species
Pairwise interactions models are common to predict the activity of microbial networks. We
measured the metabolic activity of two-species mixed cultures to determine if pairwise models
could account for interactions within our microbial community (Fig 2). The strains were

Fig 2. Pairwise interactions within the microbial community. (A) We measured metabolic rates at seven different ratios from 1/8 to 7/8
for the pair Ec and Av and the pair Ec and So. Interaction coefficients were extracted from the data and used to plot the best-fit model. (B) All
pairwise combinations of the four strains were assayed. Predictions using solved interaction coefficients were compared to experimental
measurements. The normalized strengths of interaction for all 6 pairwise combinations are shown in (C) for species ratio 1:1. Red numbers
show confidence intervals at confidence level 95%. Error bars show standard errors of at least three measurements.

doi:10.1371/journal.pcbi.1005079.g002
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grown separately, mixed together for 30 minutes, and then metabolic activity was measured
using the fluorogenic indicator. The ratio of the two species was varied between 1:7 and 7:1 to
quantify how interactions between species depended upon the ratio of species. The metabolic
rate was found to be linearly proportional to the number of cells measured, as shown in S2
Text. Metabolic activity of each species alone was measured to determine the baseline meta-
bolic rate. The six sets of measurements for each pair of species shown in Fig 2A were taken on
six different days, demonstrating the reproducibility of interactions.

To analyze how interactions between species determined the overall metabolic rate, we
implemented a model in which the overall metabolic rate is modulated by an interaction
parameter, as shown in Eq (1),

RðX;YÞ ¼ RðXÞ � Nx=Ntotal þ RðYÞ � Ny=Ntotal þ ixy � pðNx; Ny; NtotalÞ; ð1Þ

in which R(X), R(Y) and R(X,Y) are the average metabolic rates of species X, Y, and X and Y
together respectively, ixy is the pairwise interaction parameter that accounts for the increase or
decrease of overall metabolic activity, Nx, Ny, and Ntotal are numbers of cells of species x, y, and
the total number of cells in the single species control measurement, and p(Nx, Ny,) scales the
interaction parameter based on the number of interacting cell. These General Lotka-Volterra
models have been used previously [2]. The interaction coefficients can be positive or negative,
such that the sum of the interactions did not result in non-physical negative metabolic rate.
The metabolic rate (R) is proportional to the slope of fluorescence vs. time curve in experi-
ments. We assume that p(Nx, Ny,) should be a function of Nx, Ny, and Ntotal, as shown in Eq
(2),

pðNx; Ny; NtotalÞ ¼ ðNx=NtotalÞ � ðNy=ðNtotalÞ; ð2Þ

in which p is the product of ratios of species X and Y in the mixture. With the existence of p in
the Eq (1), the interaction term is largest when equal numbers of species are present and will
decay to zero as one of the populations dominates. Note that because we measure the overall
metabolic output of combinations of species, the experiments cannot separate the individual
impact of species X and Y and the impact of species Y on X. Our interaction term accounts for
the overall change in activity due to species-species interactions.

The metabolic rate data was fit to determine the value of the interaction parameter, ixy. As
shown in Fig 2A, the metabolic rate was measured in pairs of species over a range of ratios
between the two species. As shown in Fig 2A, modeling pairwise interactions using Eq 1 agreed
well with metabolic measurements of two strain mixtures over a range of species compositions.

The data in Fig 2A suggested that interactions for mixtures of species could be captured in a
single interaction parameter. S3 Text shows the data for all species combinations, and most
pairwise combinations are in close agreement with the prediction using a single interaction
parameter. To determine whether the interaction strength was valid for all combination of the
4 species, in Fig 2B we plotted the ratio of prediction to measurement vs. species ratio for all 6
species combinations. We extended the species ratio to 0.625%, 1.25%, 6.25%, 93.75%, 98.75%
and 99.375% for 3 combinations of species and found that the model fit data well even at these
more extreme ratios of species.

We define the normalized interactions strength as the interaction term divided by the total
metabolic rate when the species ratios are equal, which represents the maximum of the interac-
tion term. In Fig 2C, we show the range of normalized interactions strengths in our system for
all 6 pairwise combinations of Ec, Av, Ah and So at species ratio 1:1. The interaction coefficients
were fit using all the data between species ratios of 0.625 to 99.375%. In our experiment, the
first order normalized interaction strengths were all positive with values between 0.05 and 0.3.
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A predictive model incorporating higher-order multispecies interactions
Next the model was expanded to incorporate higher-order interactions between 3 or more spe-
cies. The overall metabolic rate of the community is now,

Rtotal ¼
PM

w¼1Rxpx þ
PM

w¼1

PM
x>wiwxpwx þ

PM
w¼1

PM
x>w

PM
y>x>wiwxypwxy þ iwxyzpwxyz; ð3Þ

in which M is the total number of species in the community, iwx accounts for pairwise interac-
tion between two species, iwxy accounts for interactions between three species, and iwxyz
accounts for interactions between four species. This equation could be adapted to incorporate
more higher-order terms. Building from the results of pairwise interactions, we approximate
that higher-order interactions also dependent on the ratio of species. Similar to Eq 2, the scale
factor p can be calculated from the following general form,

p ¼ QM
w¼1

Nw

Ntotal

; ð4Þ

where Ntotal is the total number of cells in the community. Analogous to finding the pairwise
coefficients, measurements of the metabolic activity of three species combinations and Eqs 3
and 4 together with the pairwise interaction coefficients already measured were used to calcu-
late the 4 second order coefficients. A single third order coefficient was calculated from experi-
mental measurements of the 4 species community. The strengths of second and third order
interaction terms in three- and four-species communities respectively are listed in Fig 3A.

Fig 3B shows in a four-species community, the proportions of all interaction terms in pre-
dicted overall metabolic rate for five different species ratios. The average contributions of 0th,
1st, 2nd, and 3rd order interaction terms, shown as red lines, sharply decrease. The contribution

Fig 3. Accounting for higher-order interactions. (A) The proportions of 2nd and 3rd order interaction terms in 3 and 4 species microbial
communities respectively. Interaction coefficients were calculated using Eqs 3 and 4 and experimental measurements of metabolic activity within
subsets of the community. The 95% confidence interval is shown. (B) Proportions of different interaction terms in the 4-species community for
different species ratios (Ec:Av:Ah:So). (C) Using all interaction coefficients derived from our data, we compared the experimental measurements of
total activity of the 4-species community with even composition and with one member in excess. Predictions made assuming no interactions (0th

order model), 2-species interactions (1st order model), and 2 and 3-species interactions (2nd order model), and 2, 3, and 4-species interactions (3rd

order model). Error bars indicates standard deviations. Red lines indicate average values. The strength of interaction is normalized by dividing by the
total metabolic rate.

doi:10.1371/journal.pcbi.1005079.g003
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of each term is calculated as the strength of interaction, defined as the sum of all interactions of
a specific order divided by the total metabolic rate. For example the strength of the 2nd order
interactions would be,

Strength of interaction ¼ 1=Rtotal �
PM

w¼1

PM
x>w

PM
y>x>wiwxy

NwNxNy

N3
total

: ð5Þ

After extracting all interaction coefficients within the 4 species community, we compared
the predictive ability of models incorporating different levels of interactions. Fig 3C compares
measurements of the 4-species at different ratios of cells to versions of the model incorporating
subsequently higher-order interaction terms. The 0th order model gives us a metabolic rate that
is under predicted, and adding first order coefficients greatly improves the accuracy of the pre-
diction. Incorporating 3- and 4-species coefficients gives an accurate prediction, but is not an
improvement over the 1st-order model. In the S4 Text we compare measurements to theory for
a wider range of community composition. On average the ratio of prediction to measurements
is 0.82±0.06 for the 0th order model, 0.98±0.11 for the 1st order model, 1.07±0.13 for the 2nd

order model, and 1.02±0.13 for the full 3rd order model. The interaction network was built
from the bottom up, fitting for low order coefficients from measurements of the minimum
number of combined strains. We also analyzed the data by fitting to only the four-species data,
as shown in S5 Text, both using a pairwise only model and the model incorporating high-order
interactions described in Eq 3. Fitting only the four-species data resulted in an interaction net-
work that did not accurately describe the activity of pairwise combinations of species.

Fig 4. Simulations for a spatially fragmentedmultispecies microbial community. (A) The community is
divided into microcolonies of variable size. (B) Relative contributions of different levels of interaction to the
overall metabolic rate for the experimentally measured community. (C) Simulation results shown how the
total metabolic activity of the system depends on the number of cells per microcolony and the community
composition. The total metabolic rate has been normalized to 1. (D) Distributions of the metabolic rate of
individual cells for microcolony sizes of 1, 3, 20 and 200. Metabolic activity was calculated using Eq 3, with
basal metabolic rates of 0.16, 0.66, 0.57, 0.34 for Ec, Av, Ah, and So respectively. The fraction of Ah is 0.5 in
(D).

doi:10.1371/journal.pcbi.1005079.g004
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Multispecies interactions in spatially fragmented microbial systems
Given the importance of interactions in setting overall activity levels of multispecies microbial
communities, simulations were used to explore the experimentally measured interaction net-
work in the context of a spatially structured population, as depicted in Fig 4A. Some natural
microbial ecosystems have disperse, patchy distribution of cells [35, 36], potentially giving rise
to many local neighborhoods of cells with a range of activity levels. If specific combinations are
significant contributors to the overall activity level of the community, the size of these microco-
lonies and the evenness of the population could have significant consequences on the overall
community activity. Agent-based models using Eqs 3 and 4 were used to explore the conse-
quence of multispecies interactions in the limit of spatially isolated or non-interacting
microcolonies.

A community incorporating 2-species, 3-species and 4-species interactions was simulated
that contained the experimentally determined interactions parameters from Figs 2 and 3. Fig
4B shows the relative contribution of pairwise and higher-order interactions to the overall met-
abolic rate. The system contains 8,400 cells, unevenly distributed with a variable number of Ah
cells and equal numbers of cell Av, So, and Ec making up the remainder of the population. The
cells are randomly distributed into microcolonies such that each one has an equal number of
cells. After distributing the cells, the activity of each group of cells is calculated using Eq 3 and
assuming that interactions are local, i.e. restricted to neighbors within the same colony. The
total activity of the community is the sum of the activity of all the cells in each micro-colony.

As shown in Fig 4C, the overall metabolic rate of the community is sensitive to how the spe-
cies are distributed in space. Community activity increases with colony size as larger colonies
allow the positive pairwise and three-species interactions. An even population distribution, not
dominated by Ah, also leads to an increased metabolic rate as the positive interactions between
the four strains are more likely to be sampled in each microcolony.

Group size also impacts the distribution of local activity levels. Fig 4D shows the activity of
each microcolony in populations containing 50% of species Ah for microcolony sizes of 1, 3,
20, and 200 cells. We observe that for 1-cell microcolonies activity is low, as groups that are too
small omit even 1st-order interactions. For small groups containing multiple cell types, the
activity of individual cells broadens as a result of the variability of the composition of each
microcolony. As microcolony size continues to expand, the average composition becomes
more predictable, sampling all possible interactions, and single-cell activity levels are uniform.
The distribution of activity levels in even this simple interaction network demonstrates how
both the global species composition and the microscale distribution of cells can strongly influ-
ence local activity profiles. Local “hotspots”may be present in such populations, but only when
populations are fragmented into small groups.

Discussion
Here we measured the metabolic interactions within a four species community of microbes, to
quantify the influence of pairwise and higher-order interactions on the overall metabolic rate
of the community. In previous studies, pairwise interactions have been measured, including a
large screen of Streptomyces species [7]. Similar to these previous studies, we found a range of
interactions between the species, ranging from no interaction to strongly positive. Interestingly,
no negative pairwise interactions were found in within the small set of species tried here,
despite previous work finding that many pairwise interactions were negative [19]. One possible
explanation is the use of dilute LB media, a complex media that may contain compounds that
negatively impact the growth of some strains. Interactions with So were performed at 37°C,
which is higher than its optimal growth temperature of 30°C [37]. The temperature stress on
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So may be related to the positive pairwise interactions with the other community members.
Interactions between some species likely depend on cellular state and growth phase, and here
we grew each species to exponential phase. We also examined metabolic rates after only 30
minutes of coculture, a time scale over which changes in species ratios are small, see S1 Text for
growth rates. Our measurements capture changes in metabolic rate that occur on short time-
scales, and may not indicate the long term behavior of such systems, such as alteration of the
growth environment by different types of cells. In multispecies communities long-term adap-
tion can also change interaction networks, leading to unexpected and sometimes uncertain out-
comes [38–40].

Quantitative measurements of higher-order interactions between these four species revealed
that pairwise interactions dominated and were sufficient to predict community overall activity.
When not taking any interactions into account, the predictions of the overall metabolic rate
were off by more than 18%. Fig 3C shows that a pairwise model predicted the overall metabolic
rate of the four species community within 2%, whereas adding the 3-species and 4-species coef-
ficients, within the error of the measurement, did not improve predictions. However, this by
no means denies the possible influences of higher-order interactions in other communities.
The distribution of the magnitude of these high-order interactions within other, more complex
communities would be valuable in determining how sensitive a community would be to
changes in the community diversity. It is possible that even rare combinations of species may
have evolved to strongly interact in natural microbial ecosystems. For a community with 100
species, there are in total>160,000 3-species combinations. The difficulty in measuring these
interactions increases as communities become more complex, and it is unclear if strong inter-
actions would be seen in even higher-order combinations of species. More work is needed to
explore how much is gained by quantifying high order interactions in more complex settings.

Extending these findings to predict the activity within more complex multispecies microbial
ecosystems will require a combination of predictive theoretical models and perhaps new exper-
imental tools to quantify interactions. With the rapid development of nanofabrication technol-
ogy, microfluidic devices are widely used for single-cell analysis [41, 42], allowing us to study
multispecies interactions at the microsystem level such as suggested in Fig 4 and elsewhere [43,
44]. We implemented a model in Fig 4 to explore how the species evenness and the interaction
network set the overall ecosystem outputs. For systems in which species are fragmented into
small microcolonies, high-order interactions and microcolony size could play a dominant role
in setting ecosystem outputs, especially in networks with strong high-order interactions such
as for a toy network shown in S7 Text. Small groups also displayed a broader range of local
activity levels. Given that a patchy distribution of cells has been observed in many natural com-
munities [45–49], such “hotspot”microcolonies may be important drivers of function of some
real microbial communities containing high-order interactions between species. Our results
point for a need of new experimental methods to identify such species combinations in real
systems.

Materials and Methods
In experiments, all strains were taken from frozen glycerol stocks and grown overnight in 10%
LB media (BD). The next day, we pipetted 5 to 150 μL from the suspension cultures into 3mL
10% LB media and grew them again for 3 to 4 hours such that all cultures simultaneously grew
to a final optical density at 600 nm near 0.2. Ec, Av, and As were grown at 37°C in 10% LB
media, while So was grown at 30°C. Cells were cultured at 5 mL scale and shaken at 200 rpm.

For measurements of metabolic activity, 100 μL of 10% LB media and 80 μL culture were
pipetted into the wells of a 96-well microplate. The 80 μL suspension cultures could be single-
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species or multiple-species mixed to different ratios. The microplate was incubated at 37°C for
30 minutes to allow microbial communities to interact. Finally, we pipetted 20 μL of the meta-
bolic indicator AlamarBlue (Thermo Scientific) into each well and measured the fluorescence
change using a well-plate reader. Fluorescence was measured at excitation and emission wave-
lengths of 560 to 590 nm, and a media-only control was used to account for background fluo-
rescence. S6 Text shows that during the measurement, the OD600 of cultures increased, as
expected given the doubling times reported in S1 Text.

For two-species combinations, we measured different ratios from 1:7 to 7:1. For three-spe-
cies combinations, we measured 6:1:1, 1:6:1, 1:1:6, 4:2:2, 2:4:2, 2:2:4, 2:3:3, 3:2:3, 3:3:2. For four-
species combinations, we measured 1:2:2:3, 1:2:3:2, 1:3:2:2, 2:1:2:3, 2:1:3:2, 3:1:2:2, 2:2:1:3,
2:3:1:2, 3:2:1:2, 2:2:3:1, 2:3:2:1, 3:2:2:1, 2:2:2:2, 1:1:1:5, 1:1:5:1, 1:5:1:1, 5:1:1:1. All combinations
were repeated at least three times on different days. The interaction coefficient from each day
was solved separately and interaction coefficients from different days were used to calculate the
mean, standard error, and confidence interval of each interaction parameter. Interactions coef-
ficients in Eq 3 were solved using Solver in excel (GRG Nonlinear solving method) to minimize
the sum of differences between predictions and measurements of all ratios. In higher-order
models, we applied the same method to solve for higher-order interaction coefficients, using
lower-order interaction coefficients solved previously in experiments involving fewer species.

Supporting Information
S1 Text. Optical densities (OD 600) of cell cultures growing in 10% LB.
(DOCX)

S2 Text. Metabolic rate is linearly proportional to the cell density.
(DOCX)

S3 Text. Predicted and measured metabolic rates for species ratios from 1:7 to 7:1 for all 6
2-species combinations.
(DOCX)

S4 Text. Comparison of predictions to measurements and contribution of each interaction
term for a wide rage of species ratios.
(DOCX)

S5 Text. Interaction parameters fit using only the data from 4-species experiments.
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S6 Text. Measurements of absorbance at 600 nm during the AlamarBlue assay indicate cell
growth.
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S7 Text. Simulations for spatially fragmented multispecies microbial community.
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