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Abstract: Global optimization, especially on a large scale, is challenging to solve due to its
nonlinearity and multimodality. In this paper, in order to enhance the global searching ability
of the firefly algorithm (FA) inspired by bionics, a novel hybrid meta-heuristic algorithm is proposed
by embedding the cross-entropy (CE) method into the firefly algorithm. With adaptive smoothing
and co-evolution, the proposed method fully absorbs the ergodicity, adaptability and robustness
of the cross-entropy method. The new hybrid algorithm achieves an effective balance between
exploration and exploitation to avoid falling into a local optimum, enhance its global searching
ability, and improve its convergence rate. The results of numeral experiments show that the new
hybrid algorithm possesses more powerful global search capacity, higher optimization precision, and
stronger robustness.
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1. Introduction

In many tasks or applications, global optimization plays a vital role, such as in power systems,
industrial design, image processing, biological engineering, job-shop scheduling, economic dispatch
and financial markets. In this paper, we focus our attention on unconstrained optimization
problems which can be formulated as min f (x) : x ∈ Rn, where f : Rn 7→ R and n refers to the
problems’ dimension [1]. Traditional optimization methods such as the gradient-based methods
usually struggle to deal with these challenging problems due to the objective function f (x) can be
nonlinearity, multimodality and non-convexity [2,3]. Thus, for decades, researchers have explored
many derivative-free optimization methods to solve them. Generally, these optimization methods can
be divided into two main classes: deterministic algorithms and stochastic algorithms [3,4]. The former,
such as the Hill-Climbing [5], Newton–Raphson [6], DIRECT Algorithm [7], and Geometric and
Information Global Optimization Methods with local tuning or local improvement [8,9], can get the
same final results if the same set of initial values are used at the beginning [10]. However, the latter
such as two well-known algorithms—Genetic Algorithm (GA) [11] and Particle Swarm Optimization
(PSO) [12]—often use some randomness in their strategies which can enable the algorithm to escape
from the local optima to search more regions on a global scale [10], and which have become very
popular for solving real-life problems [3].

In the past two decades, meta-heuristics based on evolutionary computation and swarm
intelligence have emerged and become prevalent, such as Ant Colony Optimization (ACO) [13],
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Differential Evolution (DE) [14], Harmony Search (HS) [15], Bacterial Foraging Optimization Algorithm
(BFOA) [16], Honey Bees Mating Optimization (HBMO) [17], Artificial Bee Colony (ABC) [18],
Biogeography-Based Optimization (BBO) [19], Gravitational Search Algorithm (GSA) [20], Firefly
Algorithm (FA) [21], Cuckoo Search (CS) [22], Bat Algorithm (BA) [23], Grey Wolf Optimizer
(GWO) [24], Ant Lion Optimizer (ALO) [25], Moth Flame Optimizer (MFO) [26], Dragonfly Algorithm
(DA) [27], Whale Optimization Algorithm (WOA) [28], Salp Swarm Algorithm (SSA) [29], Crow Search
Algorithm (CSA) [30], Polar Bear Optimization (PBO) [31], Tree Growth Algorithm (TGA) [32], and
Butterfly Optimization Algorithm (BOA) [33]. Meta-heuristic algorithms have been widely adopted
to deal with global optimization and engineering optimization problems, and have attracted much
attention as effective tools for optimization.

However, superior performance for any meta-heuristic algorithm is a target. They perform well
when dealing with certain optimization problems but are not ideal in most cases [34]. In order to
overcome this shortcoming, many hybrid meta-heuristic algorithms trying to combine meta-heuristics
and exact algorithms or other meta-heuristics have been proposed to solve more complicated
optimization problems, such as Hybrid Genetic Algorithm with Particle Swarm Optimization [35],
Hybrid Particle Swarm and Ant Colony Optimization [36], Hybrid Particle Swarm Optimization
with Gravitational Search Algorithm [37], Hybrid Evolutionary Firefly Algorithm [38], Hybrid
Artificial Bee Colony with Firefly Algorithm [39], Hybrid Firefly-Genetic Algorithm [40], Hybrid
Firefly Algorithm with Differential Evolution [10], Simulated Annealing Gaussian Bat Algorithm [41],
Hybrid Harmony Search with Cuckoo Search [42], Hybrid Harmony Search with Artificial Bee Colony
Algorithm [43], and Hybrid Whale Optimization Algorithm with Simulated Annealing [44]. These
hybrid meta-heuristic algorithms have been successfully applied in function optimization, engineering
optimization, portfolio selection, shop scheduling optimization, and feature selection.

Based on co-evolution, this paper explores a new hybrid meta-heuristic algorithm combining the
cross-entropy (CE) method and the firefly algorithm (FA). The cross-entropy method was proposed
by Rubinstein [45] in 1997 to solve rare event probability estimation in complex random networks,
while the firefly algorithm (FA) was developed by Yang [21] and inspired by the flashing pattern of
tropical fireflies in nature for multimodal optimization. The motivation of our new proposed hybrid
algorithm is to improve the global search ability by embedding the cross-entropy method into the
firefly algorithm to obtain an effective balance between exploration and exploitation.

The rest of the paper is organized as follows. In Section 2, CE and FA are briefly introduced, and
their hybridization study is presented in Section 3. Numeral experiments and results are given in
Section 4. Further analysis and a discussion of the performance of the new method are conducted in
Section 5. In Section 6, the conclusions of the paper are presented.

2. Preliminaries

2.1. The Cross-Entropy Method

The cross-entropy (CE) method was proposed by Rubinstein [45] in 1997 based on Monte Carlo
technology and uses Kullback–Leibler divergence to measure the cross-entropy between two sampling
distributions, solve an optimization problem by minimizing them, and obtain the optimal probability
distribution parameters. CE has excellent global optimization capability, good adaptability, and strong
robustness. Thus, Yang regards it as a meta-heuristic algorithm [4]. However, due to the large sample
size, it has the disadvantages of large computational cost and slow convergence rate. CE not only
solves rare event probability estimation problems. It can also be used to solve complex optimization
problems such as combination optimization [46–48], function optimization [46,48,49], engineering
design [50], vehicle routing problems [51], and problems from other fields [52–54].

Let us consider the optimization problem as follows:

min S(x) : X ∈ Rn → R, (1)
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where S is a real-valued performance function on X.
Now, we associate the above problem with a probability distribution estimation problem, and the

auxiliary problem is obtained:

l(γ) = Pµ(S(X) ≤ γ) = Eµ[IS(X)≤γ], (2)

where Eµ is the expectation operator, γ is a threshold or level parameter, and I is the indicator
function, whose value is 1 if S(X) ≤ γ and 0, otherwise. In order to reduce the number of samples,
the importance sampling method is introduced in CE. Consequently, we can rewrite Equation (2) as

l(γ) =
1
N

N

∑
i=1

IS(X)≤γ
f (xi; v)
g(xi)

, (3)

where xi is a random sample from f (x; v) with importance sampling density g(x). In order to obtain
the optimal importance sampling density, the Kullback–Leibler divergence is employed to measure
the distance between two densities, i.e., the cross-entropy, and the Kullback–Leibler divergence is
minimized to obtain the optimal density g∗(x), which is equivalent to solving the minimization
problem [45]

min
v

1
N

N

∑
i=1

IS(X)≤γ ln f (xi; v). (4)

The main CE algorithm for optimization problems is summarized in Algorithm 1.

Algorithm 1: CE for Optimization Problems
Begin

Set t = 0. Initialize the value of the probability distribution parameter v̂k.
while (t < MaxGeneration)

Generate Y1, Y2, ..., YL ∼iid f (x; v̂k). Evaluate and rank the sample.
Use the sample Y1, Y2, ..., YL to solve the problem given in Equation (4). Denote the

solution by ṽ.
Adaptive smoothing v̂k is demoted by ṽ.

v̂k+1 = αṽ + (1− α)v̂k, (5)

where 0 ≤ α ≤ 1 is a smoothing parameter.
Set t = t + 1.

end while
Output the best solution.

End

2.2. Firefly Algorithm

The firefly algorithm (FA) was proposed by Yang [21] and inspired by the unique light signal
system of fireflies in nature. Fireflies use radiance as a signal to locate and attract the opposite sex,
even to forage. Based on idealizing the flashing characteristics of fireflies, the firefly algorithm was
formulated for solving optimization problems. Using this algorithm, random search and optimization
can be performed within a certain range, such as the solution space. Through the movement of
fireflies and the constant renewal of brightness and attraction, they are constantly approaching the
best position and ultimately get the best solution to the problem. FA has attracted much attention and
has been applied to many applications such as global optimization [55], multimodal optimization [21],
multi-objective optimization [56], engineering design problems [57], scheduling problems [58], and
other fields [59–62].
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In order to design FA properly, two important issues need to be defined: the variation of light
intensity and formulation of the attractiveness [21]. The light intensity of a firefly can be approximated
as follows:

I = I0 × e−γr2
ij , (6)

where I0 represents the original light intensity and γ is a fixed light absorption coefficient. rij indicates
the distance between firefly i and firefly j and is defined as follows:

rij =
∥∥xi − xj

∥∥ =

√√√√ d

∑
k=1

(xik − xjk)2. (7)

The attractiveness of a firefly can be formulated as follows:

β = β0 × e−γr2
ij , (8)

where β0 represents the attractiveness at r = 0, which is the maximum attractiveness. Due to the
attractiveness from firefly j, the position of firefly i is updated as follows:

si = si + β× (sj − si) + λ× (rand− 0.5), (9)

where si and sj are the positions of fireflies i and j, respectively. The step factor λ is a constant and
satisfies 0 < λ < 1, and rand is a random number generator uniformly distributed in [0, 1], which was
later replaced by Lévy flight [55].

Based on the above, the main FA can be summarized in pseudo-code as Algorithm 2.

Algorithm 2: Firefly Algorithm
Begin

Objective function f (x), x = (x1, x2, ..., xd)
T .

Initialize a population of fireflies popi(i = 1, 2, ..., n).
Calculate the fitness value f (popi) to determine the light intensity Ii at popi.
Define light absorption coefficient γ.
while (t < MaxGeneration)

for i = 1 : n all n fireflies
for j = 1 : n all n fireflies

if (Ij > Ii)
Move firefly i towards j in all d-dimensions via Lévy flight.

end if
Attractiveness varies with distance r via −e−γr2

.
Evaluate new solutions and update light intensity.

end for j
end for i
Rank the fireflies and find the current best.

end while
Output the best solution.

End

3. Novel Hybrid Cross-Entropy Method and Firefly Algorithm

In this section, the details of the new hybrid algorithm are presented. A meta-heuristic algorithm
should have two main exploration and exploitation functions, and an excellent meta-heuristic
algorithm should try to effectively balance them and achieve better performance [63]. The cross-entropy
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method based on the Monte Carlo technique has the advantages of strong global optimization ability,
good adaptability, and robustness [46]. It also has obvious disadvantages of large sample size, high
computational cost, and slow convergence. At the same time, the firefly algorithm based on bionics
has the advantages of strong local search ability and fast convergence, but it tends to fall into a local
optimum rather than obtaining a global optimal solution [21]. Based on a co-evolutionary technique,
this paper explores constructing a new hybrid meta-heuristic algorithm, named the Cross-Entropy
Firefly Algorithm (CEFA), by embedding the cross-entropy method into the firefly algorithm. The new
method contains two optimization operators—the CE operator and FA operator—which implement
information sharing between the CE sample and the FA population through co-evolution in each
iteration. While the FA operator updates its population using the elite sample from CE to improve
the population diversity, the CE operator uses the FA population to calculate the initial probability
distribution parameters in order to speed up its convergence.

The new hybrid meta-heuristic algorithm based on a co-evolutionary technique preserves the
advantage of fast convergence of the swarm intelligent bionic algorithm in local search. At the same
time, it also makes full use of the global optimization ability of the cross-entropy stochastic optimization
method. The introduction of a co-evolutionary technique not only makes the meta-heuristic algorithms
from different backgrounds complement each other but also enhances their respective advantages.
Therefore, it has strong global exploration capability and local exploitation capability, and can quickly
converge to global optimal solution, which provides powerful algorithm support for complex function
optimization or engineering optimization problems.

The pseudo-code of CEFA is described in Algorithm 3.
In order to more clearly show the co-evolutionary process between the FA operator and the CE

operator, the flow chart of CEFA is presented in Figure 1.

Yes 

FA terminate? 
No 

Determine movement direction, update x. 

Calculate light intensity I. 

Calculate distance d and attractiveness .

Output the optimal solution and the optimal value. 

End 

Set parameters of FA and CE, and initialize population X. 

Calculate light intensity I, evaluate X, and update the current best and the best. 

Begin 

Generate Y1, Y2, ..., YN and evaluate sample. 

Co-update X, the current best and the best.

Calculate and , update and . 

Initialize probability distribution parameter. 

CE terminate? 
No Yes 

Figure 1. The flow chart of the Cross-Entropy Firefly Algorithm (CEFA).
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Algorithm 3: Cross-Entropy Firefly Algorithm
Begin

Objective function f (x), x = (x1, x2, ..., xd)
T .

Initialize a population of fireflies Xi(i = 1, 2, ..., n).
Calculate the fitness value f (Xi) to determine the light intensity Ii at Xi.
Define light absorption coefficient γ.
while (t < MaxGeneration_FA)

for i = 1 : n all n fireflies
for j = 1 : n all n fireflies

if (Ij > Ii)
Move firefly i towards j in all d-dimensions via Lévy flight.

end if
Attractiveness varies with distance r via −e−γr2

.
Evaluate new solutions and update light intensity.

end for j
end for i
Rank the fireflies and find the current best.
Initialize the probability distribution parameter v̂k by the population X.
for k = 1 : MaxGeneration_CE

Generate Y1, Y2, ..., YN ∼iid f (x; v̂k). Evaluate the sample Y.
Rank the population X and the sample Y together, update the current best.
Update the population X of FA and the elite sample Ye of CE.
Calculate the probability distribution parameter ṽ by the elite sample Ye.
Update the probability distribution parameter via Equation (5).

end for k
end while
Output the best solution.

End

4. Experiment and Results

4.1. Benchmark Functions

In this section, 23 standard testing functions utilized by many researchers [20,24,25,27–29]
were employed to evaluate the performance of the proposed hybrid algorithm CEFA for numerical
optimization problems. The benchmark functions including seven unimodal functions, six multimodal
functions and ten fixed-dimension multimodal functions are described in Appendix A (Table A1).
The unimodal functions were used to evaluate the exploitation and convergence of an algorithm,
while the multimodal functions were used to benchmark the performance of exploration and local
optima avoidance [25,27]. Further information on all the benchmark functions can be found in Yao et al.
(1999) [64].

4.2. Experiment Setting

Three test experiments were performed using the proposed CEFA method, and the obtained
numerical solutions were compared with those from FA [21], CE [45], GA [11], PSO [12], SSA [29],
BOA [31], and Hybrid Firefly Algorithm (HFA) [10] on the benchmark functions. Further information
on the experiments is shown in Table 1. For these experiments, the variants were coded in MATLAB
R2018b, running on a PC with an Intel Core i7-8700 machine (Gainesville, FL, USA), 3.19 GHz CPU,
and 16 GB of RAM.
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Table 1. Information about the three test experiments.

Name Functions Dimension Comparisons

Test 1 F1–F23 2–30 FA, CE, GA, PSO, SSA, BOA, HFA, CEFA
Test 2 F1–F13 50 GA, PSO, SSA, BOA, HFA, CEFA
Test 3 F1–F13 100 GA, PSO, SSA, BOA, HFA, CEFA

Test experimental conditions and settings: (1) The population size of the FA operator in CEFA
was set to 60 for Test 1 and 100 for Tests 2 and 3, while the sample size of the CE operator was 98.
The maximum number of iterations of the FA operator in CEFA was 50, while the CE operator’s was
30 for Test 1 and 50 for Tests 2 and 3. (2) The population sizes of other algorithms for comparison
were 100, and the maximum number of iterations were 1500 for Test 1 and 2500 for Tests 2 and 3.
(3) All the other parameters of each algorithm were set to be as the same as the original reference.
This experimental setup ensures fairness in comparison because the numbers of functional evaluations
(NFEs) for all algorithms were the same in the same test.

It is well known that all the intelligent methods are based on a certain stochastic distribution, so
30 independent runs were carried out for each method on each test function in order to statistically
evaluate the proposed hybrid algorithm. The average value and standard deviation of the best
approximated solution in the last iteration are introduced to compare the overall performance of
the algorithms.

4.3. Results and Comparisons

The results of Test 1 are shown in Table 2. The winner (best value) is identified in bold. Among
the results, the average value was used to evaluate the overall quality of the solution, reflecting
the average solution accuracy of the algorithm, and the standard deviation was used to evaluate
the stability of the algorithm. From Table 2, we can see the following: (1) The proposed algorithm
outperforms FA, CE, GA, PSO, and SSA on almost all seven unimodal functions and six multimodal
functions, while it is superior to BOA and HFA for the majority of them. This indicates that CEFA
has good performance in terms of exploitation, exploration and local optima avoidance. (2) CEFA
provides very competitive results in most of the ten fixed-dimension multimodal functions and tends
to outperform other algorithms. The advantages of CEFA have not been fully demonstrated when
solving low-dimensional function optimization problems.

The progress of the average best value over 30 runs for the benchmark functions F1, F2, F6,
F10, F12, and F13 is shown in Figure 2; it shows that the proposed CEFA tends to find the global
optimum significantly faster than other algorithms and has a higher convergence rate. This is due to
the employed co-evolutionary mechanisms adopted between CE and FA to place emphasis on the local
search and exploitation as the iteration number increases, which highly accelerate the convergence
towards the optimum in the final steps of the iterations.

Tests 2 and 3 were intended to further explore the advantages of the CEFA algorithm in solving
large-scale optimization problems. The test results are shown in Tables 3 and 4. Both of them show that
the proposed algorithm outperforms GA, PSO, and SSA on all test problems, except for one problem
with a slight difference from GA or PSO and provides very competitive results compared to BOA and
HFA on the majority of multimodal functions. The superior performance of the proposed method in
solving large-scale optimization problems is attributed to a good balance between exploration and
exploitation, which also enhances CEFA’s exploration and exploitation capabilities to focus on the
high-performance areas of the search space.
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Table 2. Comparison of the optimization results obtained in Test 1 (d = 2–30).

Fun. Meas. FA CE GA PSO SSA BOA HFA CEFA

F1 Aver. 1.23× 10−03 5.45× 10−01 1.10× 10−09 3.18× 10−23 5.92× 10−09 3.09× 10−16 1.64× 10−63 3.04 × 10−68

Stdev. 4.35× 10−03 6.72× 10−02 3.48× 10−09 8.40× 10−23 8.80× 10−10 1.40× 10−17 1.91× 10−64 1.58 × 10−68

F2 Aver. 4.36× 10−02 6.00× 10−01 3.84× 10−05 1.76× 10−15 5.24× 10−06 2.26× 10−13 1.57× 10−32 4.18 × 10−33

Stdev. 4.80× 10−02 6.86× 10−02 1.22× 10−04 2.33× 10−15 6.71× 10−07 9.69× 10−15 1.55× 10−33 1.14 × 10−33

F3 Aver. 8.59× 10+01 5.19× 10+02 2.39× 10−02 3.48× 10+00 7.03× 10−10 3.27× 10−16 5.02 × 10−18 1.08× 10+02

Stdev. 4.44× 10+01 1.24× 10+02 7.74× 10−02 2.56× 10+00 2.17× 10−10 1.19× 10−17 6.98 × 10−18 9.61× 10+01

F4 Aver. 8.45× 10−01 1.07× 10+00 1.96× 10−01 2.63× 10−01 1.07× 10−05 2.51× 10−13 3.51 × 10−14 4.53× 10−02

Stdev. 1.01× 10+00 8.09× 10−02 6.15× 10−01 1.12× 10−01 1.86× 10−06 1.34 × 10−14 1.31× 10−13 1.77× 10−01

F5 Aver. 3.85× 10+01 3.89× 10+01 7.45 × 10−01 3.81× 10+01 3.37× 10+01 2.89× 10+01 6.02× 10+00 2.73× 10+01

Stdev. 1.27× 10+01 1.25× 10+00 6.90× 10+00 2.69× 10+01 6.96× 10+01 3.01 × 10−02 2.40× 10+00 2.22× 10−01

F6 Aver. 7.08× 10−04 5.69× 10−01 1.14× 10−09 2.45× 10−23 4.48× 10−10 4.93× 10+00 0 0
Stdev. 3.05× 10−03 9.65× 10−02 3.65× 10−09 6.62× 10−23 1.60× 10−10 6.58× 10−01 0 0

F7 Aver. 4.61× 10−02 1.20× 10−03 4.26× 10−02 3.20× 10−03 1.32× 10−03 2.74 × 10−04 5.55× 10−04 3.09× 10−03

Stdev. 1.88× 10−02 2.94× 10−04 1.32× 10−01 1.19× 10−03 9.73× 10−04 9.29 × 10−05 1.65× 10−04 7.28× 10−04

F8 Aver. −4.08× 10+03 −4.39× 10+03 −1.07× 10+03 −6.76× 10+03 −2.96× 10+03 −4.39× 10+03 −1.04 × 10+04 −5.21× 10+03

Stdev. 2.53× 10+02 3.47× 10+02 3.25× 10+03 7.70× 10+02 2.25 × 10+02 3.04× 10+02 5.77× 10+02 2.06× 10+03

F9 Aver. 1.49× 10+02 1.57× 10+02 1.99× 10−01 3.28× 10+01 1.30× 10+01 5.69 × 10−15 2.47× 10+01 5.44× 10+00

Stdev. 1.17× 10+01 8.45× 10+00 9.38× 10−01 1.09× 10+01 5.82× 10+00 1.80 × 10−14 5.94× 10+00 2.27× 10+00

F10 Aver. 4.44 × 10−15 3.64× 10−01 7.97× 10−06 6.98× 10−13 2.20× 10+00 1.92× 10−13 6.93× 10−15 4.44 × 10−15

Stdev. 0 2.80× 10−02 2.43× 10−05 1.14× 10−12 7.19× 10−01 4.17× 10−14 1.66× 10−15 0

F11 Aver. 2.84× 10−03 7.13× 10−01 9.86× 10−05 1.12× 10−02 3.04× 10−01 0 0 0
Stdev. 1.32× 10−03 4.16× 10−02 9.86× 10−04 1.25× 10−02 1.58× 10−01 0 0 0

F12 Aver. 5.50× 10−05 5.51× 10−03 4.15× 10−03 2.03× 10−26 1.04× 10−01 3.51× 10−01 1.57 × 10−32 1.57 × 10−32

Stdev. 7.78× 10−05 8.54× 10−04 2.52× 10−02 5.27× 10−26 3.20× 10−01 9.59× 10−02 3.16× 10−02 5.57 × 10−48

F13 Aver. 5.46× 10−03 6.17× 10−02 4.39× 10−04 1.10× 10−03 7.32× 10−04 1.98× 10+00 1.35 × 10−32 1.35 × 10−32

Stdev. 7.45× 10−03 9.98× 10−03 2.16× 10−03 3.35× 10−03 2.79× 10−03 3.36× 10−01 5.57 × 10−48 5.57 × 10−48

F14 Aver. 1.0037 1.0970 0.3948 1.3280 0.9980 0.9983 0.9980 1.2470
Stdev. 3.12× 10−02 5.42× 10−01 1.56× 10+00 9.47× 10−01 1.51× 10−16 1.34× 10−03 0 9.44× 10−01

F15 Aver. 6.89× 10−04 3.07 × 10−04 3.83× 10−04 3.69× 10−04 6.94× 10−04 3.18× 10−04 3.07 × 10−04 7.31× 10−04

Stdev. 1.73× 10−04 3.30× 10−10 2.05× 10−03 2.32× 10−04 3.64× 10−04 8.14× 10−06 7.67 × 10−20 2.37× 10−05

F16 Aver. −1.0316 −1.0316 −0.1032 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Stdev. 6.78 × 10−16 6.20× 10−07 3.11× 10−01 6.78 × 10−16 1.04× 10−15 5.73× 10−06 6.78 × 10−16 6.78 × 10−16

F17 Aver. 0.3979 0.3979 0.3979 0.4665 0.3979 0.3979 0.3979 0.3979
Stdev. 0 9.80× 10−06 1.20× 10−01 1.27× 10−01 2.63× 10−15 9.97× 10−05 0 0
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Table 2. Cont.

Fun. Meas. FA CE GA PSO SSA BOA HFA CEFA

F18 Aver. 3.9000 6.4068 3.0000 3.0000 3.0000 3.0020 3.0000 3.9000
Stdev. 4.93× 10+00 1.09× 10+01 1.245× 10−10 1.31× 10−15 3.80× 10−14 1.41× 10−03 1.76 × 10−15 4.93× 10+00

F19 Aver. −3.8628 −3.8593 −0.3863 −3.7727 −3.8628 −3.8619 −3.8628 −3.8064
Stdev. 2.71 × 10−15 1.20× 10−02 1.16× 10+00 6.63× 10−02 2.84× 10−15 1.17× 10−03 2.71 × 10−15 1.96× 10−01

F20 Aver. −3.2784 −3.2863 −0.3251 −2.3324 −3.2190 −3.1088 −3.27 −3.2900
Stdev. 5.83× 10−02 5.54× 10−02 9.80× 10−01 3.16× 10−01 4.11 × 10−02 7.21× 10−02 5.92× 10−02 5.33× 10−02

F21 Aver. −10.1532 −6.1882 −0.638 −2.3449 −9.0573 −9.1254 −10.1532 −6.7096
Stdev. 6.63 × 10−15 3.77× 10+00 2.18× 10+00 9.81× 10−01 2.27× 10+00 9.23× 10−01 1.90× 10+00 3.75× 10+00

F22 Aver. −9.5164 −10.1479 −0.7815 −2.2815 −9.8742 −9.7991 −10.4029 −10.4029
Stdev. 2.58× 10+00 1.40× 10+00 2.57× 10+00 9.73× 10−01 1.61× 10+00 5.03× 10−01 1.75× 10−15 1.65 × 10−15

F23 Aver. −10.3130 −10.5364 −0.8559 −2.3258 −9.919 −10.0764 −10.5364 −10.5364
Stdev. 2.88× 10+00 2.22× 10−09 2.76× 10+00 9.13× 10−01 1.91× 10+00 2.96× 10−01 1.62 × 10−15 1.81× 10−15
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Figure 2. Convergence of algorithms on some of the benchmark functions in Test 1.

In addition, the good convergence speed of the proposed CEFA algorithm could be concluded
from Figures 3 and 4 when solving large-scale optimization problems, in which the same six functions,
F1, F2, F6, F10, F12, and F13, were selected from the benchmark functions for comparison. From these,
we can see that the local optima avoidance of this algorithm is satisfactory since it is able to avoid all of
the local optima and approximate the global optima on the majority of the multimodal test functions.
These results reaffirm that the operators of CEFA appropriately balance exploration and exploitation
to handle difficulty in a challenging and high-dimensional search space.
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Table 3. Comparison of the optimization results obtained in Test 2 (d = 50).

F Meas. GA PSO SSA BOA HFA CEFA

F1 Aver. 4.92× 10−09 5.32× 10−19 4.68× 10−09 2.28× 10−18 3.24 × 10−106 2.05× 10−65

Stdev. 1.91× 10−08 8.24× 10−19 7.90× 10−10 8.51× 10−20 1.64 × 10−59 7.97× 10−66

F2 Aver. 1.16× 10−02 1.96× 10−12 4.58× 10−06 3.47× 10+20 4.08 × 10−54 1.25× 10−31

Stdev. 5.01× 10−02 4.69× 10−12 9.23× 10−07 1.90× 10+21 3.36 × 10−55 2.66× 10−32

F3 Aver. 2.28× 10−01 1.58× 10+02 5.06× 10−10 2.33 × 10−18 3.38× 10−09 5.61× 10+02

Stdev. 7.19× 10−01 5.26× 10+01 1.55× 10−10 7.58 × 10−20 2.92× 10−09 2.98× 10+02

F4 Aver. 2.34× 10−01 2.48× 10+00 1.03× 10−05 1.98 × 10−15 1.43× 10−02 1.91× 10+00

Stdev. 7.34× 10−01 4.73× 10−01 1.58× 10−06 5.10 × 10−17 1.86× 10−02 1.89× 10+00

F5 Aver. 2.07 × 10+00 7.89× 10+01 6.51× 10+01 4.89× 10+01 2.55× 10+01 3.92× 10+01

Stdev. 1.14× 10+01 3.40× 10+01 6.03× 10+01 3.00 × 10−02 2.27× 10+01 5.17× 10+00

F6 Aver. 1.28× 10−08 5.97× 10−19 3.36× 10−10 9.52× 10+00 2.47× 10−33 0
Stdev. 5.90× 10−08 1.20× 10−18 1.01× 10−10 7.24× 10−01 5.63× 10−33 0

F7 Aver. 1.39× 10−01 8.66× 10−03 9.23× 10−04 1.79 × 10−04 1.59× 10−03 3.76× 10−03

Stdev. 4.26× 10−01 2.33× 10−03 8.29× 10−04 6.52 × 10−05 4.09× 10−04 9.56× 10−04

F8 Aver. −1.67× 10+03 −1.13× 10+04 −3.01× 10+03 −5.98× 10+03 −1.61 × 10+04 −7.42× 10+03

Stdev. 5.05× 10+03 1.22× 10+03 2.30 × 10+02 4.52× 10+02 7.73× 10+02 4.08× 10+03

F9 Aver. 1.99× 10−01 5.91× 10+01 1.23× 10+01 0 6.83× 10+01 1.34× 10+01

Stdev. 7.75× 10−01 1.34× 10+01 4.20× 10+00 0 1.55× 10+01 3.20× 10+00

F10 Aver. 1.76× 10−02 1.20× 10−10 2.26× 10−01 4.20× 10−15 8.70× 10−15 1.98 × 10−15

Stdev. 1.24× 10−01 1.54× 10−10 6.37× 10−01 9.01× 10−16 2.17× 10−15 1.79 × 10−16

F11 Aver. 1.48× 10−04 7.55× 10−03 2.80× 10−01 0 1.15× 10−03 0
Stdev. 1.48× 10−03 8.76× 10−03 1.20× 10−01 0 3.09× 10−02 0

F12 Aver. 3.73× 10−03 8.29× 10−03 2.07× 10−02 6.73× 10−01 2.08× 10−02 9.42 × 10−33

Stdev. 1.48× 10−02 2.70× 10−02 7.89× 10−02 1.04× 10−01 1.03× 10−01 2.78 × 10−48

F13 Aver. 7.69× 10−04 3.30× 10−03 1.65× 10−11 4.06× 10+00 2.56× 10−03 1.35 × 10−32

Stdev. 4.75× 10−03 5.12× 10−03 5.72× 10−12 7.17× 10−01 4.73× 10−03 5.57 × 10−48

Table 4. Comparison of the optimization results obtained in Test 3 (d = 100).

F Meas. GA PSO SSA BOA HFA CEFA

F1 Aver. 1.02× 10−02 1.40× 10−05 4.65× 10−09 2.34× 10−18 6.00× 10−44 1.93 × 10−44

Stdev. 3.45× 10−02 1.18× 10−05 8.94× 10−10 6.49× 10−20 9.67× 10−44 6.54 × 10−45

F2 Aver. 6.88× 10−01 7.58× 10−04 4.69× 10−06 3.76× 10+46 1.81 × 10−29 1.70× 10−21

Stdev. 2.22× 10+00 2.11× 10−03 1.02× 10−06 8.32× 10+46 1.52 × 10−29 2.88× 10−22

F3 Aver. 2.95× 10+00 7.67× 10+03 4.73× 10−10 2.39 × 10−18 3.03× 10+03 7.50× 10+03

Stdrv. 9.16× 10+00 1.70× 10+03 1.95× 10−10 6.96 × 10−20 4.07× 10+03 1.84× 10+03

F4 Aver. 2.53× 10−01 8.39× 10+00 1.01× 10−05 2.00 × 10−15 5.89× 10+01 1.51× 10+01

Stdev. 7.75× 10−01 7.99× 10−01 1.51× 10−06 6.00 × 10−17 5.13× 10+00 4.30× 10+00

F5 Aver. 1.65 × 10+01 2.38× 10+02 1.70× 10+02 9.89× 10+01 1.34× 10+02 1.04× 10+02

Stdev. 5.37× 10+01 9.49× 10+01 7.30× 10+01 2.74 × 10−02 5.26× 10+01 2.47× 10+01

F6 Aver. 3.08× 10−02 8.74× 10−06 3.57× 10−10 2.23× 10+01 2.17× 10−31 0
Stdev. 1.06× 10−01 8.32× 10−06 1.39× 10−10 9.59× 10−01 2.40× 10−31 0

F7 Aver. 3.57× 10−01 6.37× 10−02 8.10× 10−04 1.79 × 10−04 1.26× 10−02 9.36× 10−03

Stdev. 1.11× 10+00 1.09× 10−02 5.87× 10−04 6.49 × 10−05 2.91× 10−03 1.46× 10−03

F8 Aver. −2.81× 10+03 −2.10× 10+04 -3.06× 10+03 −8.52× 10+03 −3.00 × 10+04 −9.24× 10+03

Stdev. 8.47× 10+03 2.19× 10+03 3.55 × 10+02 7.06× 10+02 1.32× 10+03 3.90× 10+02

F9 Aver. 2.59× 10+00 1.29× 10+02 4.71× 10+01 0 2.28× 10+02 3.91× 10+01

Stdev. 8.08× 10+00 2.03× 10+01 1.43× 10+01 0 4.64× 10+01 5.09× 10+00

F10 Aver. 1.12× 10−01 1.54× 10−02 2.66× 10−01 4.44 × 10−15 2.43× 10−01 4.44 × 10−15

Stdev. 3.44× 10−01 6.60× 10−02 6.26× 10−01 5.32× 10−16 5.12× 10−01 4.01 × 10−16

F11 Aver. 2.30× 10−04 7.21× 10−03 3.02× 10−01 0 3.37× 10−03 0
Stdev. 7.63× 10−04 1.39× 10−02 1.03× 10−01 0 5.62× 10−03 0

F12 Aver. 2.18× 10−03 1.66× 10−02 6.22× 10−02 9.51× 10−01 7.61× 10−02 2.92 × 10−04

Stdev. 8.86× 10−03 3.03× 10−02 1.51× 10−01 7.96× 10−02 1.16× 10−01 1.60 × 10−03

F13 Aver. 2.71× 10−03 7.72× 10−03 7.32× 10−04 9.98× 10+00 9.08× 10−02 1.35 × 10−32

Stdev. 9.66× 10−03 1.04× 10−02 2.79× 10−03 6.30× 10−03 3.28× 10−01 5.57 × 10−48
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Figure 3. Convergence of algorithms on some of the benchmark functions in Test 2.
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Figure 4. Convergence of algorithms on some of the benchmark functions in Test 3.

5. Discussion

5.1. Advantage Analysis of CEFA

The main reasons for the superior performance of the proposed hybrid meta-heuristic algorithm
based on CE and FA in solving complex numerical optimization problems may be summarized
as follows:

• CE is a global stochastic optimization method based on Monte Carlo technology, and has the
advantages of randomness, adaptability, and robustness; this makes the FA population in the
hybrid algorithm have good diversity so that it can effectively overcome its tendency to fall into
a local optimum and improve its global optimization ability.

• FA mimicking the flashing mechanism of fireflies in nature has the advantage of fast convergence.
With co-evolution, CEFA uses the superior individuals obtained by the FA operator to update
the probability distribution parameters in the CE operator during the iterative process, which
improves the convergence rate of the CE operator.

• The hybrid meta-heuristic algorithm CEFA introduces the co-evolutionary technique to
collaboratively update the FA population and the probability distribution parameters in
CE, which obtains a good balance between exploration and exploitation, and has excellent
performance in terms of exploitation, exploration, and local optima avoidance in solving complex
numerical optimization problems. In addition, the proposed CEFA can effectively solve complex
high-dimensional optimization problems due to the superior performance of CE in solving them.

5.2. Efficiency Analysis of Co-Evolution

The proposed hybrid meta-heuristic algorithm CEFA employs co-evolutionary technology to
achieve a good balance between exploration and exploitation. The application of this co-evolutionary
technology can be summarized by three aspects: (1) The CE operator and the FA operator
collaboratively update the optimal solution and optimal value. (2) The initial probability distribution
parameters of the CE operator during the iterative process are updated with the population of the FA
operator. (3) The result of each iteration of the CE operator updates the current population of the FA
operator to obtain the best population.

Figure 5 shows the specific process of co-evolution when the hybrid algorithm is used to solve F1
and F9 selected from the benchmark functions, where “o” is the optimal function value updated by the
FA operator and “.” is updated by the CE operator. This fully demonstrates that the co-evolutionary
technology can be well implemented in the proposed method and the optimal function value is
collaboratively updated by the two operators FA and CE during the iterative process.
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Figure 5. Efficiency analysis of co-evolution: (a,c) two-dimensional versions of F1 and F9; (b,d) FA and
CE co-update the current best in CEFA’s iterative process.

5.3. Parameter Analysis of CEFA

In the proposed hybrid meta-heuristic algorithm, the numbers of iterations of the operators CE
and FA are two key parameters that affect its performance in solving numerical optimization problems.
To this end, this paper took F1 (dimension d = 30) as an example, and used the experimental method
to explore the influence of their different combinations on the optimization results. The specific
experiment was set as follows: the number of iterations N1 of the CE operator was set to 1, 5, 10, 30, 50,
100, 200, or 300, while the number of iterations of the FA operator N2 took values of 30, 50, 100, 200,
500, or 1000, and all the other parameters were the same as before. The results were averaged over 30
runs and the average optimal function value and time consumption are reported in Table 5.

Table 5. Experimental results of different numbers of iterations for FA and CE operators in CEFA.

N1 N2 30 50 100 200 500 1000

1 F1min 6.59× 10+00 8.94× 10−02 3.32× 10−04 6.03× 10−07 4.95× 10−15 3.62× 10−28

T 0.01 0.02 0.05 0.10 0.24 0.48

5 F1min 8.49× 10−11 6.98× 10−21 3.08× 10−45 4.43× 10−95 0 0
T 0.03 0.04 0.08 0.15 0.34 0.76

10 F1min 7.16× 10−20 2.80× 10−36 4.30× 10−76 0 0 0
T 0.04 0.05 0.11 0.31 0.76 2.10

30 F1min 8.83× 10−40 6.80× 10−69 0 0 0 0
T 0.14 0.21 0.42 0.79 2.16 4.70

50 F1min 6.84× 10−51 1.32× 10−87 0 0 0 0
T 0.24 0.31 0.57 1.15 3.43 6.35

100 F1min 8.11× 10−68 0 0 0 0 0
T 0.35 0.64 1.19 2.19 6.57 12.03

200 F1min 3.10× 10−86 0 0 0 0 0
T 0.54 1.07 2.10 4.61 12.75 24.10

300 F1min 8.97× 10−98 0 0 0 0 0
T 1.13 1.48 3.01 6.80 18.56 38.75
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Table 5 shows that the hybrid algorithm can adjust the number of iterations N1 and N2 of the
two operators in solving the specific optimization problem to achieve higher accuracy. The values of
N1 and N2 are determined by the characteristics and complexity of the given optimization problem,
and they are generally between 30 and 100.

5.4. Performance of CEFA for High-Dimensional Function Optimization Problems

In order to further explore the influence of search space dimension on the optimization
performance and convergence rate of CEFA when solving high-dimensional function optimization
problems, this paper selected the standard GA, PSO, SSA, BOA, and HFA as comparison objects to test
F1 from the benchmark functions. The dimension of the search space was increased from 10 to 200 in
steps of 10.

It can be seen from Figure 6 that the accuracy of the proposed CEFA is not greatly affected by
the increase of the dimension of the search space, which is obviously different from GA, PSO, and
SSA. It can be also seen that BOA has the same advantage, but its solution accuracy is not as high as
that of CEFA. As the dimensions of the search space increase, for example, it is greater than 70 for F1,
CEFA obtains more accurate results than HFA. This may provide a new and effective way for solving
high-dimensional function optimization problems.

20 40 60 80 100 120 140 160 180 200

Dimension

10-100

10-50

100

A
c
c
u
r
a
c
y

GA

PSO

SSA

BOA

HFA

CEFA

Figure 6. Comparison of optimization accuracy of different search space dimensions.

6. Conclusions

Global optimization problems are challenging to solve due to their nonlinearity and multimodality.
In this paper, based on the firefly algorithm and the cross-entropy method, a novel hybrid
meta-heuristic algorithm was constructed. In order to enhance the global search ability of the
proposed method, the co-evolutionary technique was introduced to obtain an efficient balance between
exploration and exploitation. The benchmark functions are employed to evaluate the performance
of the proposed hybrid algorithm CEFA for numerical optimization problems. The results of the
numeral experiments show that the new method provides very competitive results and possesses more
powerful global search capacity, higher optimization precision, and stronger robustness. Furthermore,
the new method exhibits excellent performance in solving high-dimensional function optimization
problems. In addition, for future research, a discrete version of CEFA will be developed to solve
combinatorial optimization problems.
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Appendix A

See Table A1.

Table A1. The definition of benchmark functions.

Function Dim Range Fmin Type

F1(x) = ∑n
i=1 x2

i 30,50,100 [−100,100] 0 Unimodal
F2(x) = ∑n

i=1 |xi |+ ∏n
i=1 |xi | 30,50,100 [−10,10] 0 Unimodal

F3(x) = ∑n
i=1(∑

i
j=1 xj)

2 30,50,100 [−100,100] 0 Unimodal
F4(x) = max

i
{|xi | , 1 ≤ i ≤ n} 30,50,100 [−100,100] 0 Unimodal

F5(x) = ∑n−1
i=1 [100(xi+1 − x2

i )
2 + (xi − 1)2] 30,50,100 [−30,30] 0 Unimodal

F6(x) = ∑n
i=1([xi + 0.5])2 30,50,100 [−100,100] 0 Unimodal

F7(x) = ∑n
i=1 ix4

i + random[0, 1) 30,50,100 [−1.28,1.28] 0 Unimodal
F8(x) = ∑n

i=1−xi sin (
√
|xi |) 30,50,100 [−500,500] −418.9829× n Multimodal

F9(x) = ∑n−1
i=1 [x

2
i − 10 cos (2πxi) + 10] 30,50,100 [−5.12,5.12] 0 Multimodal

F10(x) = −20 exp (−0.2
√

1
n ∑n

i=1 x2
i )− exp ( 1

n ∑n
i=1 cos (2πxi)) + 20 + e 30,50,100 [−32,32] 0 Multimodal

F11(x) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos ( xi√
i
) + 1 30,50,100 [−600,600] 0 Multimodal

F12(x) = π
n {10 sin2 (πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10 sin2 (πyi+1) + (yn + 1)2]}+ ∑n
i=1 u(xi , 10, 100, 4) 30,50,100 [−50,50] 0 Multimodal

yi = 1 + xi+1
4

u(xi , a, k, m) =

 k(xi − a)m, xi > a
0, −a ≤ xi ≤ a
k(−xi − a)m, xi < −a

F13(x) = 0.1{sin2 (3πx1) + ∑n
i=1(xi − 1)2[1 + sin2 (3πxi + 1)]}+ ∑n

i=1 u(xi , 5, 100, 4) 30,50,100 [−50,50] 0 Multimodal
F14(x) = ( 1

500 + ∑25
j=1

1
j+∑2

i=1(xi−aij)
6 )
−1 2 [−65.536,65.536] 1 Multimodal

F15(x) = ∑11
i=1[ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2 4 [−5,5] 0.00030 Multimodal

F16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − x22 + 4x2
2 2 [−5,5] −1.0316 Multimodal

F17(x) = (x2 − 5.1
4π x2

1 +
5
π x1 − 6)2 + 10(1− 1

8π ) cos x1 + 10 2 [−5,5] 0.398 Multimodal
F18(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)]× [30 + (2x1 − 3x2)(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)] 2 [−5,5] 3 Multimodal

F19(x) = −∑4
i=1 ci exp (−∑3

j=1 aij(xj − pij)
2) 3 [1,3] −3.86 Multimodal

F20(x) = −∑4
i=1 ci exp (−∑6

j=1 aij(xj − pij)
2) 6 [0,1] −3.32 Multimodal

F21(x) = −∑5
i=1[(X− ai)(X− ai)

T + ci ]
−1 4 [0,10] −10.1532 Multimodal

F22(x) = −∑7
i=1[(X− ai)(X− ai)

T + ci ]
−1 4 [0,10] −10.4028 Multimodal

F23(x) = −∑10
i=1[(X− ai)(X− ai)

T + ci ]
−1 4 [0,10] −10.5363 Multimodal
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